metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2,2′-[N,N′-Bis(pyridin-2-ylmeth­yl)propane-1,3-diyldi(nitrilo)]di­acetato}­cobalt(III) hexa­fluoridophosphate aceto­nitrile 0.064-solvate

aDepartment of Chemistry, Illinois State University, Campus Box 4160, Normal, IL 61790-4160, USA, and bDepartment of Chemistry, Loyola University Chicago, Chicago, IL 60626, USA
*Correspondence e-mail: mclauchlan@illinoisstate.edu

(Received 8 April 2013; accepted 24 April 2013; online 30 April 2013)

In the title compound, [Co(C19H22N4O4)]PF6·0.064CH3CN, commonly known as [Co(bppd)]PF6·0.064CH3CN, where bppd represents the historical ligand name N,N′-bis(2-pyridylmethyl)-1,3-diaminopropane-N,N′-diacetate, the CoIII atom is coordinated in a distorted octa­hedral geometry with an N4O2 donor atom set. The acetate O atoms, which exhibit monodentate coordination, are oriented in a trans configuration with respect to each other, whereas the pyridyl N atoms are coordinated in a cis configuration. The compound crystallizes with two crystallographically unique cations and two anions per asymmetric unit along with a disordered, partially occupied (occupancy = 0.128) aceto­nitrile solvent mol­ecule. Crystals of the title complex were found to be twinned by pseudomerohedry with a 180° rotation around [10-1] and a refined contribution of 90.5 (3)% of the major twin component.

Related literature

For this and related ligands, see: Lacoste et al. (1965[Lacoste, R. G., Christoffers, G. V. & Martell, A. E. (1965). J. Am. Chem. Soc. 87, 2385-2388.]); Caravan et al. (1997[Caravan, P., Rettig, S. J. & Orvig, C. (1997). Inorg. Chem. 36, 1306-1315.]); Kanamori et al. (2001[Kanamori, K., Kyotoh, A., Fujimoto, K., Nagata, K., Suzuki, H. & Okamoto, K. (2001). Bull. Chem. Soc. Jpn, 74, 2113-2118.]); Kissel et al. (2013[Kissel, D. S., Bender, J., Arnold, W. R., McLauchlan, C. C. & Herlinger, A. W. (2013). Paper #985. Division of Inorganic Chemistry, Lanthanide and Actinide Session, 245th ACS National Meeting and Exposition, New Orleans, LA, April 7-11, 2013.]). For a structure with a derivative of this ligand, see: Sato et al. (2012[Sato, K., Ohnuki, T., Takahashi, H., Miyashita, Y., Nozaki, K. & Kanamori, K. (2012). Inorg. Chem. 51, 5026-2036.]). For a related CoIII-N,N′-bis­(2-pyridyl­meth­yl)-1,2-di­amino­ethane-N,N′-di­acetate complex, [Co(bped)+], see: Caravan et al. (1997[Caravan, P., Rettig, S. J. & Orvig, C. (1997). Inorg. Chem. 36, 1306-1315.]). For literature on possible applications, see: Caravan et al. (1997[Caravan, P., Rettig, S. J. & Orvig, C. (1997). Inorg. Chem. 36, 1306-1315.]); Geraldes (1999[Geraldes, C. F. G. C. (1999). NMR Supramol. Chem. 526, 133-154.]); Jensen (2000[Jensen, M. P. (2000). J. Alloys Compd, 303-304, 137-145.]); Heitzmann et al. (2009[Heitzmann, M., Bravard, F., Gateau, C., Boubals, N., Berthon, C., Pecaut, J., Charbonnel, M. C. & Delangle, P. (2009). Inorg. Chem. 48, 246-256.]); Ogden et al. (2012[Ogden, M. D., Meier, G. P. & Nash, K. L. (2012). J. Solution Chem. 41, 1-16.]); Sato et al. (2012[Sato, K., Ohnuki, T., Takahashi, H., Miyashita, Y., Nozaki, K. & Kanamori, K. (2012). Inorg. Chem. 51, 5026-2036.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C19H22N4O4)]PF6·0.064C2H3N

  • Mr = 576.80

  • Monoclinic, P 21 /n

  • a = 21.8891 (7) Å

  • b = 10.2350 (3) Å

  • c = 21.9242 (7) Å

  • β = 112.802 (2)°

  • V = 4527.9 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.91 mm−1

  • T = 100 K

  • 0.46 × 0.23 × 0.16 mm

Data collection
  • Bruker APEXII diffractometer equipped with a CCD detector

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.680, Tmax = 0.871

  • 98080 measured reflections

  • 10379 independent reflections

  • 9851 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.074

  • S = 1.28

  • 10379 reflections

  • 645 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1 1.8828 (11)
Co1—O3 1.8899 (11)
Co1—N1 1.9484 (13)
Co1—N2 1.9625 (12)
Co1—N3 1.9397 (13)
Co1—N4 1.9641 (13)
Co2—O5 1.8875 (10)
Co2—O7 1.8830 (11)
Co2—N5 1.9403 (13)
Co2—N6 1.9654 (12)
Co2—N7 1.9575 (12)
Co2—N8 1.9645 (12)

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The title compound, [Co(C19H22N4O4)]PF6.0.064CH3CN or [Co(bppd)]PF6.0.064CH3CN, (I), where bppd represents the historical ligand name N,N'-bis(2-pyridylmethyl)-1,3-diaminopropane-N,N'-diacetate, was synthesized from N,N'-bis(2-pyridylmethyl)-1,3-diaminopropane-N,N'-diacetic acid. (H2bppd) is the second member of a series of symmetrically substituted polyaminocarboxylic acids with varying diamino backbones. Polyaminocarboxylic acids (Lacoste et al., 1965) and their derivatives are of considerable interest as complexing agents for potential application as magnetic resonance imaging agents when complexed to lanthanides, and solvent extraction reagents for spent nuclear fuel (SNF) reprocessing (Caravan et al., 1997; Geraldes, 1999; Heitzmann et al., 2009). There is very little structural information in the literature about the title ligand and its complexes. There is, however, a structure for a derivative of this ligand and a related CoIII-N,N'-bis(2-pyridylmethyl)-1,2-diaminoethane- N,N'-diacetate complex, Co(bped)+ (Caravan et al., 1997; Sato et al., 2012).

The H2bppd ligand is under investigation for use as a complexing agent for trivalent actinide (An(III))-lanthanide (Ln(III)) separations. This chemical separation is one of the more difficult challenges in SNF reprocessing because of the very similar physiochemical properties of An(III) and Ln(III) ions. It has been shown that donor atoms softer than oxygen make this difficult separation more selective, but at the cost of complex stability (Jensen, 2000; Ogden et al., 2012). Polyaminocarboxylic acids, containing softer aromatic nitrogen donors and harder oxygen donors, have been shown to provide good selectivity with adequate stability (Heitzmann et al., 2009). The H2bppd ligand features a modified diamine backbone with softer 2-pyridylmethyl substituents to provide selectivity and harder acetate functionalities to improve stability.

The asymmetric unit of compound (I) features two unique, well separated cation/anion pairs with a small amount of CH3CN solvate present. The cations and anions are well resolved, but some interactions do appear to be less than the sum of the van der Waals radii; the PF6 anion interacts primarily with the methylene unit or pyridine units of the ligand, with distances between 3.0 and 3.4 Å for F···C. A packing diagram of the unit cell is shown in Figure 1.

One of the [Co(bppd)]+ cations is shown in Figure 2. The configurations of both cations in the asymmetric unit are very similar, but differ slightly in the pitch of the pyridine rings and the position of the acetate groups; an overlay of the two cations is shown in Figure 3. The deviations are enough to break any higher symmetry. The bond lengths that define the CoIII coordination sphere for both cations are listed in Table 1 and a full listing of bond lengths and angles is available in the supplementary materials. The CoIII is hexacoordinate with a N4O2 donor set featuring two neutral tertiary aliphatic amine nitrogen atoms, two neutral aromatic nitrogen atoms, and two anionic acetate oxygen atoms. The complex has a distorted octahedral geometry and has idealized C2 symmetry, which features a non-crystallographic twofold rotation axis through the cobalt cation and the center carbon of the propylene backbone (Co1···C10 and Co2···C29, respectively), Figure 4. Because of their structural similarity, only one cation will be discussed. The acetate groups, which exhibit monodentate coordination, are oriented in a trans configuration with an O1—Co1—O3 angle of 178.47 (5)°. The pyridyl nitrogen atoms are coordinated cis with respect to each other defining a N3—Co1—N1 angle of 98.52 (6)°. The bite angle of the diamine backbone is slightly opened to a N2—Co1—N4 angle of 95.91 (5)°. The angles defined by the aliphatic amine nitrogen and pyridyl ring nitrogen, N1—Co1—N2 and N3—Co1—N4, are slightly compressed to 82.36 (5)° and 83.28 (6)°, respectively. The structure of the Co(bppd)+ cation is similar, then, to that reported by Caravan et al. (1997) for Co(bped)+, but with a somewhat less distorted octahedral coordination geometry in the present case.

Related literature top

For this and related ligands, see: Lacoste et al. (1965); Caravan et al. (1997); Kanamori et al. (2001); Kissel et al. (2013). For a structure with a derivative of this ligand, see: Sato et al. (2012). For a related CoIII-N,N'-bis(2-pyridylmethyl)-1,2-diaminoethane-N,N'-diacetate complex, [Co(bped)+], see: Caravan et al. (1997). For literature on possible applications, see: Caravan et al. (1997); Geraldes (1999); Jensen (2000); Heitzmann et al. (2009); Ogden et al. (2012); Sato et al. (2012).

Experimental top

The H2bppd ligand was prepared by a three step synthetic procedure (Kissel et al., 2013) using simple starting materials, which produced higher yields than previously reported methods (Kanamori et al., 2001). The title compound was prepared by slowly adding an equivalent amount of CoCl2.6H2O to a methanolic solution of H2bppd.3HCl that was neutralized with sodium acetate to the dianion. The mixture was aerated in the presence of activated charcoal while stirring overnight at room temperature. The dark cherry-red mixture was filtered and sodium hexafluoridophosphate added to the filtrate with stirring. A red solid precipitated out of solution upon standing at room temperature for 24 h. The isolated solid was collected by suction filtration and washed with cold methanol; yield: 110 mg (0.2 mmol), 40%. Cherry-red crystals suitable for X-ray diffraction studies were generated by slow evaporation from acetonitrile. All analyses were conducted on the bulk material prior to recrystallization. Analysis on the bulk complex showed the material is isolated as a monohydrate. The water of hydration is apparently lost upon recrystallization from acetonitrile. Anal. obs. (calc.): C, 38.75 (38.53); H, 3.51 (4.08); N 9.24 (9.46). Mag. Susc. µeff = 0.0 BM. IR (ν(cm-1), KBr): 3030 (m, C—H aryl str), 2947 (m, C—H alkyl str), 1660 (vs, b, COO- str), 1610 (s, CN str), 1471 (m, CH2), 1448 (m, CC str), 1361 (s, COO- str), 1342 (m, CN str).

Refinement top

The structure of the title complex can be solved and refined in P21/n routinely with R1 of ca 0.11. Analysis of the data confirms that the crystals are likely a case of twinning by pseudomerohedry with a 180° rotation around [101] in this setting. With inclusion of the twin law, the batch scale factor refines to 0.905 (3) and R1 values go below 0.03. Although quite satisfactory, residual electron density approximating an acetonitrile, the solvent of cyrstallization, is clearly present and can be further modelled. The occupancy of the CH3CN molecule was allowed to vary and refined to a non-chemically meaningful 11%, or 5.5% per cation/anion pair. Upon inspection, the refined bond lengths within the solvent were unreasonable, though, notably the C—C distance, and the molecule was then re-refined with isotropic displacement parameters and H atoms removed resulting in a slightly higher occupancy of 6.4 (5)% per cation/anion pair. As a comparison, another crystal isolated using the same crystallization method refined to an occupancy of 4.5% per cation/anion pair. Efforts to further model both the disorder and the partial occupancy were unfruitful and the overall effort involved does little to improve on the intial R1 value with no CH3CN modelled at all, and makes no significant difference to the cation and anion models of (I).

All H atoms were geometrically placed (C—H = 0.93–0.97 Å) and refined as riding with the exception of the H atoms on the disordered, partially occupied CH3CN, which were not modelled, but included in the overall formulation.

Structure description top

The title compound, [Co(C19H22N4O4)]PF6.0.064CH3CN or [Co(bppd)]PF6.0.064CH3CN, (I), where bppd represents the historical ligand name N,N'-bis(2-pyridylmethyl)-1,3-diaminopropane-N,N'-diacetate, was synthesized from N,N'-bis(2-pyridylmethyl)-1,3-diaminopropane-N,N'-diacetic acid. (H2bppd) is the second member of a series of symmetrically substituted polyaminocarboxylic acids with varying diamino backbones. Polyaminocarboxylic acids (Lacoste et al., 1965) and their derivatives are of considerable interest as complexing agents for potential application as magnetic resonance imaging agents when complexed to lanthanides, and solvent extraction reagents for spent nuclear fuel (SNF) reprocessing (Caravan et al., 1997; Geraldes, 1999; Heitzmann et al., 2009). There is very little structural information in the literature about the title ligand and its complexes. There is, however, a structure for a derivative of this ligand and a related CoIII-N,N'-bis(2-pyridylmethyl)-1,2-diaminoethane- N,N'-diacetate complex, Co(bped)+ (Caravan et al., 1997; Sato et al., 2012).

The H2bppd ligand is under investigation for use as a complexing agent for trivalent actinide (An(III))-lanthanide (Ln(III)) separations. This chemical separation is one of the more difficult challenges in SNF reprocessing because of the very similar physiochemical properties of An(III) and Ln(III) ions. It has been shown that donor atoms softer than oxygen make this difficult separation more selective, but at the cost of complex stability (Jensen, 2000; Ogden et al., 2012). Polyaminocarboxylic acids, containing softer aromatic nitrogen donors and harder oxygen donors, have been shown to provide good selectivity with adequate stability (Heitzmann et al., 2009). The H2bppd ligand features a modified diamine backbone with softer 2-pyridylmethyl substituents to provide selectivity and harder acetate functionalities to improve stability.

The asymmetric unit of compound (I) features two unique, well separated cation/anion pairs with a small amount of CH3CN solvate present. The cations and anions are well resolved, but some interactions do appear to be less than the sum of the van der Waals radii; the PF6 anion interacts primarily with the methylene unit or pyridine units of the ligand, with distances between 3.0 and 3.4 Å for F···C. A packing diagram of the unit cell is shown in Figure 1.

One of the [Co(bppd)]+ cations is shown in Figure 2. The configurations of both cations in the asymmetric unit are very similar, but differ slightly in the pitch of the pyridine rings and the position of the acetate groups; an overlay of the two cations is shown in Figure 3. The deviations are enough to break any higher symmetry. The bond lengths that define the CoIII coordination sphere for both cations are listed in Table 1 and a full listing of bond lengths and angles is available in the supplementary materials. The CoIII is hexacoordinate with a N4O2 donor set featuring two neutral tertiary aliphatic amine nitrogen atoms, two neutral aromatic nitrogen atoms, and two anionic acetate oxygen atoms. The complex has a distorted octahedral geometry and has idealized C2 symmetry, which features a non-crystallographic twofold rotation axis through the cobalt cation and the center carbon of the propylene backbone (Co1···C10 and Co2···C29, respectively), Figure 4. Because of their structural similarity, only one cation will be discussed. The acetate groups, which exhibit monodentate coordination, are oriented in a trans configuration with an O1—Co1—O3 angle of 178.47 (5)°. The pyridyl nitrogen atoms are coordinated cis with respect to each other defining a N3—Co1—N1 angle of 98.52 (6)°. The bite angle of the diamine backbone is slightly opened to a N2—Co1—N4 angle of 95.91 (5)°. The angles defined by the aliphatic amine nitrogen and pyridyl ring nitrogen, N1—Co1—N2 and N3—Co1—N4, are slightly compressed to 82.36 (5)° and 83.28 (6)°, respectively. The structure of the Co(bppd)+ cation is similar, then, to that reported by Caravan et al. (1997) for Co(bped)+, but with a somewhat less distorted octahedral coordination geometry in the present case.

For this and related ligands, see: Lacoste et al. (1965); Caravan et al. (1997); Kanamori et al. (2001); Kissel et al. (2013). For a structure with a derivative of this ligand, see: Sato et al. (2012). For a related CoIII-N,N'-bis(2-pyridylmethyl)-1,2-diaminoethane-N,N'-diacetate complex, [Co(bped)+], see: Caravan et al. (1997). For literature on possible applications, see: Caravan et al. (1997); Geraldes (1999); Jensen (2000); Heitzmann et al. (2009); Ogden et al. (2012); Sato et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. View of the packing of the molecular components of the title compound showing 50% displacement ellipsoids (arbitrary spheres for the H atoms) along [010]. Color code: C: black; H: cyan; Co: aquamarine; F: green; N: blue; O: red; P: magenta.
[Figure 2] Fig. 2. View of the molecular structure of one cation of the title compound showing 50% displacement ellipsoids (arbitrary spheres for the H atoms).
[Figure 3] Fig. 3. Overlay of the two crystallographically unique cations.
[Figure 4] Fig. 4. View of the molecular structure of one cation of the title compound down the non-crystallographic 2-fold axis (approximate unit vector -0.290 0.896 0.332). H atoms have been removed for clarity.
{2,2'-[N,N'-Bis(pyridin-2-ylmethyl)propane-1,3-diyldi(nitrilo)]diacetato}cobalt(III) hexafluoridophosphate acetonitrile 0.064-solvate top
Crystal data top
[Co(C19H22N4O4)]PF6·0.064C2H3NF(000) = 2346
Mr = 576.80Dx = 1.692 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 21.8891 (7) ÅCell parameters from 9929 reflections
b = 10.2350 (3) Åθ = 2.2–31.9°
c = 21.9242 (7) ŵ = 0.91 mm1
β = 112.802 (2)°T = 100 K
V = 4527.9 (2) Å3Cut block, translucent dark red-orange
Z = 80.46 × 0.23 × 0.16 mm
Data collection top
Bruker APEXII
diffractometer equipped with a CCD detector
10379 independent reflections
Radiation source: fine-focus sealed tube9851 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 8.3333 pixels mm-1θmax = 27.5°, θmin = 1.0°
φ and ω scansh = 2828
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1312
Tmin = 0.680, Tmax = 0.871l = 2827
98080 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.28 w = 1/[σ2(Fo2) + (0.0454P)2]
where P = (Fo2 + 2Fc2)/3
10379 reflections(Δ/σ)max = 0.001
645 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Co(C19H22N4O4)]PF6·0.064C2H3NV = 4527.9 (2) Å3
Mr = 576.80Z = 8
Monoclinic, P21/nMo Kα radiation
a = 21.8891 (7) ŵ = 0.91 mm1
b = 10.2350 (3) ÅT = 100 K
c = 21.9242 (7) Å0.46 × 0.23 × 0.16 mm
β = 112.802 (2)°
Data collection top
Bruker APEXII
diffractometer equipped with a CCD detector
10379 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
9851 reflections with I > 2σ(I)
Tmin = 0.680, Tmax = 0.871Rint = 0.028
98080 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.28Δρmax = 0.64 e Å3
10379 reflectionsΔρmin = 0.48 e Å3
645 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.680379 (10)0.290022 (18)0.624729 (10)0.00956 (5)
O10.63681 (5)0.32269 (11)0.53348 (5)0.0132 (2)
O20.53601 (5)0.35871 (10)0.45664 (5)0.0158 (2)
O30.72325 (5)0.26154 (11)0.71680 (5)0.0127 (2)
O40.78066 (6)0.36604 (11)0.81082 (5)0.0202 (2)
N10.63416 (6)0.12289 (12)0.60754 (6)0.0120 (2)
N20.60034 (6)0.34784 (12)0.63686 (6)0.0105 (2)
N30.76133 (6)0.23423 (14)0.61607 (7)0.0152 (3)
N40.72306 (6)0.46240 (12)0.63882 (6)0.0135 (2)
C10.63753 (8)0.02776 (15)0.56666 (8)0.0175 (3)
H1A0.66800.03630.54560.021*
C20.59791 (9)0.08206 (16)0.55439 (8)0.0223 (4)
H2A0.60120.14820.52540.027*
C30.55346 (8)0.09469 (16)0.58478 (9)0.0240 (4)
H3A0.52710.17110.57830.029*
C40.54785 (8)0.00546 (16)0.62489 (9)0.0200 (3)
H4A0.51690.00040.64550.024*
C50.58810 (7)0.11385 (14)0.63437 (7)0.0129 (3)
C60.58279 (7)0.23440 (15)0.67041 (7)0.0128 (3)
H6A0.61370.22960.71740.015*
H6B0.53710.24430.66860.015*
C70.54826 (7)0.37022 (15)0.56912 (7)0.0132 (3)
H7A0.53140.46070.56630.016*
H7B0.51070.31000.56200.016*
C80.57420 (7)0.34900 (13)0.51470 (7)0.0119 (3)
C90.60885 (7)0.46390 (14)0.68086 (7)0.0138 (3)
H9A0.64160.44160.72550.017*
H9B0.56610.48140.68500.017*
C100.63131 (8)0.58850 (15)0.65802 (8)0.0184 (3)
H10A0.65570.64210.69760.022*
H10B0.59130.63830.63060.022*
C110.67509 (8)0.57374 (15)0.61848 (8)0.0161 (3)
H11A0.64610.56270.57120.019*
H11B0.70030.65580.62250.019*
C120.78860 (8)0.11362 (17)0.62926 (8)0.0201 (3)
H12A0.76540.04520.64040.024*
C130.84984 (9)0.08817 (19)0.62679 (10)0.0279 (4)
H13A0.86780.00240.63470.033*
C140.88440 (10)0.1886 (2)0.61265 (10)0.0307 (4)
H14A0.92590.17220.60980.037*
C150.85800 (9)0.31391 (19)0.60268 (9)0.0245 (4)
H15A0.88210.38510.59520.029*
C160.79558 (8)0.33316 (17)0.60381 (8)0.0178 (3)
C170.76100 (8)0.46245 (16)0.59474 (8)0.0177 (3)
H17A0.79370.53460.60700.021*
H17B0.73050.47410.54800.021*
C180.76896 (7)0.47169 (15)0.71010 (7)0.0154 (3)
H18A0.76200.55620.72840.019*
H18B0.81540.46890.71350.019*
C190.75738 (7)0.36034 (14)0.75052 (8)0.0137 (3)
Co20.127881 (10)0.206242 (17)0.666003 (10)0.00865 (5)
O50.21806 (5)0.23182 (10)0.72040 (5)0.0121 (2)
O60.30655 (6)0.12785 (11)0.79108 (6)0.0230 (3)
O70.03857 (5)0.17621 (10)0.61087 (5)0.0131 (2)
O80.02655 (5)0.14861 (11)0.50480 (6)0.0179 (2)
N50.10676 (6)0.26211 (13)0.74014 (6)0.0140 (3)
N60.13431 (6)0.03316 (12)0.70686 (6)0.0119 (2)
N70.11816 (6)0.37471 (12)0.62093 (6)0.0104 (2)
N80.15295 (6)0.14819 (12)0.59347 (6)0.0099 (2)
C200.11881 (8)0.38126 (16)0.76838 (8)0.0180 (3)
H20A0.13350.44930.74790.022*
C210.11032 (10)0.40688 (18)0.82670 (9)0.0265 (4)
H21A0.11800.49200.84540.032*
C220.09057 (12)0.30666 (18)0.85706 (10)0.0305 (4)
H22A0.08470.32230.89720.037*
C230.07924 (10)0.18297 (18)0.82882 (10)0.0262 (4)
H23A0.06580.11300.84920.031*
C240.08809 (8)0.16379 (16)0.76996 (8)0.0179 (3)
C250.08214 (8)0.03443 (15)0.73538 (8)0.0168 (3)
H25A0.08930.03840.76710.020*
H25B0.03750.02500.69980.020*
C260.20196 (8)0.02161 (15)0.76059 (7)0.0153 (3)
H26A0.22200.06260.75590.018*
H26B0.19810.02180.80410.018*
C270.24717 (8)0.13318 (14)0.75825 (7)0.0144 (3)
C280.11960 (7)0.07812 (14)0.65890 (7)0.0138 (3)
H28A0.07460.06590.62450.017*
H28B0.11930.16020.68270.017*
C290.16849 (8)0.09321 (15)0.62498 (8)0.0150 (3)
H29A0.14600.14220.58330.018*
H29B0.20590.14780.65380.018*
C300.19734 (7)0.03175 (14)0.60843 (7)0.0127 (3)
H30A0.23900.05320.64620.015*
H30B0.20880.01420.56970.015*
C310.07496 (7)0.47038 (14)0.61800 (7)0.0126 (3)
H31A0.04910.46330.64400.015*
C320.06728 (7)0.57872 (15)0.57810 (7)0.0143 (3)
H32A0.03660.64540.57690.017*
C330.10461 (8)0.58906 (15)0.54001 (8)0.0165 (3)
H33A0.10080.66390.51320.020*
C340.14785 (8)0.48846 (15)0.54148 (8)0.0173 (3)
H34A0.17370.49310.51540.021*
C350.15248 (7)0.38192 (14)0.58144 (7)0.0116 (3)
C360.19088 (7)0.26107 (15)0.58220 (7)0.0123 (3)
H36A0.23550.26580.61800.015*
H36B0.19600.25080.53950.015*
C370.08966 (7)0.12739 (15)0.53421 (7)0.0128 (3)
H37A0.08830.03640.51850.015*
H37B0.08890.18640.49820.015*
C380.02848 (7)0.15290 (14)0.54956 (8)0.0128 (3)
P10.87051 (2)0.20853 (4)0.09170 (2)0.01435 (9)
F10.88717 (5)0.15364 (11)0.03144 (5)0.0253 (2)
F20.92037 (5)0.32889 (10)0.09903 (5)0.0214 (2)
F30.93125 (5)0.12522 (10)0.14210 (5)0.0245 (2)
F40.85452 (5)0.26333 (12)0.15215 (6)0.0293 (2)
F50.81102 (5)0.29279 (11)0.04093 (6)0.0320 (3)
F60.82114 (5)0.08857 (11)0.08447 (6)0.0309 (2)
P20.56387 (2)0.20817 (4)0.84196 (2)0.01808 (9)
F70.56344 (7)0.09114 (13)0.89065 (6)0.0421 (3)
F80.56504 (7)0.32505 (11)0.79448 (6)0.0385 (3)
F90.63582 (6)0.24718 (17)0.89367 (8)0.0553 (4)
F100.59708 (7)0.11130 (12)0.80632 (6)0.0420 (3)
F110.53192 (7)0.30432 (13)0.87873 (6)0.0408 (3)
F120.49280 (7)0.16633 (14)0.79232 (8)0.0552 (4)
C1S0.7245 (10)0.1996 (18)0.4578 (10)0.041 (5)*0.128 (5)
C2S0.7208 (12)0.319 (2)0.4357 (12)0.060 (6)*0.128 (5)
N1S0.7325 (11)0.094 (2)0.4837 (11)0.069 (6)*0.128 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.00947 (10)0.00884 (10)0.01061 (10)0.00142 (7)0.00414 (8)0.00024 (7)
O10.0143 (5)0.0130 (5)0.0118 (5)0.0028 (4)0.0047 (4)0.0005 (4)
O20.0184 (5)0.0142 (5)0.0110 (5)0.0002 (4)0.0015 (4)0.0007 (4)
O30.0124 (5)0.0112 (5)0.0132 (5)0.0005 (4)0.0034 (4)0.0005 (4)
O40.0236 (6)0.0165 (6)0.0138 (5)0.0006 (5)0.0001 (5)0.0005 (4)
N10.0135 (6)0.0101 (6)0.0105 (6)0.0026 (5)0.0028 (5)0.0005 (4)
N20.0104 (6)0.0097 (6)0.0105 (6)0.0011 (4)0.0030 (5)0.0015 (4)
N30.0139 (6)0.0168 (6)0.0165 (7)0.0033 (5)0.0076 (5)0.0027 (5)
N40.0122 (6)0.0120 (6)0.0158 (6)0.0009 (5)0.0050 (5)0.0027 (5)
C10.0214 (8)0.0148 (7)0.0137 (7)0.0055 (6)0.0040 (6)0.0010 (6)
C20.0243 (8)0.0134 (7)0.0190 (8)0.0043 (6)0.0030 (7)0.0066 (6)
C30.0158 (8)0.0106 (7)0.0346 (10)0.0009 (6)0.0024 (7)0.0018 (7)
C40.0138 (7)0.0142 (8)0.0291 (9)0.0003 (6)0.0052 (6)0.0024 (6)
C50.0111 (7)0.0119 (7)0.0134 (7)0.0018 (5)0.0023 (5)0.0012 (5)
C60.0126 (7)0.0126 (7)0.0143 (7)0.0001 (5)0.0065 (6)0.0007 (6)
C70.0110 (7)0.0146 (7)0.0111 (7)0.0028 (5)0.0011 (5)0.0002 (5)
C80.0156 (7)0.0058 (6)0.0129 (7)0.0006 (5)0.0041 (6)0.0010 (5)
C90.0149 (7)0.0113 (7)0.0141 (7)0.0021 (5)0.0043 (6)0.0041 (5)
C100.0185 (8)0.0101 (7)0.0250 (8)0.0019 (6)0.0068 (6)0.0031 (6)
C110.0176 (7)0.0097 (7)0.0185 (8)0.0019 (6)0.0044 (6)0.0025 (5)
C120.0199 (8)0.0198 (8)0.0224 (8)0.0078 (6)0.0102 (7)0.0048 (6)
C130.0245 (9)0.0287 (10)0.0348 (10)0.0135 (7)0.0165 (8)0.0071 (8)
C140.0183 (9)0.0432 (11)0.0364 (11)0.0094 (8)0.0168 (8)0.0067 (9)
C150.0192 (8)0.0332 (10)0.0260 (9)0.0016 (7)0.0143 (7)0.0063 (7)
C160.0159 (7)0.0216 (8)0.0171 (8)0.0004 (6)0.0078 (6)0.0036 (6)
C170.0179 (7)0.0178 (8)0.0204 (8)0.0022 (6)0.0106 (6)0.0038 (6)
C180.0128 (7)0.0146 (7)0.0153 (7)0.0015 (6)0.0014 (6)0.0002 (6)
C190.0098 (6)0.0120 (7)0.0169 (7)0.0021 (5)0.0025 (6)0.0001 (5)
Co20.00870 (10)0.00702 (10)0.01076 (10)0.00047 (6)0.00437 (7)0.00104 (6)
O50.0113 (5)0.0097 (5)0.0129 (5)0.0006 (4)0.0019 (4)0.0003 (4)
O60.0172 (6)0.0159 (6)0.0240 (6)0.0014 (4)0.0050 (5)0.0001 (5)
O70.0097 (5)0.0122 (5)0.0175 (5)0.0004 (4)0.0052 (4)0.0016 (4)
O80.0115 (5)0.0128 (5)0.0225 (6)0.0009 (4)0.0011 (4)0.0004 (4)
N50.0172 (6)0.0109 (6)0.0159 (6)0.0020 (5)0.0087 (5)0.0016 (5)
N60.0138 (6)0.0087 (6)0.0141 (6)0.0004 (5)0.0063 (5)0.0013 (5)
N70.0082 (5)0.0096 (6)0.0124 (6)0.0003 (4)0.0030 (5)0.0014 (4)
N80.0088 (5)0.0090 (6)0.0116 (6)0.0006 (4)0.0038 (5)0.0001 (4)
C200.0247 (8)0.0125 (7)0.0202 (8)0.0029 (6)0.0124 (7)0.0018 (6)
C210.0446 (11)0.0164 (8)0.0269 (9)0.0030 (7)0.0230 (8)0.0013 (7)
C220.0506 (13)0.0233 (10)0.0290 (10)0.0032 (8)0.0278 (10)0.0013 (7)
C230.0420 (11)0.0176 (8)0.0313 (10)0.0024 (7)0.0277 (9)0.0047 (7)
C240.0216 (8)0.0140 (7)0.0234 (8)0.0026 (6)0.0146 (7)0.0034 (6)
C250.0223 (8)0.0115 (7)0.0221 (8)0.0003 (6)0.0145 (7)0.0033 (6)
C260.0191 (7)0.0105 (7)0.0136 (7)0.0021 (6)0.0033 (6)0.0021 (5)
C270.0177 (7)0.0097 (7)0.0126 (7)0.0012 (5)0.0026 (6)0.0025 (5)
C280.0158 (7)0.0080 (6)0.0166 (7)0.0011 (5)0.0051 (6)0.0011 (5)
C290.0182 (7)0.0092 (7)0.0174 (7)0.0018 (5)0.0068 (6)0.0006 (5)
C300.0114 (7)0.0102 (7)0.0163 (7)0.0032 (5)0.0051 (6)0.0008 (5)
C310.0105 (6)0.0117 (7)0.0147 (7)0.0004 (5)0.0039 (5)0.0006 (5)
C320.0131 (7)0.0112 (7)0.0164 (7)0.0023 (5)0.0032 (6)0.0001 (5)
C330.0213 (8)0.0116 (7)0.0162 (7)0.0005 (6)0.0069 (6)0.0034 (6)
C340.0205 (8)0.0149 (7)0.0205 (8)0.0013 (6)0.0122 (6)0.0034 (6)
C350.0100 (6)0.0114 (7)0.0134 (7)0.0006 (5)0.0045 (5)0.0012 (5)
C360.0113 (7)0.0108 (7)0.0166 (7)0.0002 (5)0.0074 (6)0.0019 (5)
C370.0114 (7)0.0131 (7)0.0116 (7)0.0005 (5)0.0020 (5)0.0003 (5)
C380.0123 (7)0.0055 (6)0.0192 (7)0.0001 (5)0.0045 (6)0.0020 (5)
P10.01266 (19)0.0157 (2)0.0164 (2)0.00268 (14)0.00746 (16)0.00115 (14)
F10.0283 (5)0.0311 (6)0.0205 (5)0.0050 (4)0.0138 (4)0.0074 (4)
F20.0183 (5)0.0168 (5)0.0318 (5)0.0049 (4)0.0125 (4)0.0017 (4)
F30.0234 (5)0.0265 (5)0.0243 (5)0.0032 (4)0.0100 (4)0.0101 (4)
F40.0286 (6)0.0389 (6)0.0290 (6)0.0046 (5)0.0206 (5)0.0105 (5)
F50.0156 (5)0.0417 (7)0.0368 (7)0.0072 (4)0.0082 (5)0.0138 (5)
F60.0281 (6)0.0280 (6)0.0400 (6)0.0157 (5)0.0171 (5)0.0052 (5)
P20.0187 (2)0.0220 (2)0.0166 (2)0.00141 (15)0.01012 (17)0.00088 (15)
F70.0496 (8)0.0452 (7)0.0451 (7)0.0207 (6)0.0332 (6)0.0262 (6)
F80.0730 (9)0.0196 (5)0.0417 (7)0.0028 (6)0.0428 (7)0.0037 (5)
F90.0223 (6)0.0543 (8)0.0703 (10)0.0002 (6)0.0028 (6)0.0132 (8)
F100.0770 (9)0.0252 (6)0.0433 (7)0.0162 (6)0.0447 (7)0.0068 (5)
F110.0529 (8)0.0519 (8)0.0260 (6)0.0294 (6)0.0246 (6)0.0077 (5)
F120.0358 (7)0.0416 (8)0.0599 (9)0.0092 (6)0.0123 (7)0.0032 (7)
Geometric parameters (Å, º) top
Co1—O11.8828 (11)O6—C271.219 (2)
Co1—O31.8899 (11)O7—C381.2971 (19)
Co1—N11.9484 (13)O8—C381.2246 (18)
Co1—N21.9625 (12)N5—C201.347 (2)
Co1—N31.9397 (13)N5—C241.347 (2)
Co1—N41.9641 (13)N6—C261.4974 (19)
O1—C81.2973 (18)N6—C281.4980 (19)
O2—C81.2265 (18)N6—C251.4995 (19)
O3—C191.3035 (19)N7—C311.3454 (18)
O4—C191.2201 (19)N7—C351.3503 (19)
N1—C11.3446 (19)N8—C301.4915 (18)
N1—C51.353 (2)N8—C361.4981 (18)
N2—C91.4957 (18)N8—C371.5026 (18)
N2—C71.4985 (18)C20—C211.386 (2)
N2—C61.5019 (19)C20—H20A0.9500
N3—C161.348 (2)C21—C221.380 (3)
N3—C121.353 (2)C21—H21A0.9500
N4—C111.4956 (19)C22—C231.389 (3)
N4—C171.4986 (19)C22—H22A0.9500
N4—C181.4979 (19)C23—C241.391 (2)
C1—C21.381 (2)C23—H23A0.9500
C1—H1A0.9500C24—C251.506 (2)
C2—C31.382 (3)C25—H25A0.9900
C2—H2A0.9500C25—H25B0.9900
C3—C41.387 (2)C26—C271.525 (2)
C3—H3A0.9500C26—H26A0.9900
C4—C51.381 (2)C26—H26B0.9900
C4—H4A0.9500C28—C291.529 (2)
C5—C61.494 (2)C28—H28A0.9900
C6—H6A0.9900C28—H28B0.9900
C6—H6B0.9900C29—C301.531 (2)
C7—C81.522 (2)C29—H29A0.9900
C7—H7A0.9900C29—H29B0.9900
C7—H7B0.9900C30—H30A0.9900
C9—C101.520 (2)C30—H30B0.9900
C9—H9A0.9900C31—C321.382 (2)
C9—H9B0.9900C31—H31A0.9500
C10—C111.529 (2)C32—C331.380 (2)
C10—H10A0.9900C32—H32A0.9500
C10—H10B0.9900C33—C341.390 (2)
C11—H11A0.9900C33—H33A0.9500
C11—H11B0.9900C34—C351.378 (2)
C12—C131.387 (2)C34—H34A0.9500
C12—H12A0.9500C35—C361.492 (2)
C13—C141.381 (3)C36—H36A0.9900
C13—H13A0.9500C36—H36B0.9900
C14—C151.388 (3)C37—C381.525 (2)
C14—H14A0.9500C37—H37A0.9900
C15—C161.390 (2)C37—H37B0.9900
C15—H15A0.9500P1—F41.5979 (11)
C16—C171.499 (2)P1—F51.5985 (11)
C17—H17A0.9900P1—F61.6024 (11)
C17—H17B0.9900P1—F11.6023 (10)
C18—C191.524 (2)P1—F31.6052 (10)
C18—H18A0.9900P1—F21.6120 (10)
C18—H18B0.9900P2—F121.5734 (13)
Co2—O51.8875 (10)P2—F81.5924 (12)
Co2—O71.8830 (11)P2—F91.5941 (14)
Co2—N51.9403 (13)P2—F111.5952 (11)
Co2—N61.9654 (12)P2—F101.6007 (12)
Co2—N71.9575 (12)P2—F71.6069 (12)
Co2—N81.9645 (12)C1S—N1S1.20 (3)
O5—C271.3054 (18)C1S—C2S1.30 (3)
O1—Co1—O3178.47 (5)C38—O7—Co2114.38 (9)
O1—Co1—N393.10 (5)C20—N5—C24119.71 (14)
O3—Co1—N387.98 (5)C20—N5—Co2125.75 (11)
O1—Co1—N186.51 (5)C24—N5—Co2113.71 (11)
O3—Co1—N194.41 (5)C26—N6—C28111.73 (11)
N3—Co1—N198.52 (6)C26—N6—C25110.69 (12)
O1—Co1—N288.81 (5)C28—N6—C25107.94 (11)
O3—Co1—N290.09 (5)C26—N6—Co2107.70 (9)
N3—Co1—N2177.94 (5)C28—N6—Co2114.04 (9)
N1—Co1—N282.36 (5)C25—N6—Co2104.52 (9)
O1—Co1—N491.25 (5)C31—N7—C35119.02 (13)
O3—Co1—N487.79 (5)C31—N7—Co2127.02 (10)
N3—Co1—N483.28 (6)C35—N7—Co2113.15 (10)
N1—Co1—N4177.20 (5)C30—N8—C36107.28 (11)
N2—Co1—N495.91 (5)C30—N8—C37112.37 (11)
C8—O1—Co1114.32 (9)C36—N8—C37110.53 (11)
C19—O3—Co1115.11 (10)C30—N8—Co2115.23 (9)
C1—N1—C5118.88 (13)C36—N8—Co2104.29 (9)
C1—N1—Co1127.31 (11)C37—N8—Co2106.83 (9)
C5—N1—Co1113.23 (10)N5—C20—C21121.52 (15)
C9—N2—C7112.00 (11)N5—C20—H20A119.2
C9—N2—C6106.84 (11)C21—C20—H20A119.2
C7—N2—C6111.28 (11)C22—C21—C20118.90 (17)
C9—N2—Co1115.61 (9)C22—C21—H21A120.6
C7—N2—Co1106.74 (9)C20—C21—H21A120.6
C6—N2—Co1104.15 (9)C21—C22—C23119.84 (17)
C16—N3—C12119.65 (14)C21—C22—H22A120.1
C16—N3—Co1113.47 (11)C23—C22—H22A120.1
C12—N3—Co1126.30 (11)C22—C23—C24118.51 (16)
C11—N4—C17107.94 (12)C22—C23—H23A120.7
C11—N4—C18111.85 (12)C24—C23—H23A120.7
C17—N4—C18110.95 (12)N5—C24—C23121.49 (16)
C11—N4—Co1113.66 (9)N5—C24—C25113.32 (13)
C17—N4—Co1104.33 (9)C23—C24—C25125.10 (15)
C18—N4—Co1107.87 (9)N6—C25—C24106.63 (12)
N1—C1—C2121.78 (15)N6—C25—H25A110.4
N1—C1—H1A119.1C24—C25—H25A110.4
C2—C1—H1A119.1N6—C25—H25B110.4
C3—C2—C1119.25 (15)C24—C25—H25B110.4
C3—C2—H2A120.4H25A—C25—H25B108.6
C1—C2—H2A120.4N6—C26—C27111.79 (12)
C2—C3—C4119.25 (15)N6—C26—H26A109.3
C2—C3—H3A120.4C27—C26—H26A109.3
C4—C3—H3A120.4N6—C26—H26B109.3
C5—C4—C3118.74 (16)C27—C26—H26B109.3
C5—C4—H4A120.6H26A—C26—H26B107.9
C3—C4—H4A120.6O6—C27—O5123.80 (14)
N1—C5—C4121.92 (14)O6—C27—C26120.27 (14)
N1—C5—C6113.41 (13)O5—C27—C26115.93 (13)
C4—C5—C6124.54 (14)N6—C28—C29114.68 (12)
C5—C6—N2107.00 (12)N6—C28—H28A108.6
C5—C6—H6A110.3C29—C28—H28A108.6
N2—C6—H6A110.3N6—C28—H28B108.6
C5—C6—H6B110.3C29—C28—H28B108.6
N2—C6—H6B110.3H28A—C28—H28B107.6
H6A—C6—H6B108.6C28—C29—C30117.49 (12)
N2—C7—C8112.54 (12)C28—C29—H29A107.9
N2—C7—H7A109.1C30—C29—H29A107.9
C8—C7—H7A109.1C28—C29—H29B107.9
N2—C7—H7B109.1C30—C29—H29B107.9
C8—C7—H7B109.1H29A—C29—H29B107.2
H7A—C7—H7B107.8N8—C30—C29115.23 (12)
O2—C8—O1123.87 (14)N8—C30—H30A108.5
O2—C8—C7119.39 (13)C29—C30—H30A108.5
O1—C8—C7116.74 (12)N8—C30—H30B108.5
N2—C9—C10115.42 (12)C29—C30—H30B108.5
N2—C9—H9A108.4H30A—C30—H30B107.5
C10—C9—H9A108.4N7—C31—C32121.68 (14)
N2—C9—H9B108.4N7—C31—H31A119.2
C10—C9—H9B108.4C32—C31—H31A119.2
H9A—C9—H9B107.5C31—C32—C33119.29 (14)
C9—C10—C11117.25 (13)C31—C32—H32A120.4
C9—C10—H10A108.0C33—C32—H32A120.4
C11—C10—H10A108.0C32—C33—C34119.12 (14)
C9—C10—H10B108.0C32—C33—H33A120.4
C11—C10—H10B108.0C34—C33—H33A120.4
H10A—C10—H10B107.2C35—C34—C33118.84 (14)
N4—C11—C10115.36 (13)C35—C34—H34A120.6
N4—C11—H11A108.4C33—C34—H34A120.6
C10—C11—H11A108.4N7—C35—C34121.93 (14)
N4—C11—H11B108.4N7—C35—C36113.50 (13)
C10—C11—H11B108.4C34—C35—C36124.43 (13)
H11A—C11—H11B107.5C35—C36—N8107.17 (11)
N3—C12—C13121.08 (16)C35—C36—H36A110.3
N3—C12—H12A119.5N8—C36—H36A110.3
C13—C12—H12A119.5C35—C36—H36B110.3
C14—C13—C12119.38 (17)N8—C36—H36B110.3
C14—C13—H13A120.3H36A—C36—H36B108.5
C12—C13—H13A120.3N8—C37—C38112.29 (12)
C13—C14—C15119.48 (17)N8—C37—H37A109.1
C13—C14—H14A120.3C38—C37—H37A109.1
C15—C14—H14A120.3N8—C37—H37B109.1
C14—C15—C16118.69 (17)C38—C37—H37B109.1
C14—C15—H15A120.7H37A—C37—H37B107.9
C16—C15—H15A120.7O8—C38—O7123.82 (14)
N3—C16—C15121.58 (16)O8—C38—C37119.50 (14)
N3—C16—C17113.48 (13)O7—C38—C37116.67 (12)
C15—C16—C17124.89 (15)F4—P1—F590.40 (7)
N4—C17—C16106.96 (12)F4—P1—F689.70 (6)
N4—C17—H17A110.3F5—P1—F690.47 (6)
C16—C17—H17A110.3F4—P1—F1179.54 (6)
N4—C17—H17B110.3F5—P1—F189.96 (6)
C16—C17—H17B110.3F6—P1—F190.57 (6)
H17A—C17—H17B108.6F4—P1—F390.27 (6)
N4—C18—C19111.33 (12)F5—P1—F3178.85 (6)
N4—C18—H18A109.4F6—P1—F390.46 (6)
C19—C18—H18A109.4F1—P1—F389.36 (6)
N4—C18—H18B109.4F4—P1—F290.37 (6)
C19—C18—H18B109.4F5—P1—F289.69 (6)
H18A—C18—H18B108.0F6—P1—F2179.82 (6)
O4—C19—O3123.95 (14)F1—P1—F289.35 (6)
O4—C19—C18120.04 (13)F3—P1—F289.38 (5)
O3—C19—C18116.00 (13)F12—P2—F890.83 (8)
O7—Co2—O5178.36 (5)F12—P2—F9178.31 (9)
O7—Co2—N593.48 (5)F8—P2—F990.86 (9)
O5—Co2—N587.72 (5)F12—P2—F1190.45 (9)
O7—Co2—N786.39 (5)F8—P2—F1189.32 (6)
O5—Co2—N794.55 (5)F9—P2—F1189.53 (8)
N5—Co2—N798.55 (5)F12—P2—F1090.47 (9)
O7—Co2—N888.69 (5)F8—P2—F1091.19 (6)
O5—Co2—N890.09 (5)F9—P2—F1089.54 (8)
N5—Co2—N8177.67 (5)F11—P2—F10178.94 (8)
N7—Co2—N882.39 (5)F12—P2—F789.87 (8)
O7—Co2—N691.07 (5)F8—P2—F7179.26 (9)
O5—Co2—N687.96 (5)F9—P2—F788.44 (9)
N5—Co2—N683.23 (5)F11—P2—F790.43 (7)
N7—Co2—N6176.98 (5)F10—P2—F789.04 (6)
N8—Co2—N695.92 (5)N1S—C1S—C2S174 (2)
C27—O5—Co2115.33 (10)
O3—Co1—O1—C853.5 (19)O7—Co2—O5—C2751.5 (17)
N3—Co1—O1—C8171.78 (10)N5—Co2—O5—C2785.46 (11)
N1—Co1—O1—C873.42 (10)N7—Co2—O5—C27176.14 (10)
N2—Co1—O1—C89.00 (10)N8—Co2—O5—C2793.77 (10)
N4—Co1—O1—C8104.89 (10)N6—Co2—O5—C272.16 (10)
O1—Co1—O3—C1947.7 (19)O5—Co2—O7—C3852.4 (17)
N3—Co1—O3—C1987.11 (11)N5—Co2—O7—C38170.64 (10)
N1—Co1—O3—C19174.50 (10)N7—Co2—O7—C3872.28 (10)
N2—Co1—O3—C1992.15 (10)N8—Co2—O7—C3810.18 (10)
N4—Co1—O3—C193.76 (10)N6—Co2—O7—C38106.08 (10)
O1—Co1—N1—C159.18 (13)O7—Co2—N5—C20117.75 (13)
O3—Co1—N1—C1122.05 (13)O5—Co2—N5—C2063.37 (13)
N3—Co1—N1—C133.44 (13)N7—Co2—N5—C2030.88 (14)
N2—Co1—N1—C1148.45 (13)N8—Co2—N5—C2082.9 (14)
N4—Co1—N1—C196.2 (11)N6—Co2—N5—C20151.59 (14)
O1—Co1—N1—C5111.91 (10)O7—Co2—N5—C2472.84 (12)
O3—Co1—N1—C566.86 (10)O5—Co2—N5—C24106.03 (12)
N3—Co1—N1—C5155.48 (10)N7—Co2—N5—C24159.71 (11)
N2—Co1—N1—C522.64 (10)N8—Co2—N5—C2486.5 (14)
N4—Co1—N1—C574.9 (11)N6—Co2—N5—C2417.82 (11)
O1—Co1—N2—C9119.10 (10)O7—Co2—N6—C26176.35 (9)
O3—Co1—N2—C959.83 (10)O5—Co2—N6—C264.98 (9)
N3—Co1—N2—C938.8 (16)N5—Co2—N6—C2682.97 (10)
N1—Co1—N2—C9154.26 (10)N7—Co2—N6—C26150.9 (9)
N4—Co1—N2—C927.96 (10)N8—Co2—N6—C2694.86 (9)
O1—Co1—N2—C76.21 (9)O7—Co2—N6—C2859.05 (10)
O3—Co1—N2—C7174.87 (9)O5—Co2—N6—C28119.62 (10)
N3—Co1—N2—C7164.1 (15)N5—Co2—N6—C28152.43 (10)
N1—Co1—N2—C780.43 (9)N7—Co2—N6—C2826.3 (10)
N4—Co1—N2—C797.34 (9)N8—Co2—N6—C2829.74 (10)
O1—Co1—N2—C6124.02 (9)O7—Co2—N6—C2558.59 (9)
O3—Co1—N2—C657.05 (9)O5—Co2—N6—C25122.74 (9)
N3—Co1—N2—C678.1 (15)N5—Co2—N6—C2534.79 (9)
N1—Co1—N2—C637.38 (9)N7—Co2—N6—C2591.3 (10)
N4—Co1—N2—C6144.85 (9)N8—Co2—N6—C25147.38 (9)
O1—Co1—N3—C1672.52 (12)O7—Co2—N7—C3159.07 (12)
O3—Co1—N3—C16106.39 (12)O5—Co2—N7—C31122.29 (12)
N1—Co1—N3—C16159.45 (11)N5—Co2—N7—C3133.91 (13)
N2—Co1—N3—C1685.4 (15)N8—Co2—N7—C31148.23 (13)
N4—Co1—N3—C1618.37 (11)N6—Co2—N7—C3191.9 (10)
O1—Co1—N3—C12116.33 (14)O7—Co2—N7—C35110.35 (10)
O3—Co1—N3—C1264.76 (14)O5—Co2—N7—C3568.29 (10)
N1—Co1—N3—C1229.40 (15)N5—Co2—N7—C35156.66 (10)
N2—Co1—N3—C1285.8 (16)N8—Co2—N7—C3521.19 (10)
N4—Co1—N3—C12152.78 (15)N6—Co2—N7—C3577.6 (10)
O1—Co1—N4—C1159.21 (10)O7—Co2—N8—C30119.56 (10)
O3—Co1—N4—C11119.60 (10)O5—Co2—N8—C3059.34 (10)
N3—Co1—N4—C11152.18 (11)N5—Co2—N8—C3039.8 (14)
N1—Co1—N4—C1122.2 (12)N7—Co2—N8—C30153.91 (10)
N2—Co1—N4—C1129.73 (11)N6—Co2—N8—C3028.62 (10)
O1—Co1—N4—C1758.12 (9)O7—Co2—N8—C36123.12 (9)
O3—Co1—N4—C17123.08 (9)O5—Co2—N8—C3657.98 (9)
N3—Co1—N4—C1734.86 (9)N5—Co2—N8—C3677.5 (14)
N1—Co1—N4—C1795.1 (11)N7—Co2—N8—C3636.59 (9)
N2—Co1—N4—C17147.05 (9)N6—Co2—N8—C36145.94 (9)
O1—Co1—N4—C18176.16 (9)O7—Co2—N8—C376.05 (9)
O3—Co1—N4—C185.04 (9)O5—Co2—N8—C37175.06 (9)
N3—Co1—N4—C1883.19 (10)N5—Co2—N8—C37165.4 (13)
N1—Co1—N4—C18146.9 (11)N7—Co2—N8—C3780.48 (9)
N2—Co1—N4—C1894.90 (10)N6—Co2—N8—C3796.98 (9)
C5—N1—C1—C23.7 (2)C24—N5—C20—C212.2 (2)
Co1—N1—C1—C2174.38 (12)Co2—N5—C20—C21171.04 (14)
N1—C1—C2—C30.1 (2)N5—C20—C21—C221.6 (3)
C1—C2—C3—C42.5 (2)C20—C21—C22—C230.4 (3)
C2—C3—C4—C51.4 (2)C21—C22—C23—C240.2 (3)
C1—N1—C5—C44.8 (2)C20—N5—C24—C231.6 (2)
Co1—N1—C5—C4176.75 (12)Co2—N5—C24—C23171.75 (14)
C1—N1—C5—C6171.34 (13)C20—N5—C24—C25175.09 (14)
Co1—N1—C5—C60.57 (15)Co2—N5—C24—C254.98 (17)
C3—C4—C5—N12.3 (2)C22—C23—C24—N50.5 (3)
C3—C4—C5—C6173.47 (15)C22—C23—C24—C25175.88 (18)
N1—C5—C6—N230.38 (16)C26—N6—C25—C2470.86 (15)
C4—C5—C6—N2145.69 (15)C28—N6—C25—C24166.58 (12)
C9—N2—C6—C5168.43 (11)Co2—N6—C25—C2444.83 (13)
C7—N2—C6—C569.04 (14)N5—C24—C25—N633.63 (18)
Co1—N2—C6—C545.60 (12)C23—C24—C25—N6142.96 (17)
C9—N2—C7—C8124.42 (13)C28—N6—C26—C27115.70 (13)
C6—N2—C7—C8116.07 (13)C25—N6—C26—C27123.98 (13)
Co1—N2—C7—C83.05 (14)Co2—N6—C26—C2710.28 (14)
Co1—O1—C8—O2171.62 (11)Co2—O5—C27—O6172.00 (13)
Co1—O1—C8—C79.16 (16)Co2—O5—C27—C268.93 (16)
N2—C7—C8—O2176.96 (12)N6—C26—C27—O6167.91 (14)
N2—C7—C8—O13.79 (18)N6—C26—C27—O512.98 (18)
C7—N2—C9—C1061.72 (16)C26—N6—C28—C2958.19 (16)
C6—N2—C9—C10176.19 (12)C25—N6—C28—C29179.89 (12)
Co1—N2—C9—C1060.83 (15)Co2—N6—C28—C2964.23 (14)
N2—C9—C10—C1130.47 (19)N6—C28—C29—C3035.32 (18)
C17—N4—C11—C10179.54 (13)C36—N8—C30—C29177.06 (12)
C18—N4—C11—C1058.13 (17)C37—N8—C30—C2961.25 (16)
Co1—N4—C11—C1064.34 (15)Co2—N8—C30—C2961.44 (14)
C9—C10—C11—N435.5 (2)C28—C29—C30—N830.78 (19)
C16—N3—C12—C133.6 (3)C35—N7—C31—C323.3 (2)
Co1—N3—C12—C13174.26 (14)Co2—N7—C31—C32172.13 (11)
N3—C12—C13—C142.0 (3)N7—C31—C32—C330.3 (2)
C12—C13—C14—C151.5 (3)C31—C32—C33—C341.6 (2)
C13—C14—C15—C163.4 (3)C32—C33—C34—C350.6 (2)
C12—N3—C16—C151.6 (2)C31—N7—C35—C344.4 (2)
Co1—N3—C16—C15173.45 (13)Co2—N7—C35—C34174.75 (12)
C12—N3—C16—C17175.99 (14)C31—N7—C35—C36171.45 (13)
Co1—N3—C16—C174.20 (17)Co2—N7—C35—C361.10 (15)
C14—C15—C16—N31.8 (3)C33—C34—C35—N72.5 (2)
C14—C15—C16—C17179.20 (17)C33—C34—C35—C36172.89 (14)
C11—N4—C17—C16165.84 (13)N7—C35—C36—N831.48 (16)
C18—N4—C17—C1671.27 (15)C34—C35—C36—N8144.25 (15)
Co1—N4—C17—C1644.64 (13)C30—N8—C36—C35168.29 (11)
N3—C16—C17—N433.05 (18)C37—N8—C36—C3568.88 (14)
C15—C16—C17—N4144.50 (16)Co2—N8—C36—C3545.61 (12)
C11—N4—C18—C19114.02 (14)C30—N8—C37—C38125.51 (13)
C17—N4—C18—C19125.39 (13)C36—N8—C37—C38114.67 (13)
Co1—N4—C18—C1911.69 (14)Co2—N8—C37—C381.80 (14)
Co1—O3—C19—O4169.65 (12)Co2—O7—C38—O8169.73 (12)
Co1—O3—C19—C1811.81 (16)Co2—O7—C38—C3711.39 (16)
N4—C18—C19—O4165.58 (13)N8—C37—C38—O8174.96 (13)
N4—C18—C19—O315.81 (18)N8—C37—C38—O76.12 (18)

Experimental details

Crystal data
Chemical formula[Co(C19H22N4O4)]PF6·0.064C2H3N
Mr576.80
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)21.8891 (7), 10.2350 (3), 21.9242 (7)
β (°) 112.802 (2)
V3)4527.9 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.91
Crystal size (mm)0.46 × 0.23 × 0.16
Data collection
DiffractometerBruker APEXII
diffractometer equipped with a CCD detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.680, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
98080, 10379, 9851
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.074, 1.28
No. of reflections10379
No. of parameters645
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.48

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), enCIFer (Allen et al., 2004).

Selected bond lengths (Å) top
Co1—O11.8828 (11)Co2—O51.8875 (10)
Co1—O31.8899 (11)Co2—O71.8830 (11)
Co1—N11.9484 (13)Co2—N51.9403 (13)
Co1—N21.9625 (12)Co2—N61.9654 (12)
Co1—N31.9397 (13)Co2—N71.9575 (12)
Co1—N41.9641 (13)Co2—N81.9645 (12)
 

Acknowledgements

This work was supported by Illinois State University, Loyola University Chicago, and the National Science Foundation (US, CHE-0645081). CCM also acknowledges the National Science Foundation for the purchase of the Bruker APEXII (CHE-10–39689). DSK wishes to thank Loyola University Chicago and the Schmitt Foundation for fifth year fellowship support. The authors also thank Dr M. Zeller (Youngstown State University) for helpful discussions.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaravan, P., Rettig, S. J. & Orvig, C. (1997). Inorg. Chem. 36, 1306–1315.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGeraldes, C. F. G. C. (1999). NMR Supramol. Chem. 526, 133–154.  CrossRef CAS Google Scholar
First citationHeitzmann, M., Bravard, F., Gateau, C., Boubals, N., Berthon, C., Pecaut, J., Charbonnel, M. C. & Delangle, P. (2009). Inorg. Chem. 48, 246–256.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJensen, M. P. (2000). J. Alloys Compd, 303–304, 137–145.  Web of Science CrossRef CAS Google Scholar
First citationKanamori, K., Kyotoh, A., Fujimoto, K., Nagata, K., Suzuki, H. & Okamoto, K. (2001). Bull. Chem. Soc. Jpn, 74, 2113–2118.  Web of Science CSD CrossRef CAS Google Scholar
First citationKissel, D. S., Bender, J., Arnold, W. R., McLauchlan, C. C. & Herlinger, A. W. (2013). Paper #985. Division of Inorganic Chemistry, Lanthanide and Actinide Session, 245th ACS National Meeting and Exposition, New Orleans, LA, April 7–11, 2013.  Google Scholar
First citationLacoste, R. G., Christoffers, G. V. & Martell, A. E. (1965). J. Am. Chem. Soc. 87, 2385–2388.  CrossRef CAS Web of Science Google Scholar
First citationOgden, M. D., Meier, G. P. & Nash, K. L. (2012). J. Solution Chem. 41, 1–16.  Web of Science CrossRef CAS Google Scholar
First citationSato, K., Ohnuki, T., Takahashi, H., Miyashita, Y., Nozaki, K. & Kanamori, K. (2012). Inorg. Chem. 51, 5026–2036.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds