metal-organic compounds
(Butane-1,2,3,4-tetraol-κ3O1,O2,O3)(ethanol-κO)tris(nitrato-κ2O,O′)erbium(III)
aBeijing National Laboratory for Molecular Sciences, The State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China, bChemical Engineering College, Inner Mongolia University of Technology, People's Republic of China, and cState Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, People's Republic of China
*Correspondence e-mail: yanglm@pku.edu.cn
In the title ErIII–erythritol complex, [Er(NO3)3(C2H5OH)(C4H10O4)], the ErIII cation is chelated by one erythritol molecule, three nitrate anions and an ethanol molecule, completing an irregular ErO10 coordination geometry. The Er—O bond lengths are in the range 2.348 (3)–2.583 (3) Å. In the crystal, extensive O—H⋯O hydrogen bonding links the molecules into a three-dimensional supramolecular structure.
Related literature
For crystal structures of related lanthanide nitrate–erythritol complexes, see: Gyurcsik & Nagy (2000); Yang et al. (2003, 2004, 2012). For the isotypic HoIII complex, see: Hua et al. (2013). For the structure of erythritol, see: Bekoe & Powell (1959).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrystalClear (Rigaku, 2007); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536813008003/xu5657sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813008003/xu5657Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536813008003/xu5657Isup3.cdx
Er(NO3)3.6H2O and Erythritol were purchased from Shanghai Aladdin Chemical Reagents Company and was used without further purification. The procedure for the preparation of the title compound is as follows: Er(NO3)3.6H2O (3 mmol) and erythritol (3 mmol) were dissolved in 6ml water and 6 ml ethanol. The solution was put on a water bath, and the temperature was raised to 353 K. Small aliquots of EtOH were periodically added to the solution during the heating process to prolong the reaction time. The resulting mixtures were filtered and left for crystallization in room temperature, the suitable crystals for X-ray diffraction measurements were obtained in two weeks.
The C-bound H-atoms were placed in calculated positions (C—H 0.930 Å) and were included in the
in the riding model approximation, Uiso(H) = 1.2Ueq(C). The O-bound H atoms were located in a difference Fourier map and were refined with distance restraint of O—H = 0.84 Å, Uiso(H) = 1.2Ueq(O).Sugar-metal interaction is involved in many important biological processes (Gyurcsik & Nagy, 2000). Erythritol was used as a model compound to study the coordination behavior of hydroxyl groups of carbohydrate to metal ions.
The
of the title complex denoted as ErEN, where E stands for erythritol and N stands for nitrate) is shown in Fig. 1. This is isostructural with the HoIII compex (Hua et al., 2013). Three hydroxyl groups from one erythritol molecule, one hydroxyl group from ethanol, and six oxygen atoms from three bidentate nitrate ions are coordinated to Er(III), making the 10. Erythritol molecule is an O1, O2, O3-three hydroxyl group donor here.The structure of ErEN is similar to NdEN, EuEN, YEN, GdEN and TbEN (Yang et al., 2003, 2004, 2012). Er-O distances range from 2.348 to 2.583' Å, the average Er-O distance is 2.419Å. The structure of erythritol changed somewhat in the complex. The C-C bond length is 1.51Å and the C-O bond lengths are 1.39 and 1.47Å for a free erythritol (Bekoe & Powell, 1959). After coordination, the C-C bond lengths are 1.505 and 1.512Å and the C-O bond lengths are 1.422, 1.451, 1.445 and 1.456Å in ErEN. The C-C-C bond angle is 113° and the O-C-C bond angle is 107° for erythritol (Bekoe & Powell, 1959). After coordination, the C-C-C bond angles are 116.3 and 113.0° and the O-C-C bond angles range from 103.6 to 111.7° in ErEN. In addition, the torsion angle of C-C-C-C is 180° for erythritol. After coordination, the torsion angle of C-C-C-C is -57.2 (4)° in ErEN. The variation of the C-C-C-C torsion angle indicates the coordination to Er3+ brings about significant variation of the conformation of erythritol.
The hydrogen bond networks in ErEN are formed by O—H···O hydrogen bonds between coordinated and uncoordinated hydroxyl groups of erythritol, ethanol and nitrate ions.
For crystal structures of related lanthanide nitrate–erythritol complexes, see: Gyurcsik & Nagy (2000); Yang et al. (2003, 2004, 2012). For an isotypic HoIII complex, see: Hua et al. (2013). For the structure of erythritol, see: Bekoe & Powell (1959).
Data collection: CrystalClear (Rigaku, 2007); cell
CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The crystal structure of the title complex, displacement ellipsoids drawn at 30% probability level. The Hydrogen atoms have been omitted for clarity. |
[Er(NO3)3(C2H6O)(C4H10O4)] | F(000) = 1012 |
Mr = 521.48 | Dx = 2.351 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5453 reflections |
a = 7.7521 (16) Å | θ = 2.1–27.5° |
b = 12.772 (3) Å | µ = 5.78 mm−1 |
c = 15.121 (3) Å | T = 173 K |
β = 100.26 (3)° | Plate, pink |
V = 1473.3 (5) Å3 | 0.23 × 0.20 × 0.06 mm |
Z = 4 |
Rigaku Saturn724+ CCD diffractometer | 3359 independent reflections |
Radiation source: fine-focus sealed tube | 3174 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
Detector resolution: 28.5714 pixels mm-1 | θmax = 27.5°, θmin = 2.1° |
ω scans at fixed χ = 45° | h = −10→9 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) | k = −16→16 |
Tmin = 0.12, Tmax = 0.35 | l = −19→19 |
10846 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.063 | H-atom parameters constrained |
S = 1.20 | w = 1/[σ2(Fo2) + (0.021P)2 + 2.6512P] where P = (Fo2 + 2Fc2)/3 |
3359 reflections | (Δ/σ)max = 0.002 |
218 parameters | Δρmax = 1.46 e Å−3 |
0 restraints | Δρmin = −0.62 e Å−3 |
[Er(NO3)3(C2H6O)(C4H10O4)] | V = 1473.3 (5) Å3 |
Mr = 521.48 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.7521 (16) Å | µ = 5.78 mm−1 |
b = 12.772 (3) Å | T = 173 K |
c = 15.121 (3) Å | 0.23 × 0.20 × 0.06 mm |
β = 100.26 (3)° |
Rigaku Saturn724+ CCD diffractometer | 3359 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) | 3174 reflections with I > 2σ(I) |
Tmin = 0.12, Tmax = 0.35 | Rint = 0.035 |
10846 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.063 | H-atom parameters constrained |
S = 1.20 | Δρmax = 1.46 e Å−3 |
3359 reflections | Δρmin = −0.62 e Å−3 |
218 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Er1 | 0.62537 (2) | 0.895819 (13) | 0.247063 (10) | 0.01275 (7) | |
O9 | 0.6818 (4) | 1.0948 (2) | 0.26286 (19) | 0.0189 (6) | |
O13 | 0.6726 (4) | 0.7044 (2) | 0.23165 (19) | 0.0204 (6) | |
O6 | 0.4323 (4) | 0.9877 (2) | 0.12708 (19) | 0.0228 (6) | |
O14 | 0.9187 (4) | 0.6272 (2) | 0.2866 (2) | 0.0271 (7) | |
O10 | 0.8493 (4) | 0.9889 (2) | 0.35026 (19) | 0.0182 (6) | |
O11 | 0.8904 (4) | 1.1563 (2) | 0.3659 (2) | 0.0265 (7) | |
N1 | 0.4019 (5) | 0.9082 (3) | 0.0754 (2) | 0.0200 (8) | |
O7 | 0.4806 (4) | 0.8252 (2) | 0.10336 (18) | 0.0220 (6) | |
O8 | 0.3011 (4) | 0.9117 (3) | 0.0031 (2) | 0.0280 (7) | |
N3 | 0.8336 (5) | 0.7066 (3) | 0.2691 (2) | 0.0189 (7) | |
N2 | 0.8098 (5) | 1.0823 (3) | 0.3274 (2) | 0.0179 (7) | |
O5 | 0.8049 (4) | 0.9494 (2) | 0.14542 (19) | 0.0206 (6) | |
H5 | 0.7677 | 1.0027 | 0.1153 | 0.025* | |
C5 | 0.9524 (6) | 0.9070 (4) | 0.1084 (3) | 0.0240 (10) | |
H5A | 1.0284 | 0.8651 | 0.1549 | 0.029* | |
H5B | 1.0233 | 0.9653 | 0.0906 | 0.029* | |
O12 | 0.8972 (4) | 0.7972 (2) | 0.2864 (2) | 0.0220 (6) | |
C6 | 0.8876 (6) | 0.8393 (4) | 0.0278 (3) | 0.0271 (10) | |
H6A | 0.8125 | 0.7837 | 0.0447 | 0.041* | |
H6B | 0.9878 | 0.8079 | 0.0063 | 0.041* | |
H6C | 0.8201 | 0.8821 | −0.0200 | 0.041* | |
O2 | 0.3580 (3) | 0.8114 (2) | 0.25801 (16) | 0.0144 (6) | |
H2 | 0.3579 | 0.7470 | 0.2467 | 0.017* | |
O1 | 0.6345 (4) | 0.8266 (2) | 0.39163 (17) | 0.0157 (6) | |
H1 | 0.6813 | 0.8600 | 0.4375 | 0.019* | |
O3 | 0.4312 (4) | 0.9935 (2) | 0.32999 (17) | 0.0156 (6) | |
H3 | 0.3967 | 1.0527 | 0.3100 | 0.019* | |
C3 | 0.2846 (5) | 0.9375 (3) | 0.3562 (3) | 0.0141 (8) | |
H3A | 0.1758 | 0.9552 | 0.3126 | 0.017* | |
C2 | 0.3211 (5) | 0.8219 (3) | 0.3484 (2) | 0.0155 (8) | |
H2A | 0.2139 | 0.7806 | 0.3540 | 0.019* | |
O4 | 0.2278 (4) | 1.0783 (2) | 0.45507 (19) | 0.0204 (6) | |
H4 | 0.1250 | 1.0921 | 0.4295 | 0.025* | |
C1 | 0.4774 (5) | 0.7790 (3) | 0.4124 (3) | 0.0188 (8) | |
H1A | 0.4663 | 0.7952 | 0.4752 | 0.023* | |
H1B | 0.4832 | 0.7020 | 0.4060 | 0.023* | |
C4 | 0.2584 (6) | 0.9690 (3) | 0.4493 (3) | 0.0191 (8) | |
H4A | 0.1573 | 0.9301 | 0.4648 | 0.023* | |
H4B | 0.3637 | 0.9496 | 0.4935 | 0.023* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Er1 | 0.01351 (10) | 0.01084 (10) | 0.01385 (10) | 0.00053 (7) | 0.00234 (7) | 0.00034 (6) |
O9 | 0.0162 (14) | 0.0161 (15) | 0.0238 (14) | 0.0023 (12) | 0.0024 (12) | 0.0028 (11) |
O13 | 0.0159 (14) | 0.0188 (16) | 0.0254 (15) | 0.0029 (13) | 0.0006 (12) | −0.0029 (12) |
O6 | 0.0266 (17) | 0.0178 (15) | 0.0232 (15) | 0.0030 (13) | 0.0026 (13) | −0.0017 (12) |
O14 | 0.0247 (17) | 0.0164 (15) | 0.0392 (18) | 0.0115 (14) | 0.0030 (14) | 0.0050 (13) |
O10 | 0.0182 (15) | 0.0093 (14) | 0.0254 (14) | 0.0008 (12) | −0.0006 (12) | 0.0031 (11) |
O11 | 0.0318 (18) | 0.0123 (15) | 0.0330 (17) | −0.0075 (14) | −0.0008 (14) | −0.0056 (13) |
N1 | 0.0213 (19) | 0.023 (2) | 0.0160 (16) | −0.0027 (16) | 0.0049 (14) | 0.0022 (14) |
O7 | 0.0269 (16) | 0.0203 (16) | 0.0181 (14) | 0.0069 (14) | 0.0023 (12) | 0.0006 (12) |
O8 | 0.0251 (17) | 0.0375 (19) | 0.0188 (15) | 0.0062 (15) | −0.0032 (13) | 0.0043 (13) |
N3 | 0.0188 (18) | 0.0185 (19) | 0.0198 (16) | 0.0051 (15) | 0.0047 (14) | 0.0024 (14) |
N2 | 0.0170 (18) | 0.0167 (18) | 0.0215 (17) | −0.0005 (15) | 0.0077 (14) | 0.0012 (14) |
O5 | 0.0219 (15) | 0.0179 (15) | 0.0237 (15) | 0.0044 (13) | 0.0090 (12) | 0.0044 (12) |
C5 | 0.021 (2) | 0.028 (2) | 0.025 (2) | −0.0008 (19) | 0.0086 (18) | −0.0017 (18) |
O12 | 0.0195 (15) | 0.0134 (15) | 0.0325 (16) | −0.0018 (13) | 0.0028 (13) | −0.0011 (12) |
C6 | 0.033 (3) | 0.020 (2) | 0.028 (2) | 0.005 (2) | 0.007 (2) | −0.0003 (18) |
O2 | 0.0174 (14) | 0.0099 (13) | 0.0161 (13) | −0.0012 (11) | 0.0032 (11) | −0.0025 (10) |
O1 | 0.0159 (14) | 0.0152 (14) | 0.0149 (13) | −0.0022 (12) | −0.0001 (11) | −0.0007 (11) |
O3 | 0.0186 (15) | 0.0097 (13) | 0.0194 (13) | 0.0007 (11) | 0.0060 (11) | 0.0017 (10) |
C3 | 0.0117 (18) | 0.0124 (19) | 0.0182 (18) | −0.0020 (16) | 0.0032 (15) | −0.0011 (15) |
C2 | 0.017 (2) | 0.0118 (19) | 0.0185 (18) | −0.0049 (16) | 0.0055 (15) | −0.0013 (15) |
O4 | 0.0221 (16) | 0.0169 (15) | 0.0216 (14) | 0.0046 (13) | 0.0024 (12) | −0.0051 (11) |
C1 | 0.016 (2) | 0.018 (2) | 0.023 (2) | −0.0033 (17) | 0.0034 (16) | 0.0031 (16) |
C4 | 0.023 (2) | 0.019 (2) | 0.0160 (18) | −0.0012 (18) | 0.0037 (16) | −0.0030 (16) |
Er1—O1 | 2.348 (3) | C5—H5A | 0.9900 |
Er1—O2 | 2.368 (3) | C5—H5B | 0.9900 |
Er1—O3 | 2.463 (3) | C6—H6A | 0.9800 |
Er1—O5 | 2.352 (3) | C6—H6B | 0.9800 |
Er1—O6 | 2.438 (3) | C6—H6C | 0.9800 |
Er1—O7 | 2.434 (3) | O2—C2 | 1.451 (4) |
Er1—O9 | 2.583 (3) | O2—H2 | 0.8400 |
Er1—O10 | 2.428 (3) | O1—C1 | 1.445 (5) |
Er1—O12 | 2.436 (3) | O1—H1 | 0.8400 |
Er1—O13 | 2.489 (3) | O3—C3 | 1.456 (4) |
O9—N2 | 1.271 (5) | O3—H3 | 0.8400 |
O13—N3 | 1.275 (4) | C3—C2 | 1.512 (5) |
O6—N1 | 1.278 (4) | C3—C4 | 1.512 (5) |
O14—N3 | 1.212 (4) | C3—H3A | 1.0000 |
O10—N2 | 1.265 (4) | C2—C1 | 1.512 (6) |
O11—N2 | 1.223 (5) | C2—H2A | 1.0000 |
N1—O8 | 1.226 (5) | O4—C4 | 1.422 (5) |
N1—O7 | 1.259 (5) | O4—H4 | 0.8400 |
N3—O12 | 1.267 (4) | C1—H1A | 0.9900 |
O5—C5 | 1.464 (5) | C1—H1B | 0.9900 |
O5—H5 | 0.8401 | C4—H4A | 0.9900 |
C5—C6 | 1.505 (6) | C4—H4B | 0.9900 |
O1—Er1—O5 | 142.67 (10) | O12—N3—O13 | 115.2 (3) |
O1—Er1—O2 | 69.20 (9) | O11—N2—O10 | 121.4 (4) |
O5—Er1—O2 | 143.66 (10) | O11—N2—O9 | 122.1 (4) |
O1—Er1—O10 | 71.74 (9) | O10—N2—O9 | 116.5 (3) |
O5—Er1—O10 | 80.73 (10) | C5—O5—Er1 | 137.4 (2) |
O2—Er1—O10 | 135.43 (9) | C5—O5—H5 | 107.9 |
O1—Er1—O7 | 128.62 (10) | Er1—O5—H5 | 113.8 |
O5—Er1—O7 | 75.93 (10) | O5—C5—C6 | 110.6 (4) |
O2—Er1—O7 | 67.89 (9) | O5—C5—H5A | 109.5 |
O10—Er1—O7 | 156.65 (10) | C6—C5—H5A | 109.5 |
O1—Er1—O12 | 72.33 (10) | O5—C5—H5B | 109.5 |
O5—Er1—O12 | 73.94 (10) | C6—C5—H5B | 109.5 |
O2—Er1—O12 | 118.51 (9) | H5A—C5—H5B | 108.1 |
O10—Er1—O12 | 66.91 (10) | N3—O12—Er1 | 97.7 (2) |
O7—Er1—O12 | 105.52 (10) | C5—C6—H6A | 109.5 |
O1—Er1—O6 | 141.92 (10) | C5—C6—H6B | 109.5 |
O5—Er1—O6 | 74.32 (10) | H6A—C6—H6B | 109.5 |
O2—Er1—O6 | 80.93 (10) | C5—C6—H6C | 109.5 |
O10—Er1—O6 | 121.09 (10) | H6A—C6—H6C | 109.5 |
O7—Er1—O6 | 52.40 (10) | H6B—C6—H6C | 109.5 |
O12—Er1—O6 | 145.13 (10) | C2—O2—Er1 | 110.2 (2) |
O1—Er1—O3 | 68.68 (9) | C2—O2—H2 | 106.7 |
O5—Er1—O3 | 132.20 (9) | Er1—O2—H2 | 113.6 |
O2—Er1—O3 | 64.73 (9) | C1—O1—Er1 | 118.3 (2) |
O10—Er1—O3 | 81.76 (9) | C1—O1—H1 | 106.9 |
O7—Er1—O3 | 114.57 (10) | Er1—O1—H1 | 120.9 |
O12—Er1—O3 | 135.89 (10) | C3—O3—Er1 | 117.9 (2) |
O6—Er1—O3 | 77.59 (9) | C3—O3—H3 | 109.0 |
O1—Er1—O13 | 74.73 (9) | Er1—O3—H3 | 117.2 |
O5—Er1—O13 | 96.36 (10) | O3—C3—C2 | 107.0 (3) |
O2—Er1—O13 | 72.82 (9) | O3—C3—C4 | 111.3 (3) |
O10—Er1—O13 | 116.15 (9) | C2—C3—C4 | 113.0 (3) |
O7—Er1—O13 | 66.70 (10) | O3—C3—H3A | 108.5 |
O12—Er1—O13 | 51.66 (9) | C2—C3—H3A | 108.5 |
O6—Er1—O13 | 118.97 (10) | C4—C3—H3A | 108.5 |
O3—Er1—O13 | 131.19 (9) | O2—C2—C3 | 103.6 (3) |
O1—Er1—O9 | 107.95 (9) | O2—C2—C1 | 107.5 (3) |
O5—Er1—O9 | 70.35 (9) | C3—C2—C1 | 116.3 (3) |
O2—Er1—O9 | 125.27 (9) | O2—C2—H2A | 109.7 |
O10—Er1—O9 | 50.86 (9) | C3—C2—H2A | 109.7 |
O7—Er1—O9 | 119.40 (10) | C1—C2—H2A | 109.7 |
O12—Er1—O9 | 111.18 (10) | C4—O4—H4 | 109.4 |
O6—Er1—O9 | 70.51 (10) | O1—C1—C2 | 108.6 (3) |
O3—Er1—O9 | 64.11 (9) | O1—C1—H1A | 110.0 |
O13—Er1—O9 | 161.77 (10) | C2—C1—H1A | 110.0 |
N2—O9—Er1 | 92.5 (2) | O1—C1—H1B | 110.0 |
N3—O13—Er1 | 94.9 (2) | C2—C1—H1B | 110.0 |
N1—O6—Er1 | 95.4 (2) | H1A—C1—H1B | 108.4 |
N2—O10—Er1 | 100.1 (2) | O4—C4—C3 | 111.7 (3) |
O8—N1—O7 | 121.6 (4) | O4—C4—H4A | 109.3 |
O8—N1—O6 | 122.4 (4) | C3—C4—H4A | 109.3 |
O7—N1—O6 | 116.0 (3) | O4—C4—H4B | 109.3 |
N1—O7—Er1 | 96.1 (2) | C3—C4—H4B | 109.3 |
O14—N3—O12 | 122.8 (4) | H4A—C4—H4B | 107.9 |
O14—N3—O13 | 122.0 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4i | 0.84 | 1.83 | 2.666 (4) | 173 |
O2—H2···O9ii | 0.84 | 1.97 | 2.795 (4) | 167 |
O3—H3···O13iii | 0.84 | 2.08 | 2.917 (4) | 175 |
O4—H4···O11iv | 0.84 | 2.07 | 2.897 (5) | 169 |
O5—H5···O8v | 0.84 | 2.09 | 2.865 (4) | 154 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+1, y+1/2, −z+1/2; (iv) x−1, y, z; (v) −x+1, −y+2, −z. |
Experimental details
Crystal data | |
Chemical formula | [Er(NO3)3(C2H6O)(C4H10O4)] |
Mr | 521.48 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 173 |
a, b, c (Å) | 7.7521 (16), 12.772 (3), 15.121 (3) |
β (°) | 100.26 (3) |
V (Å3) | 1473.3 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 5.78 |
Crystal size (mm) | 0.23 × 0.20 × 0.06 |
Data collection | |
Diffractometer | Rigaku Saturn724+ CCD |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2007) |
Tmin, Tmax | 0.12, 0.35 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10846, 3359, 3174 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.063, 1.20 |
No. of reflections | 3359 |
No. of parameters | 218 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.46, −0.62 |
Computer programs: CrystalClear (Rigaku, 2007), SHELXTL (Sheldrick, 2008).
Er1—O1 | 2.348 (3) | Er1—O7 | 2.434 (3) |
Er1—O2 | 2.368 (3) | Er1—O9 | 2.583 (3) |
Er1—O3 | 2.463 (3) | Er1—O10 | 2.428 (3) |
Er1—O5 | 2.352 (3) | Er1—O12 | 2.436 (3) |
Er1—O6 | 2.438 (3) | Er1—O13 | 2.489 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4i | 0.84 | 1.83 | 2.666 (4) | 173.4 |
O2—H2···O9ii | 0.84 | 1.97 | 2.795 (4) | 167.4 |
O3—H3···O13iii | 0.84 | 2.08 | 2.917 (4) | 175.4 |
O4—H4···O11iv | 0.84 | 2.07 | 2.897 (5) | 168.5 |
O5—H5···O8v | 0.84 | 2.09 | 2.865 (4) | 154.3 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+1, y+1/2, −z+1/2; (iv) x−1, y, z; (v) −x+1, −y+2, −z. |
Acknowledgements
The work was supported financially by the National Natural Science Foundation of China (grant Nos. 50973003 and 21001009), the National High-Tech R&D Program of China (863 Program) of MOST (No. 2010AA03A406). Special thanks to Dr X. Hao, L. Wang, and T.-L. Liang for their assistance with the data collection.
References
Bekoe, A. & Powell, H. M. (1959). Proc. R. Soc. London Ser. A, 250, 301–315. CrossRef CAS Google Scholar
Gyurcsik, B. & Nagy, L. (2000). Coord. Chem. Rev. 203, 81–148. Web of Science CrossRef CAS Google Scholar
Hua, X.-H., Xue, J.-H., Yang, L.-M., Xu, Y.-Z. & Wu, J.-G. (2013). Acta Cryst. E69, m162–m163. CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku (2007). CrystalClear. Rigaku Inc., Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, L.-M., Hua, X.-H., Xue, J.-H., Pan, Q.-H., Yu, L., Li, W.-H., Xu, Y.-Z., Zhao, G.-Z., Liu, L.-M., Liu, K.-X., Chen, J.-E. & Wu, J.-G. (2012). Inorg. Chem. 51, 499–510. Web of Science CSD CrossRef CAS PubMed Google Scholar
Yang, L.-M., Su, Y.-L., Xu, Y.-Z., Wang, Z.-M., Guo, Z.-H., Weng, S.-F., Yan, C.-H., Zhang, S.-W. & Wu, J.-G. (2003). Inorg. Chem. 42, 5844–5856. Web of Science CSD CrossRef PubMed CAS Google Scholar
Yang, L.-M., Su, Y.-L., Xu, Y.-Z., Zhang, S.-W., Wu, J.-G. & Zhao, K. (2004). J. Inorg. Biochem. 98, 1251–1260. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Sugar-metal interaction is involved in many important biological processes (Gyurcsik & Nagy, 2000). Erythritol was used as a model compound to study the coordination behavior of hydroxyl groups of carbohydrate to metal ions.
The crystal structure of the title complex denoted as ErEN, where E stands for erythritol and N stands for nitrate) is shown in Fig. 1. This is isostructural with the HoIII compex (Hua et al., 2013). Three hydroxyl groups from one erythritol molecule, one hydroxyl group from ethanol, and six oxygen atoms from three bidentate nitrate ions are coordinated to Er(III), making the coordination number 10. Erythritol molecule is an O1, O2, O3-three hydroxyl group donor here.
The structure of ErEN is similar to NdEN, EuEN, YEN, GdEN and TbEN (Yang et al., 2003, 2004, 2012). Er-O distances range from 2.348 to 2.583' Å, the average Er-O distance is 2.419Å. The structure of erythritol changed somewhat in the complex. The C-C bond length is 1.51Å and the C-O bond lengths are 1.39 and 1.47Å for a free erythritol (Bekoe & Powell, 1959). After coordination, the C-C bond lengths are 1.505 and 1.512Å and the C-O bond lengths are 1.422, 1.451, 1.445 and 1.456Å in ErEN. The C-C-C bond angle is 113° and the O-C-C bond angle is 107° for erythritol (Bekoe & Powell, 1959). After coordination, the C-C-C bond angles are 116.3 and 113.0° and the O-C-C bond angles range from 103.6 to 111.7° in ErEN. In addition, the torsion angle of C-C-C-C is 180° for erythritol. After coordination, the torsion angle of C-C-C-C is -57.2 (4)° in ErEN. The variation of the C-C-C-C torsion angle indicates the coordination to Er3+ brings about significant variation of the conformation of erythritol.
The hydrogen bond networks in ErEN are formed by O—H···O hydrogen bonds between coordinated and uncoordinated hydroxyl groups of erythritol, ethanol and nitrate ions.