metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Butane-1,2,3,4-tetraol-κ3O1,O2,O3)(ethanol-κO)tris­­(nitrato-κ2O,O′)erbium(III)

aBeijing National Laboratory for Molecular Sciences, The State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China, bChemical Engineering College, Inner Mongolia University of Technology, People's Republic of China, and cState Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, People's Republic of China
*Correspondence e-mail: yanglm@pku.edu.cn

(Received 23 November 2012; accepted 23 March 2013; online 13 April 2013)

In the title ErIII–erythritol complex, [Er(NO3)3(C2H5OH)(C4H10O4)], the ErIII cation is chelated by one erythritol mol­ecule, three nitrate anions and an ethanol mol­ecule, completing an irregular ErO10 coordination geometry. The Er—O bond lengths are in the range 2.348 (3)–2.583 (3) Å. In the crystal, extensive O—H⋯O hydrogen bonding links the mol­ecules into a three-dimensional supra­molecular structure.

Related literature

For crystal structures of related lanthanide nitrate–erythritol complexes, see: Gyurcsik & Nagy (2000[Gyurcsik, B. & Nagy, L. (2000). Coord. Chem. Rev. 203, 81-148.]); Yang et al. (2003[Yang, L.-M., Su, Y.-L., Xu, Y.-Z., Wang, Z.-M., Guo, Z.-H., Weng, S.-F., Yan, C.-H., Zhang, S.-W. & Wu, J.-G. (2003). Inorg. Chem. 42, 5844-5856.], 2004[Yang, L.-M., Su, Y.-L., Xu, Y.-Z., Zhang, S.-W., Wu, J.-G. & Zhao, K. (2004). J. Inorg. Biochem. 98, 1251-1260.], 2012[Yang, L.-M., Hua, X.-H., Xue, J.-H., Pan, Q.-H., Yu, L., Li, W.-H., Xu, Y.-Z., Zhao, G.-Z., Liu, L.-M., Liu, K.-X., Chen, J.-E. & Wu, J.-G. (2012). Inorg. Chem. 51, 499-510.]). For the isotypic HoIII complex, see: Hua et al. (2013[Hua, X.-H., Xue, J.-H., Yang, L.-M., Xu, Y.-Z. & Wu, J.-G. (2013). Acta Cryst. E69, m162-m163.]). For the structure of erythritol, see: Bekoe & Powell (1959[Bekoe, A. & Powell, H. M. (1959). Proc. R. Soc. London Ser. A, 250, 301-315.]).

[Scheme 1]

Experimental

Crystal data
  • [Er(NO3)3(C2H6O)(C4H10O4)]

  • Mr = 521.48

  • Monoclinic, P 21 /c

  • a = 7.7521 (16) Å

  • b = 12.772 (3) Å

  • c = 15.121 (3) Å

  • β = 100.26 (3)°

  • V = 1473.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.78 mm−1

  • T = 173 K

  • 0.23 × 0.20 × 0.06 mm

Data collection
  • Rigaku Saturn724+ CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Inc., Tokyo, Japan.]) Tmin = 0.12, Tmax = 0.35

  • 10846 measured reflections

  • 3359 independent reflections

  • 3174 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.063

  • S = 1.20

  • 3359 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 1.46 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Selected bond lengths (Å)

Er1—O1 2.348 (3)
Er1—O2 2.368 (3)
Er1—O3 2.463 (3)
Er1—O5 2.352 (3)
Er1—O6 2.438 (3)
Er1—O7 2.434 (3)
Er1—O9 2.583 (3)
Er1—O10 2.428 (3)
Er1—O12 2.436 (3)
Er1—O13 2.489 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.84 1.83 2.666 (4) 173
O2—H2⋯O9ii 0.84 1.97 2.795 (4) 167
O3—H3⋯O13iii 0.84 2.08 2.917 (4) 175
O4—H4⋯O11iv 0.84 2.07 2.897 (5) 169
O5—H5⋯O8v 0.84 2.09 2.865 (4) 154
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x-1, y, z; (v) -x+1, -y+2, -z.

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Inc., Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Sugar-metal interaction is involved in many important biological processes (Gyurcsik & Nagy, 2000). Erythritol was used as a model compound to study the coordination behavior of hydroxyl groups of carbohydrate to metal ions.

The crystal structure of the title complex denoted as ErEN, where E stands for erythritol and N stands for nitrate) is shown in Fig. 1. This is isostructural with the HoIII compex (Hua et al., 2013). Three hydroxyl groups from one erythritol molecule, one hydroxyl group from ethanol, and six oxygen atoms from three bidentate nitrate ions are coordinated to Er(III), making the coordination number 10. Erythritol molecule is an O1, O2, O3-three hydroxyl group donor here.

The structure of ErEN is similar to NdEN, EuEN, YEN, GdEN and TbEN (Yang et al., 2003, 2004, 2012). Er-O distances range from 2.348 to 2.583' Å, the average Er-O distance is 2.419Å. The structure of erythritol changed somewhat in the complex. The C-C bond length is 1.51Å and the C-O bond lengths are 1.39 and 1.47Å for a free erythritol (Bekoe & Powell, 1959). After coordination, the C-C bond lengths are 1.505 and 1.512Å and the C-O bond lengths are 1.422, 1.451, 1.445 and 1.456Å in ErEN. The C-C-C bond angle is 113° and the O-C-C bond angle is 107° for erythritol (Bekoe & Powell, 1959). After coordination, the C-C-C bond angles are 116.3 and 113.0° and the O-C-C bond angles range from 103.6 to 111.7° in ErEN. In addition, the torsion angle of C-C-C-C is 180° for erythritol. After coordination, the torsion angle of C-C-C-C is -57.2 (4)° in ErEN. The variation of the C-C-C-C torsion angle indicates the coordination to Er3+ brings about significant variation of the conformation of erythritol.

The hydrogen bond networks in ErEN are formed by O—H···O hydrogen bonds between coordinated and uncoordinated hydroxyl groups of erythritol, ethanol and nitrate ions.

Related literature top

For crystal structures of related lanthanide nitrate–erythritol complexes, see: Gyurcsik & Nagy (2000); Yang et al. (2003, 2004, 2012). For an isotypic HoIII complex, see: Hua et al. (2013). For the structure of erythritol, see: Bekoe & Powell (1959).

Experimental top

Er(NO3)3.6H2O and Erythritol were purchased from Shanghai Aladdin Chemical Reagents Company and was used without further purification. The procedure for the preparation of the title compound is as follows: Er(NO3)3.6H2O (3 mmol) and erythritol (3 mmol) were dissolved in 6ml water and 6 ml ethanol. The solution was put on a water bath, and the temperature was raised to 353 K. Small aliquots of EtOH were periodically added to the solution during the heating process to prolong the reaction time. The resulting mixtures were filtered and left for crystallization in room temperature, the suitable crystals for X-ray diffraction measurements were obtained in two weeks.

Refinement top

The C-bound H-atoms were placed in calculated positions (C—H 0.930 Å) and were included in the refinement in the riding model approximation, Uiso(H) = 1.2Ueq(C). The O-bound H atoms were located in a difference Fourier map and were refined with distance restraint of O—H = 0.84 Å, Uiso(H) = 1.2Ueq(O).

Structure description top

Sugar-metal interaction is involved in many important biological processes (Gyurcsik & Nagy, 2000). Erythritol was used as a model compound to study the coordination behavior of hydroxyl groups of carbohydrate to metal ions.

The crystal structure of the title complex denoted as ErEN, where E stands for erythritol and N stands for nitrate) is shown in Fig. 1. This is isostructural with the HoIII compex (Hua et al., 2013). Three hydroxyl groups from one erythritol molecule, one hydroxyl group from ethanol, and six oxygen atoms from three bidentate nitrate ions are coordinated to Er(III), making the coordination number 10. Erythritol molecule is an O1, O2, O3-three hydroxyl group donor here.

The structure of ErEN is similar to NdEN, EuEN, YEN, GdEN and TbEN (Yang et al., 2003, 2004, 2012). Er-O distances range from 2.348 to 2.583' Å, the average Er-O distance is 2.419Å. The structure of erythritol changed somewhat in the complex. The C-C bond length is 1.51Å and the C-O bond lengths are 1.39 and 1.47Å for a free erythritol (Bekoe & Powell, 1959). After coordination, the C-C bond lengths are 1.505 and 1.512Å and the C-O bond lengths are 1.422, 1.451, 1.445 and 1.456Å in ErEN. The C-C-C bond angle is 113° and the O-C-C bond angle is 107° for erythritol (Bekoe & Powell, 1959). After coordination, the C-C-C bond angles are 116.3 and 113.0° and the O-C-C bond angles range from 103.6 to 111.7° in ErEN. In addition, the torsion angle of C-C-C-C is 180° for erythritol. After coordination, the torsion angle of C-C-C-C is -57.2 (4)° in ErEN. The variation of the C-C-C-C torsion angle indicates the coordination to Er3+ brings about significant variation of the conformation of erythritol.

The hydrogen bond networks in ErEN are formed by O—H···O hydrogen bonds between coordinated and uncoordinated hydroxyl groups of erythritol, ethanol and nitrate ions.

For crystal structures of related lanthanide nitrate–erythritol complexes, see: Gyurcsik & Nagy (2000); Yang et al. (2003, 2004, 2012). For an isotypic HoIII complex, see: Hua et al. (2013). For the structure of erythritol, see: Bekoe & Powell (1959).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The crystal structure of the title complex, displacement ellipsoids drawn at 30% probability level. The Hydrogen atoms have been omitted for clarity.
(Butane-1,2,3,4-tetraol- κ3O1,O2,O3)(ethanol-κO)tris(nitrato-κ2O,O')erbium(III) top
Crystal data top
[Er(NO3)3(C2H6O)(C4H10O4)]F(000) = 1012
Mr = 521.48Dx = 2.351 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5453 reflections
a = 7.7521 (16) Åθ = 2.1–27.5°
b = 12.772 (3) ŵ = 5.78 mm1
c = 15.121 (3) ÅT = 173 K
β = 100.26 (3)°Plate, pink
V = 1473.3 (5) Å30.23 × 0.20 × 0.06 mm
Z = 4
Data collection top
Rigaku Saturn724+ CCD
diffractometer
3359 independent reflections
Radiation source: fine-focus sealed tube3174 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 2.1°
ω scans at fixed χ = 45°h = 109
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
k = 1616
Tmin = 0.12, Tmax = 0.35l = 1919
10846 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.021P)2 + 2.6512P]
where P = (Fo2 + 2Fc2)/3
3359 reflections(Δ/σ)max = 0.002
218 parametersΔρmax = 1.46 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Er(NO3)3(C2H6O)(C4H10O4)]V = 1473.3 (5) Å3
Mr = 521.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7521 (16) ŵ = 5.78 mm1
b = 12.772 (3) ÅT = 173 K
c = 15.121 (3) Å0.23 × 0.20 × 0.06 mm
β = 100.26 (3)°
Data collection top
Rigaku Saturn724+ CCD
diffractometer
3359 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
3174 reflections with I > 2σ(I)
Tmin = 0.12, Tmax = 0.35Rint = 0.035
10846 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.20Δρmax = 1.46 e Å3
3359 reflectionsΔρmin = 0.62 e Å3
218 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Er10.62537 (2)0.895819 (13)0.247063 (10)0.01275 (7)
O90.6818 (4)1.0948 (2)0.26286 (19)0.0189 (6)
O130.6726 (4)0.7044 (2)0.23165 (19)0.0204 (6)
O60.4323 (4)0.9877 (2)0.12708 (19)0.0228 (6)
O140.9187 (4)0.6272 (2)0.2866 (2)0.0271 (7)
O100.8493 (4)0.9889 (2)0.35026 (19)0.0182 (6)
O110.8904 (4)1.1563 (2)0.3659 (2)0.0265 (7)
N10.4019 (5)0.9082 (3)0.0754 (2)0.0200 (8)
O70.4806 (4)0.8252 (2)0.10336 (18)0.0220 (6)
O80.3011 (4)0.9117 (3)0.0031 (2)0.0280 (7)
N30.8336 (5)0.7066 (3)0.2691 (2)0.0189 (7)
N20.8098 (5)1.0823 (3)0.3274 (2)0.0179 (7)
O50.8049 (4)0.9494 (2)0.14542 (19)0.0206 (6)
H50.76771.00270.11530.025*
C50.9524 (6)0.9070 (4)0.1084 (3)0.0240 (10)
H5A1.02840.86510.15490.029*
H5B1.02330.96530.09060.029*
O120.8972 (4)0.7972 (2)0.2864 (2)0.0220 (6)
C60.8876 (6)0.8393 (4)0.0278 (3)0.0271 (10)
H6A0.81250.78370.04470.041*
H6B0.98780.80790.00630.041*
H6C0.82010.88210.02000.041*
O20.3580 (3)0.8114 (2)0.25801 (16)0.0144 (6)
H20.35790.74700.24670.017*
O10.6345 (4)0.8266 (2)0.39163 (17)0.0157 (6)
H10.68130.86000.43750.019*
O30.4312 (4)0.9935 (2)0.32999 (17)0.0156 (6)
H30.39671.05270.31000.019*
C30.2846 (5)0.9375 (3)0.3562 (3)0.0141 (8)
H3A0.17580.95520.31260.017*
C20.3211 (5)0.8219 (3)0.3484 (2)0.0155 (8)
H2A0.21390.78060.35400.019*
O40.2278 (4)1.0783 (2)0.45507 (19)0.0204 (6)
H40.12501.09210.42950.025*
C10.4774 (5)0.7790 (3)0.4124 (3)0.0188 (8)
H1A0.46630.79520.47520.023*
H1B0.48320.70200.40600.023*
C40.2584 (6)0.9690 (3)0.4493 (3)0.0191 (8)
H4A0.15730.93010.46480.023*
H4B0.36370.94960.49350.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er10.01351 (10)0.01084 (10)0.01385 (10)0.00053 (7)0.00234 (7)0.00034 (6)
O90.0162 (14)0.0161 (15)0.0238 (14)0.0023 (12)0.0024 (12)0.0028 (11)
O130.0159 (14)0.0188 (16)0.0254 (15)0.0029 (13)0.0006 (12)0.0029 (12)
O60.0266 (17)0.0178 (15)0.0232 (15)0.0030 (13)0.0026 (13)0.0017 (12)
O140.0247 (17)0.0164 (15)0.0392 (18)0.0115 (14)0.0030 (14)0.0050 (13)
O100.0182 (15)0.0093 (14)0.0254 (14)0.0008 (12)0.0006 (12)0.0031 (11)
O110.0318 (18)0.0123 (15)0.0330 (17)0.0075 (14)0.0008 (14)0.0056 (13)
N10.0213 (19)0.023 (2)0.0160 (16)0.0027 (16)0.0049 (14)0.0022 (14)
O70.0269 (16)0.0203 (16)0.0181 (14)0.0069 (14)0.0023 (12)0.0006 (12)
O80.0251 (17)0.0375 (19)0.0188 (15)0.0062 (15)0.0032 (13)0.0043 (13)
N30.0188 (18)0.0185 (19)0.0198 (16)0.0051 (15)0.0047 (14)0.0024 (14)
N20.0170 (18)0.0167 (18)0.0215 (17)0.0005 (15)0.0077 (14)0.0012 (14)
O50.0219 (15)0.0179 (15)0.0237 (15)0.0044 (13)0.0090 (12)0.0044 (12)
C50.021 (2)0.028 (2)0.025 (2)0.0008 (19)0.0086 (18)0.0017 (18)
O120.0195 (15)0.0134 (15)0.0325 (16)0.0018 (13)0.0028 (13)0.0011 (12)
C60.033 (3)0.020 (2)0.028 (2)0.005 (2)0.007 (2)0.0003 (18)
O20.0174 (14)0.0099 (13)0.0161 (13)0.0012 (11)0.0032 (11)0.0025 (10)
O10.0159 (14)0.0152 (14)0.0149 (13)0.0022 (12)0.0001 (11)0.0007 (11)
O30.0186 (15)0.0097 (13)0.0194 (13)0.0007 (11)0.0060 (11)0.0017 (10)
C30.0117 (18)0.0124 (19)0.0182 (18)0.0020 (16)0.0032 (15)0.0011 (15)
C20.017 (2)0.0118 (19)0.0185 (18)0.0049 (16)0.0055 (15)0.0013 (15)
O40.0221 (16)0.0169 (15)0.0216 (14)0.0046 (13)0.0024 (12)0.0051 (11)
C10.016 (2)0.018 (2)0.023 (2)0.0033 (17)0.0034 (16)0.0031 (16)
C40.023 (2)0.019 (2)0.0160 (18)0.0012 (18)0.0037 (16)0.0030 (16)
Geometric parameters (Å, º) top
Er1—O12.348 (3)C5—H5A0.9900
Er1—O22.368 (3)C5—H5B0.9900
Er1—O32.463 (3)C6—H6A0.9800
Er1—O52.352 (3)C6—H6B0.9800
Er1—O62.438 (3)C6—H6C0.9800
Er1—O72.434 (3)O2—C21.451 (4)
Er1—O92.583 (3)O2—H20.8400
Er1—O102.428 (3)O1—C11.445 (5)
Er1—O122.436 (3)O1—H10.8400
Er1—O132.489 (3)O3—C31.456 (4)
O9—N21.271 (5)O3—H30.8400
O13—N31.275 (4)C3—C21.512 (5)
O6—N11.278 (4)C3—C41.512 (5)
O14—N31.212 (4)C3—H3A1.0000
O10—N21.265 (4)C2—C11.512 (6)
O11—N21.223 (5)C2—H2A1.0000
N1—O81.226 (5)O4—C41.422 (5)
N1—O71.259 (5)O4—H40.8400
N3—O121.267 (4)C1—H1A0.9900
O5—C51.464 (5)C1—H1B0.9900
O5—H50.8401C4—H4A0.9900
C5—C61.505 (6)C4—H4B0.9900
O1—Er1—O5142.67 (10)O12—N3—O13115.2 (3)
O1—Er1—O269.20 (9)O11—N2—O10121.4 (4)
O5—Er1—O2143.66 (10)O11—N2—O9122.1 (4)
O1—Er1—O1071.74 (9)O10—N2—O9116.5 (3)
O5—Er1—O1080.73 (10)C5—O5—Er1137.4 (2)
O2—Er1—O10135.43 (9)C5—O5—H5107.9
O1—Er1—O7128.62 (10)Er1—O5—H5113.8
O5—Er1—O775.93 (10)O5—C5—C6110.6 (4)
O2—Er1—O767.89 (9)O5—C5—H5A109.5
O10—Er1—O7156.65 (10)C6—C5—H5A109.5
O1—Er1—O1272.33 (10)O5—C5—H5B109.5
O5—Er1—O1273.94 (10)C6—C5—H5B109.5
O2—Er1—O12118.51 (9)H5A—C5—H5B108.1
O10—Er1—O1266.91 (10)N3—O12—Er197.7 (2)
O7—Er1—O12105.52 (10)C5—C6—H6A109.5
O1—Er1—O6141.92 (10)C5—C6—H6B109.5
O5—Er1—O674.32 (10)H6A—C6—H6B109.5
O2—Er1—O680.93 (10)C5—C6—H6C109.5
O10—Er1—O6121.09 (10)H6A—C6—H6C109.5
O7—Er1—O652.40 (10)H6B—C6—H6C109.5
O12—Er1—O6145.13 (10)C2—O2—Er1110.2 (2)
O1—Er1—O368.68 (9)C2—O2—H2106.7
O5—Er1—O3132.20 (9)Er1—O2—H2113.6
O2—Er1—O364.73 (9)C1—O1—Er1118.3 (2)
O10—Er1—O381.76 (9)C1—O1—H1106.9
O7—Er1—O3114.57 (10)Er1—O1—H1120.9
O12—Er1—O3135.89 (10)C3—O3—Er1117.9 (2)
O6—Er1—O377.59 (9)C3—O3—H3109.0
O1—Er1—O1374.73 (9)Er1—O3—H3117.2
O5—Er1—O1396.36 (10)O3—C3—C2107.0 (3)
O2—Er1—O1372.82 (9)O3—C3—C4111.3 (3)
O10—Er1—O13116.15 (9)C2—C3—C4113.0 (3)
O7—Er1—O1366.70 (10)O3—C3—H3A108.5
O12—Er1—O1351.66 (9)C2—C3—H3A108.5
O6—Er1—O13118.97 (10)C4—C3—H3A108.5
O3—Er1—O13131.19 (9)O2—C2—C3103.6 (3)
O1—Er1—O9107.95 (9)O2—C2—C1107.5 (3)
O5—Er1—O970.35 (9)C3—C2—C1116.3 (3)
O2—Er1—O9125.27 (9)O2—C2—H2A109.7
O10—Er1—O950.86 (9)C3—C2—H2A109.7
O7—Er1—O9119.40 (10)C1—C2—H2A109.7
O12—Er1—O9111.18 (10)C4—O4—H4109.4
O6—Er1—O970.51 (10)O1—C1—C2108.6 (3)
O3—Er1—O964.11 (9)O1—C1—H1A110.0
O13—Er1—O9161.77 (10)C2—C1—H1A110.0
N2—O9—Er192.5 (2)O1—C1—H1B110.0
N3—O13—Er194.9 (2)C2—C1—H1B110.0
N1—O6—Er195.4 (2)H1A—C1—H1B108.4
N2—O10—Er1100.1 (2)O4—C4—C3111.7 (3)
O8—N1—O7121.6 (4)O4—C4—H4A109.3
O8—N1—O6122.4 (4)C3—C4—H4A109.3
O7—N1—O6116.0 (3)O4—C4—H4B109.3
N1—O7—Er196.1 (2)C3—C4—H4B109.3
O14—N3—O12122.8 (4)H4A—C4—H4B107.9
O14—N3—O13122.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.841.832.666 (4)173
O2—H2···O9ii0.841.972.795 (4)167
O3—H3···O13iii0.842.082.917 (4)175
O4—H4···O11iv0.842.072.897 (5)169
O5—H5···O8v0.842.092.865 (4)154
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x1, y, z; (v) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[Er(NO3)3(C2H6O)(C4H10O4)]
Mr521.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)7.7521 (16), 12.772 (3), 15.121 (3)
β (°) 100.26 (3)
V3)1473.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)5.78
Crystal size (mm)0.23 × 0.20 × 0.06
Data collection
DiffractometerRigaku Saturn724+ CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.12, 0.35
No. of measured, independent and
observed [I > 2σ(I)] reflections
10846, 3359, 3174
Rint0.035
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.063, 1.20
No. of reflections3359
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.46, 0.62

Computer programs: CrystalClear (Rigaku, 2007), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Er1—O12.348 (3)Er1—O72.434 (3)
Er1—O22.368 (3)Er1—O92.583 (3)
Er1—O32.463 (3)Er1—O102.428 (3)
Er1—O52.352 (3)Er1—O122.436 (3)
Er1—O62.438 (3)Er1—O132.489 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.841.832.666 (4)173.4
O2—H2···O9ii0.841.972.795 (4)167.4
O3—H3···O13iii0.842.082.917 (4)175.4
O4—H4···O11iv0.842.072.897 (5)168.5
O5—H5···O8v0.842.092.865 (4)154.3
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x1, y, z; (v) x+1, y+2, z.
 

Acknowledgements

The work was supported financially by the National Natural Science Foundation of China (grant Nos. 50973003 and 21001009), the National High-Tech R&D Program of China (863 Program) of MOST (No. 2010AA03A406). Special thanks to Dr X. Hao, L. Wang, and T.-L. Liang for their assistance with the data collection.

References

First citationBekoe, A. & Powell, H. M. (1959). Proc. R. Soc. London Ser. A, 250, 301–315.  CrossRef CAS Google Scholar
First citationGyurcsik, B. & Nagy, L. (2000). Coord. Chem. Rev. 203, 81–148.  Web of Science CrossRef CAS Google Scholar
First citationHua, X.-H., Xue, J.-H., Yang, L.-M., Xu, Y.-Z. & Wu, J.-G. (2013). Acta Cryst. E69, m162–m163.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Inc., Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L.-M., Hua, X.-H., Xue, J.-H., Pan, Q.-H., Yu, L., Li, W.-H., Xu, Y.-Z., Zhao, G.-Z., Liu, L.-M., Liu, K.-X., Chen, J.-E. & Wu, J.-G. (2012). Inorg. Chem. 51, 499–510.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationYang, L.-M., Su, Y.-L., Xu, Y.-Z., Wang, Z.-M., Guo, Z.-H., Weng, S.-F., Yan, C.-H., Zhang, S.-W. & Wu, J.-G. (2003). Inorg. Chem. 42, 5844–5856.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYang, L.-M., Su, Y.-L., Xu, Y.-Z., Zhang, S.-W., Wu, J.-G. & Zhao, K. (2004). J. Inorg. Biochem. 98, 1251–1260.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds