organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-[2,2′-(Phenyl­aza­nedi­yl)bis­­(ethane-2,1-di­yl)]dipicolinamide

aCollege of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China
*Correspondence e-mail: ligaonan2008@163.com

(Received 22 March 2013; accepted 29 March 2013; online 10 April 2013)

The asymmetric unit of the title compound, C22H23N5O2, contains two independent mol­ecules with similar conformations; the terminal pyridine rings are oriented at dihedral angles of 23.99 (8) and 18.07 (8)° with respect to the central benzene ring in one mol­ecule and 28.99 (8) and 23.22 (8)° in the other. In the crystal, N—H⋯O and weak C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional supra­molecular structure. Weak inter­molecular C—H⋯π inter­actions are also observed in the crystal.

Related literature

For background to bis­(pyridine­carboxamide) derivatives, see: Cornman et al. (1999[Cornman, C. R., Zovinka, E. P., Boyajian, Y. D., Olmstead, M. M. & Noll, B. C. (1999). Inorg. Chim. Acta, 285, 134-137.]); Song et al. (2010[Song, Y. J., Lee, J. H., Koo, H. G., Lee, T. G., Myoung, S.-H., Kim, C., Kim, S.-J. & Kim, Y. (2010). Inorg. Chem. Commun. 13, 753-756.]); Singh et al. (2008[Singh, A. K., Jacob, W., Boudalis, A. K., Tuchagues, J.-P. & Mukherjee, R. (2008). Eur. J. Inorg. Chem. pp. 2820-2829.]). For the synthesis, see: Jain et al. (2004[Jain, S. L., Bhattacharyya, P., Milton, H. L., Slawin, A. M. A., Crayston, J. A. & Woollins, J. D. (2004). Dalton Trans. pp. 862-871.]); Lee et al. (2006[Lee, S. J., Lee, S. S., Lee, J. Y. & Jung, J. H. (2006). Chem. Mater. 18, 4713-4715.]); Barnes et al. (1978[Barnes, D. J., Chapman, R. L., Vagg, R. S. & Watton, E. C. (1978). J. Chem. Eng. Data, 23, 349-350.]). For related structures, see: Adolph et al. (2012[Adolph, M., Zevaco, T. A., Walter, O., Dinjus, E. & Döring, M. (2012). Polyhedron, 48, 92-98.]); Munro & Wilson (2010[Munro, O. Q. & Wilson, C. (2010). Acta Cryst. C66, o535-o539.]); Yan et al. (2012[Yan, Y., Zhao, W., Bhagavathy, G. V., Faurie, A., Mosey, N. J. & Petitjean, A. (2012). Chem. Commun. 48, 7829-7831.]).

[Scheme 1]

Experimental

Crystal data
  • C22H23N5O2

  • Mr = 389.45

  • Monoclinic, P 21 /n

  • a = 8.64349 (7) Å

  • b = 24.8210 (3) Å

  • c = 18.40861 (18) Å

  • β = 90.5648 (8)°

  • V = 3949.20 (7) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.70 mm−1

  • T = 100 K

  • 0.12 × 0.08 × 0.07 mm

Data collection
  • Agilent Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Tmin = 0.886, Tmax = 0.950

  • 28468 measured reflections

  • 7050 independent reflections

  • 6128 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.097

  • S = 1.14

  • 7050 reflections

  • 523 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg5 and Cg6 are the centroids of the C9–C14 benzene and C31–C36 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3 0.86 2.44 3.1099 (18) 135
N7—H7⋯O1i 0.86 2.42 3.0998 (18) 136
C24—H24⋯O2ii 0.93 2.48 3.311 (2) 149
C25—H25⋯O4iii 0.93 2.54 3.213 (2) 129
C8—H8ACg6iv 0.97 2.72 3.6468 (18) 161
C30—H30BCg5v 0.97 2.74 3.6584 (18) 159
Symmetry codes: (i) x-1, y, z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Comment top

Bis(2-pyridinecarboxamide) derivatives comprise a large group of organic compounds that are ideal for the mono- or dinuclear chelation of metal ions (Cornman et al., 1999; Song et al., 2010; Singh et al., 2008). In order to explore coordination chemistry of bis(pyridinecarboxamide) ligands, we have synthesized the title compound (I) and report here its crystal structure.

The asymmetric unit of the title compound (I), C22H23N5O2, contains two independent molecules with the similar structure, two terminal pyridine rings are oriented with respect to the central benzene ring at 23.99 (8) and 18.07 (8)° in one molecule and at 28.99 (8) and 23.22 (8)° in the other (Fig. 1). Every independent molecule contains two symmetrical N-ethyl(pyridine-2-carboxiamide) moieties linked by a phenylamino bridge. It is noteworthy that the CO bonds are oriented trans to the pyridine nitrogen atom, which are in accord with those reported for previous structures (Munro et al., 2010; Yan et al., 2012). In the crystal, intermolecular N–H···O (Fig. 2) and weak C—H···O hydrogen bonds (Fig. 3) link the molecules into the three-dimensional supramolecular structure. The crystal packing exhibits also weak intermolecular C–H···π interaction, proved by short distance C30–H30B···Cg5 [3.6584 (18) Å] and C8–H8A···Cg6 [3.6468 (18) Å], where Cg5 and Cg6 are the centroids of the C9–benzene and C31–benzene rings, respectively [symmetry code: (iv) x+1/2, –y+1/2, z+1/2; (v) x–1/2, –y+1/2, z–1/2] (Table 1).

Related literature top

For background to bis(pyridinecarboxamide) derivatives, see: Cornman et al. (1999); Song et al. (2010); Singh et al. (2008). For the synthesis, see: Jain et al. (2004); Lee et al. (2006); Barnes et al. (1978). For related structures, see: Adolph et al. (2012); Munro & Wilson (2010); Yan et al. (2012).

Experimental top

N-(3-Dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride (EDCI, 375 mg, 1.95 mmol) and hydroxybenzotriazole (HOBt, 440 mg, 3.26 mmol) were added to a solution of picolinic acid (200 mg, 1.62 mmol) in dry DMF (10 ml) at room temperature. After the mixture was stirred for 30 min, N1-(2-aminoethyl)-N1-phenylethane-1,2-diamine (133 mg, 0.74 mmol) was added (Lee et al., 2006). The reaction mixture was stirred overnight under N2 atmosphere. H2O (30 ml) was added to quench the reaction, and the mixture was extracted with ethyl acetate (3×20 ml). The combined organic phase was washed with brine, dried over Na2SO4, filtrated and concentrated in vacuum. The residue was purified by column chromatography (PE:EA = 2:1~1:2) to give compound (I) (264 mg, yield: 91.8%) as a white solid. Colorless single crystals suitable for X-ray structural analysis were obtained by slow evaporation of a mixture solution of dichloromethane and methanol at room temperature. 1H NMR (400 MHz, CDCl3): 3.48~3.61 (m, 8H), 6.62 (t, J = 8.0 Hz, 1H), 6.85 (d, J = 7.2 Hz, 2H), 7.15 (t, J = 8.0 Hz, 2H), 7.28~7.32 (m, 2H), 7.73 (t, J = 8.0 Hz, 2H), 8.09 (d, J = 7.2 Hz, 2H), 8.30~8.40 (m, 4H).

Refinement top

H-atoms were placed in calculated positions (C–H 0.93–0.97 Å, N–H 0.86 Å), and were included in the refinement in the riding model, with Uiso(H) = 1.2Ueq(C,N).

Structure description top

Bis(2-pyridinecarboxamide) derivatives comprise a large group of organic compounds that are ideal for the mono- or dinuclear chelation of metal ions (Cornman et al., 1999; Song et al., 2010; Singh et al., 2008). In order to explore coordination chemistry of bis(pyridinecarboxamide) ligands, we have synthesized the title compound (I) and report here its crystal structure.

The asymmetric unit of the title compound (I), C22H23N5O2, contains two independent molecules with the similar structure, two terminal pyridine rings are oriented with respect to the central benzene ring at 23.99 (8) and 18.07 (8)° in one molecule and at 28.99 (8) and 23.22 (8)° in the other (Fig. 1). Every independent molecule contains two symmetrical N-ethyl(pyridine-2-carboxiamide) moieties linked by a phenylamino bridge. It is noteworthy that the CO bonds are oriented trans to the pyridine nitrogen atom, which are in accord with those reported for previous structures (Munro et al., 2010; Yan et al., 2012). In the crystal, intermolecular N–H···O (Fig. 2) and weak C—H···O hydrogen bonds (Fig. 3) link the molecules into the three-dimensional supramolecular structure. The crystal packing exhibits also weak intermolecular C–H···π interaction, proved by short distance C30–H30B···Cg5 [3.6584 (18) Å] and C8–H8A···Cg6 [3.6468 (18) Å], where Cg5 and Cg6 are the centroids of the C9–benzene and C31–benzene rings, respectively [symmetry code: (iv) x+1/2, –y+1/2, z+1/2; (v) x–1/2, –y+1/2, z–1/2] (Table 1).

For background to bis(pyridinecarboxamide) derivatives, see: Cornman et al. (1999); Song et al. (2010); Singh et al. (2008). For the synthesis, see: Jain et al. (2004); Lee et al. (2006); Barnes et al. (1978). For related structures, see: Adolph et al. (2012); Munro & Wilson (2010); Yan et al. (2012).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Representation of part of the lattice contents of (I), viewed approximately down the cell diagonal bisecting the b O a angle. Only selected interactions are shown for clarity. Atoms involved in hydrogen bonds are shown as balls of arbitrary radii. All other atoms and covalent bonds are represented as wires or sticks. [symmetry code: (i) 1+ x, y, z].
[Figure 3] Fig. 3. Representation of part of the lattice contents of (I), along the a axis, showing the hydrogen-bonded chains. Only selected interactions are shown for clarity. Atoms involved in hydrogen bonds are shown as balls of arbitrary radii. All other atoms and covalent bonds are represented as wires or sticks. [symmetry code: (i) 1–x, 1–y, 1–z; (ii) 1/2–x, 1/2+y, 3/2–z; (iii) 1/2+x, 1/2–y, –1/2+z].
N,N'-[2,2'-(Phenylazanediyl)bis(ethane-2,1-diyl)]dipicolinamide top
Crystal data top
C22H23N5O2F(000) = 1648
Mr = 389.45Dx = 1.310 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ynCell parameters from 13020 reflections
a = 8.64349 (7) Åθ = 3.0–67.1°
b = 24.8210 (3) ŵ = 0.70 mm1
c = 18.40861 (18) ÅT = 100 K
β = 90.5648 (8)°Block, colorless
V = 3949.20 (7) Å30.12 × 0.08 × 0.07 mm
Z = 8
Data collection top
Agilent Xcalibur Atlas Gemini ultra
diffractometer
7050 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source6128 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.038
Detector resolution: 10.5095 pixels mm-1θmax = 67.2°, θmin = 3.0°
ω scansh = 810
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 2929
Tmin = 0.886, Tmax = 0.950l = 2121
28468 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0328P)2 + 1.7734P]
where P = (Fo2 + 2Fc2)/3
7050 reflections(Δ/σ)max < 0.001
523 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C22H23N5O2V = 3949.20 (7) Å3
Mr = 389.45Z = 8
Monoclinic, P21/nCu Kα radiation
a = 8.64349 (7) ŵ = 0.70 mm1
b = 24.8210 (3) ÅT = 100 K
c = 18.40861 (18) Å0.12 × 0.08 × 0.07 mm
β = 90.5648 (8)°
Data collection top
Agilent Xcalibur Atlas Gemini ultra
diffractometer
7050 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
6128 reflections with I > 2σ(I)
Tmin = 0.886, Tmax = 0.950Rint = 0.038
28468 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.14Δρmax = 0.17 e Å3
7050 reflectionsΔρmin = 0.26 e Å3
523 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.01667 (13)0.20717 (5)0.70802 (6)0.0213 (3)
O40.42663 (14)0.41541 (5)0.43618 (7)0.0262 (3)
N100.72634 (16)0.38111 (6)0.56121 (7)0.0211 (3)
N80.05731 (16)0.30231 (6)0.48259 (8)0.0210 (3)
N60.24832 (18)0.10919 (6)0.64032 (8)0.0253 (3)
N90.47932 (15)0.33680 (6)0.49331 (7)0.0194 (3)
H90.54290.31940.52080.023*
C400.64956 (18)0.41244 (7)0.51379 (8)0.0189 (3)
N70.14356 (16)0.20756 (6)0.60938 (7)0.0211 (3)
H70.21590.19040.58680.025*
C390.50887 (18)0.38841 (7)0.47694 (9)0.0195 (3)
C280.08427 (18)0.18567 (7)0.66985 (8)0.0172 (3)
C270.15311 (18)0.13184 (7)0.68976 (8)0.0178 (3)
C360.02993 (18)0.32728 (7)0.42846 (8)0.0177 (3)
C410.6897 (2)0.46544 (8)0.49946 (10)0.0251 (4)
H410.63310.48580.46610.030*
C320.26386 (18)0.33195 (7)0.35478 (9)0.0195 (3)
H320.36190.31870.34370.023*
C370.19986 (18)0.32603 (7)0.50953 (9)0.0194 (3)
H37A0.21560.31530.55970.023*
H37B0.19010.36500.50850.023*
C230.3065 (2)0.06086 (8)0.65665 (10)0.0282 (4)
H230.37220.04450.62300.034*
C260.11910 (18)0.10871 (7)0.75624 (9)0.0187 (3)
H260.05540.12630.78960.022*
C310.17940 (18)0.30923 (7)0.41132 (8)0.0175 (3)
H310.22270.28150.43840.021*
C240.2747 (2)0.03374 (7)0.72098 (10)0.0256 (4)
H240.31490.00040.72930.031*
C300.01142 (18)0.25116 (7)0.51395 (9)0.0186 (3)
H30A0.10320.23130.52850.022*
H30B0.04310.23010.47750.022*
C330.20453 (19)0.37409 (8)0.31463 (9)0.0238 (4)
H330.26080.38890.27620.029*
C340.0595 (2)0.39369 (8)0.33289 (10)0.0262 (4)
H340.01980.42280.30730.031*
C430.8975 (2)0.45549 (8)0.58395 (10)0.0259 (4)
H430.98320.46910.60880.031*
C440.8496 (2)0.40288 (7)0.59447 (9)0.0241 (4)
H440.90630.38140.62650.029*
C290.0926 (2)0.25855 (7)0.57982 (9)0.0210 (4)
H29A0.03650.27830.61710.025*
H29B0.18230.27970.56580.025*
C420.8154 (2)0.48745 (8)0.53567 (10)0.0272 (4)
H420.84420.52300.52770.033*
C380.34208 (19)0.30960 (7)0.46552 (9)0.0211 (4)
H38A0.35650.27090.46860.025*
H38B0.32600.31900.41490.025*
C350.02825 (19)0.37092 (7)0.38850 (9)0.0218 (4)
H350.12590.38460.39940.026*
C250.18174 (19)0.05870 (7)0.77240 (9)0.0218 (4)
H250.16160.04230.81690.026*
O10.51720 (13)0.20741 (5)0.55318 (6)0.0224 (3)
O20.92905 (13)0.41536 (5)0.82007 (6)0.0233 (3)
N51.22283 (16)0.37938 (6)0.69577 (7)0.0204 (3)
N30.55536 (15)0.30360 (6)0.77265 (7)0.0206 (3)
N20.35218 (16)0.20593 (6)0.64857 (7)0.0210 (3)
H20.28040.18810.66990.025*
N40.97851 (15)0.33578 (6)0.76493 (7)0.0183 (3)
H41.04160.31780.73850.022*
N10.24906 (17)0.10774 (6)0.61151 (8)0.0251 (3)
C50.35355 (18)0.13041 (7)0.56756 (9)0.0183 (3)
C60.41614 (18)0.18486 (7)0.58916 (8)0.0175 (3)
C171.00987 (18)0.38738 (7)0.78022 (8)0.0179 (3)
C181.15194 (18)0.41036 (7)0.74477 (9)0.0179 (3)
C90.47424 (18)0.32890 (7)0.82781 (8)0.0174 (3)
C110.24738 (19)0.33473 (7)0.90377 (9)0.0201 (3)
H110.15000.32190.91600.024*
C221.3487 (2)0.39964 (7)0.66449 (9)0.0225 (4)
H221.40020.37840.63080.027*
C211.4069 (2)0.45028 (8)0.67933 (10)0.0259 (4)
H211.49510.46280.65620.031*
C140.53710 (19)0.37270 (7)0.86626 (9)0.0223 (4)
H140.63360.38630.85380.027*
C150.69885 (18)0.32599 (7)0.74607 (9)0.0190 (3)
H15A0.69100.36500.74580.023*
H15B0.71380.31420.69640.023*
C80.50815 (18)0.25151 (7)0.74369 (9)0.0188 (3)
H8A0.45700.23110.78140.023*
H8B0.59920.23160.72910.023*
C130.4555 (2)0.39580 (8)0.92285 (10)0.0258 (4)
H130.49880.42470.94800.031*
C100.32600 (18)0.31133 (7)0.84680 (8)0.0176 (3)
H100.27970.28350.82070.021*
C120.3113 (2)0.37699 (7)0.94294 (9)0.0241 (4)
H120.25880.39230.98170.029*
C70.39857 (19)0.25749 (7)0.67850 (9)0.0208 (3)
H7A0.30710.27710.69330.025*
H7B0.44930.27840.64110.025*
C160.84045 (19)0.30946 (7)0.79192 (9)0.0198 (3)
H16A0.82450.31950.84220.024*
H16B0.85360.27070.78980.024*
C10.1974 (2)0.05894 (8)0.59321 (10)0.0290 (4)
H10.12440.04270.62290.035*
C40.40508 (19)0.10617 (7)0.50462 (9)0.0219 (4)
H4A0.47500.12370.47470.026*
C30.3509 (2)0.05546 (8)0.48688 (10)0.0269 (4)
H30.38420.03810.44510.032*
C191.2014 (2)0.46160 (8)0.76317 (10)0.0272 (4)
H191.14880.48190.79750.033*
C201.3310 (2)0.48193 (8)0.72935 (11)0.0310 (4)
H201.36660.51640.74010.037*
C20.2463 (2)0.03102 (7)0.53257 (10)0.0285 (4)
H2A0.20950.00350.52280.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0171 (6)0.0243 (6)0.0225 (6)0.0026 (5)0.0031 (5)0.0003 (5)
O40.0194 (6)0.0311 (7)0.0280 (6)0.0025 (5)0.0047 (5)0.0053 (5)
N100.0197 (7)0.0244 (8)0.0191 (7)0.0006 (6)0.0016 (5)0.0002 (6)
N80.0154 (7)0.0250 (8)0.0226 (7)0.0057 (6)0.0056 (5)0.0064 (6)
N60.0304 (8)0.0253 (8)0.0200 (7)0.0056 (6)0.0018 (6)0.0029 (6)
N90.0112 (7)0.0268 (8)0.0203 (7)0.0014 (5)0.0017 (5)0.0021 (6)
C400.0159 (8)0.0244 (9)0.0164 (8)0.0026 (7)0.0040 (6)0.0003 (7)
N70.0205 (7)0.0231 (8)0.0196 (7)0.0061 (6)0.0039 (5)0.0019 (6)
C390.0156 (8)0.0264 (9)0.0166 (8)0.0031 (7)0.0022 (6)0.0003 (7)
C280.0147 (8)0.0208 (8)0.0163 (8)0.0016 (6)0.0031 (6)0.0018 (6)
C270.0156 (8)0.0195 (9)0.0184 (8)0.0007 (6)0.0020 (6)0.0029 (6)
C360.0148 (8)0.0224 (9)0.0157 (8)0.0014 (6)0.0001 (6)0.0013 (6)
C410.0189 (9)0.0280 (10)0.0284 (9)0.0027 (7)0.0011 (7)0.0054 (7)
C320.0130 (8)0.0256 (9)0.0198 (8)0.0029 (6)0.0012 (6)0.0037 (7)
C370.0155 (8)0.0240 (9)0.0187 (8)0.0035 (6)0.0024 (6)0.0016 (7)
C230.0348 (10)0.0245 (10)0.0253 (9)0.0089 (8)0.0011 (8)0.0053 (7)
C260.0134 (8)0.0222 (9)0.0205 (8)0.0020 (6)0.0013 (6)0.0013 (7)
C310.0155 (8)0.0202 (8)0.0170 (8)0.0003 (6)0.0023 (6)0.0020 (6)
C240.0270 (9)0.0190 (9)0.0310 (10)0.0018 (7)0.0059 (7)0.0005 (7)
C300.0149 (8)0.0206 (9)0.0201 (8)0.0001 (6)0.0036 (6)0.0021 (7)
C330.0189 (9)0.0315 (10)0.0209 (8)0.0065 (7)0.0015 (7)0.0043 (7)
C340.0233 (9)0.0285 (10)0.0269 (9)0.0007 (7)0.0022 (7)0.0093 (8)
C430.0217 (9)0.0307 (10)0.0254 (9)0.0055 (7)0.0003 (7)0.0031 (8)
C440.0219 (9)0.0292 (10)0.0209 (8)0.0017 (7)0.0047 (7)0.0017 (7)
C290.0244 (9)0.0206 (9)0.0181 (8)0.0013 (7)0.0006 (7)0.0012 (7)
C420.0222 (9)0.0243 (10)0.0353 (10)0.0037 (7)0.0042 (7)0.0014 (8)
C380.0188 (8)0.0254 (9)0.0191 (8)0.0002 (7)0.0018 (6)0.0010 (7)
C350.0145 (8)0.0266 (9)0.0243 (9)0.0023 (7)0.0000 (6)0.0028 (7)
C250.0198 (8)0.0220 (9)0.0238 (9)0.0040 (7)0.0029 (7)0.0037 (7)
O10.0169 (6)0.0250 (6)0.0253 (6)0.0022 (5)0.0045 (5)0.0001 (5)
O20.0182 (6)0.0255 (7)0.0262 (6)0.0028 (5)0.0042 (5)0.0038 (5)
N50.0199 (7)0.0221 (8)0.0192 (7)0.0011 (6)0.0012 (5)0.0008 (6)
N30.0152 (7)0.0252 (8)0.0214 (7)0.0044 (6)0.0057 (5)0.0062 (6)
N20.0204 (7)0.0239 (8)0.0187 (7)0.0054 (6)0.0038 (5)0.0026 (6)
N40.0126 (6)0.0212 (7)0.0211 (7)0.0018 (5)0.0015 (5)0.0030 (6)
N10.0278 (8)0.0275 (8)0.0199 (7)0.0065 (6)0.0022 (6)0.0007 (6)
C50.0146 (8)0.0220 (9)0.0183 (8)0.0008 (6)0.0011 (6)0.0026 (7)
C60.0131 (8)0.0218 (9)0.0177 (8)0.0015 (6)0.0027 (6)0.0004 (6)
C170.0146 (8)0.0226 (9)0.0165 (8)0.0032 (6)0.0032 (6)0.0004 (7)
C180.0159 (8)0.0210 (9)0.0168 (8)0.0026 (6)0.0033 (6)0.0010 (6)
C90.0145 (8)0.0207 (9)0.0172 (8)0.0026 (6)0.0003 (6)0.0015 (6)
C110.0156 (8)0.0251 (9)0.0197 (8)0.0050 (7)0.0016 (6)0.0042 (7)
C220.0214 (9)0.0273 (9)0.0188 (8)0.0027 (7)0.0035 (6)0.0019 (7)
C210.0233 (9)0.0286 (10)0.0260 (9)0.0062 (7)0.0043 (7)0.0012 (7)
C140.0160 (8)0.0250 (9)0.0257 (9)0.0005 (7)0.0009 (7)0.0039 (7)
C150.0146 (8)0.0240 (9)0.0185 (8)0.0029 (6)0.0033 (6)0.0022 (7)
C80.0161 (8)0.0215 (9)0.0190 (8)0.0001 (6)0.0037 (6)0.0029 (7)
C130.0199 (9)0.0261 (10)0.0312 (10)0.0028 (7)0.0015 (7)0.0093 (8)
C100.0164 (8)0.0198 (8)0.0166 (8)0.0007 (6)0.0013 (6)0.0021 (6)
C120.0231 (9)0.0275 (9)0.0216 (8)0.0081 (7)0.0021 (7)0.0040 (7)
C70.0203 (8)0.0216 (9)0.0205 (8)0.0005 (7)0.0011 (6)0.0017 (7)
C160.0182 (8)0.0214 (9)0.0198 (8)0.0001 (7)0.0033 (6)0.0009 (7)
C10.0351 (10)0.0271 (10)0.0250 (9)0.0109 (8)0.0020 (8)0.0043 (8)
C40.0189 (8)0.0243 (9)0.0225 (8)0.0006 (7)0.0020 (6)0.0002 (7)
C30.0299 (10)0.0250 (10)0.0260 (9)0.0030 (7)0.0010 (7)0.0057 (7)
C190.0217 (9)0.0260 (10)0.0339 (10)0.0010 (7)0.0048 (7)0.0086 (8)
C200.0259 (10)0.0246 (10)0.0427 (11)0.0076 (8)0.0060 (8)0.0068 (8)
C20.0345 (10)0.0199 (9)0.0310 (10)0.0042 (8)0.0046 (8)0.0006 (8)
Geometric parameters (Å, º) top
O3—C281.236 (2)O1—C61.235 (2)
O4—C391.227 (2)O2—C171.232 (2)
N10—C401.340 (2)N5—C181.338 (2)
N10—C441.337 (2)N5—C221.335 (2)
N8—C361.390 (2)N3—C91.390 (2)
N8—C371.449 (2)N3—C151.449 (2)
N8—C301.452 (2)N3—C81.455 (2)
N6—C271.344 (2)N2—H20.8600
N6—C231.336 (2)N2—C61.337 (2)
N9—H90.8600N2—C71.448 (2)
N9—C391.341 (2)N4—H40.8600
N9—C381.454 (2)N4—C171.338 (2)
C40—C391.509 (2)N4—C161.452 (2)
C40—C411.387 (3)N1—C51.342 (2)
N7—H70.8600N1—C11.333 (2)
N7—C281.336 (2)C5—C61.508 (2)
N7—C291.448 (2)C5—C41.383 (2)
C28—C271.509 (2)C17—C181.508 (2)
C27—C261.381 (2)C18—C191.383 (3)
C36—C311.400 (2)C9—C141.404 (2)
C36—C351.405 (2)C9—C101.401 (2)
C41—H410.9300C11—H110.9300
C41—C421.382 (3)C11—C101.383 (2)
C32—H320.9300C11—C121.385 (3)
C32—C311.385 (2)C22—H220.9300
C32—C331.382 (3)C22—C211.380 (3)
C37—H37A0.9700C21—H210.9300
C37—H37B0.9700C21—C201.381 (3)
C37—C381.534 (2)C14—H140.9300
C23—H230.9300C14—C131.388 (2)
C23—C241.387 (3)C15—H15A0.9700
C26—H260.9300C15—H15B0.9700
C26—C251.388 (2)C15—C161.536 (2)
C31—H310.9300C8—H8A0.9700
C24—H240.9300C8—H8B0.9700
C24—C251.382 (3)C8—C71.529 (2)
C30—H30A0.9700C13—H130.9300
C30—H30B0.9700C13—C121.384 (3)
C30—C291.528 (2)C10—H100.9300
C33—H330.9300C12—H120.9300
C33—C341.383 (3)C7—H7A0.9700
C34—H340.9300C7—H7B0.9700
C34—C351.388 (3)C16—H16A0.9700
C43—H430.9300C16—H16B0.9700
C43—C441.384 (3)C1—H10.9300
C43—C421.382 (3)C1—C21.384 (3)
C44—H440.9300C4—H4A0.9300
C29—H29A0.9700C4—C31.381 (3)
C29—H29B0.9700C3—H30.9300
C42—H420.9300C3—C21.381 (3)
C38—H38A0.9700C19—H190.9300
C38—H38B0.9700C19—C201.382 (3)
C35—H350.9300C20—H200.9300
C25—H250.9300C2—H2A0.9300
C44—N10—C40116.80 (15)C22—N5—C18117.06 (15)
C36—N8—C37121.20 (14)C9—N3—C15120.88 (14)
C36—N8—C30121.79 (13)C9—N3—C8121.83 (13)
C37—N8—C30117.01 (13)C15—N3—C8117.07 (13)
C23—N6—C27116.90 (15)C6—N2—H2118.6
C39—N9—H9119.3C6—N2—C7122.80 (14)
C39—N9—C38121.41 (14)C7—N2—H2118.6
C38—N9—H9119.3C17—N4—H4119.2
N10—C40—C39117.07 (15)C17—N4—C16121.59 (13)
N10—C40—C41123.47 (16)C16—N4—H4119.2
C41—C40—C39119.42 (15)C1—N1—C5117.02 (15)
C28—N7—H7118.2N1—C5—C6117.30 (14)
C28—N7—C29123.57 (14)N1—C5—C4123.14 (16)
C29—N7—H7118.2C4—C5—C6119.55 (14)
O4—C39—N9123.26 (16)O1—C6—N2124.18 (16)
O4—C39—C40121.20 (16)O1—C6—C5121.22 (14)
N9—C39—C40115.52 (14)N2—C6—C5114.60 (14)
O3—C28—N7124.11 (15)O2—C17—N4123.34 (15)
O3—C28—C27121.46 (14)O2—C17—C18120.88 (15)
N7—C28—C27114.42 (14)N4—C17—C18115.78 (14)
N6—C27—C28116.48 (14)N5—C18—C17117.03 (15)
N6—C27—C26123.36 (15)N5—C18—C19123.43 (15)
C26—C27—C28120.16 (15)C19—C18—C17119.54 (15)
N8—C36—C31120.78 (15)N3—C9—C14121.52 (14)
N8—C36—C35121.65 (15)N3—C9—C10120.73 (15)
C31—C36—C35117.57 (15)C10—C9—C14117.75 (15)
C40—C41—H41120.7C10—C11—H11119.5
C42—C41—C40118.70 (17)C10—C11—C12121.09 (16)
C42—C41—H41120.7C12—C11—H11119.5
C31—C32—H32119.5N5—C22—H22118.1
C33—C32—H32119.5N5—C22—C21123.70 (16)
C33—C32—C31120.95 (15)C21—C22—H22118.1
N8—C37—H37A108.9C22—C21—H21120.8
N8—C37—H37B108.9C22—C21—C20118.38 (16)
N8—C37—C38113.23 (14)C20—C21—H21120.8
H37A—C37—H37B107.7C9—C14—H14120.0
C38—C37—H37A108.9C13—C14—C9120.08 (16)
C38—C37—H37B108.9C13—C14—H14120.0
N6—C23—H23118.1N3—C15—H15A109.0
N6—C23—C24123.76 (17)N3—C15—H15B109.0
C24—C23—H23118.1N3—C15—C16113.09 (14)
C27—C26—H26120.6H15A—C15—H15B107.8
C27—C26—C25118.81 (16)C16—C15—H15A109.0
C25—C26—H26120.6C16—C15—H15B109.0
C36—C31—H31119.4N3—C8—H8A109.3
C32—C31—C36121.14 (15)N3—C8—H8B109.3
C32—C31—H31119.4N3—C8—C7111.76 (14)
C23—C24—H24120.8H8A—C8—H8B107.9
C25—C24—C23118.43 (17)C7—C8—H8A109.3
C25—C24—H24120.8C7—C8—H8B109.3
N8—C30—H30A109.2C14—C13—H13119.1
N8—C30—H30B109.2C12—C13—C14121.79 (17)
N8—C30—C29112.07 (14)C12—C13—H13119.1
H30A—C30—H30B107.9C9—C10—H10119.5
C29—C30—H30A109.2C11—C10—C9121.06 (16)
C29—C30—H30B109.2C11—C10—H10119.5
C32—C33—H33120.8C11—C12—H12120.9
C32—C33—C34118.44 (16)C13—C12—C11118.16 (15)
C34—C33—H33120.8C13—C12—H12120.9
C33—C34—H34119.2N2—C7—C8112.33 (14)
C33—C34—C35121.54 (16)N2—C7—H7A109.1
C35—C34—H34119.2N2—C7—H7B109.1
C44—C43—H43120.7C8—C7—H7A109.1
C42—C43—H43120.7C8—C7—H7B109.1
C42—C43—C44118.59 (17)H7A—C7—H7B107.9
N10—C44—C43123.74 (17)N4—C16—C15110.18 (13)
N10—C44—H44118.1N4—C16—H16A109.6
C43—C44—H44118.1N4—C16—H16B109.6
N7—C29—C30112.14 (14)C15—C16—H16A109.6
N7—C29—H29A109.2C15—C16—H16B109.6
N7—C29—H29B109.2H16A—C16—H16B108.1
C30—C29—H29A109.2N1—C1—H1118.2
C30—C29—H29B109.2N1—C1—C2123.69 (17)
H29A—C29—H29B107.9C2—C1—H1118.2
C41—C42—C43118.68 (17)C5—C4—H4A120.5
C41—C42—H42120.7C3—C4—C5118.91 (16)
C43—C42—H42120.7C3—C4—H4A120.5
N9—C38—C37110.24 (13)C4—C3—H3120.7
N9—C38—H38A109.6C4—C3—C2118.60 (17)
N9—C38—H38B109.6C2—C3—H3120.7
C37—C38—H38A109.6C18—C19—H19120.8
C37—C38—H38B109.6C20—C19—C18118.40 (17)
H38A—C38—H38B108.1C20—C19—H19120.8
C36—C35—H35119.9C21—C20—C19119.02 (18)
C34—C35—C36120.28 (16)C21—C20—H20120.5
C34—C35—H35119.9C19—C20—H20120.5
C26—C25—H25120.7C1—C2—H2A120.7
C24—C25—C26118.65 (16)C3—C2—C1118.58 (17)
C24—C25—H25120.7C3—C2—H2A120.7
Hydrogen-bond geometry (Å, º) top
Cg5 and Cg6 are the centroids of the C9–C14 benzene and C31–C36 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2···O30.862.443.1099 (18)135
N7—H7···O1i0.862.423.0998 (18)136
C24—H24···O2ii0.932.483.311 (2)149
C25—H25···O4iii0.932.543.213 (2)129
C8—H8A···Cg6iv0.972.723.6468 (18)161
C30—H30B···Cg5v0.972.743.6584 (18)159
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y1/2, z+3/2; (iii) x1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC22H23N5O2
Mr389.45
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)8.64349 (7), 24.8210 (3), 18.40861 (18)
β (°) 90.5648 (8)
V3)3949.20 (7)
Z8
Radiation typeCu Kα
µ (mm1)0.70
Crystal size (mm)0.12 × 0.08 × 0.07
Data collection
DiffractometerAgilent Xcalibur Atlas Gemini ultra
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.886, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
28468, 7050, 6128
Rint0.038
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.097, 1.14
No. of reflections7050
No. of parameters523
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.26

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
Cg5 and Cg6 are the centroids of the C9–C14 benzene and C31–C36 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2···O30.862.443.1099 (18)135
N7—H7···O1i0.862.423.0998 (18)136
C24—H24···O2ii0.932.483.311 (2)149
C25—H25···O4iii0.932.543.213 (2)129
C8—H8A···Cg6iv0.972.723.6468 (18)161
C30—H30B···Cg5v0.972.743.6584 (18)159
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y1/2, z+3/2; (iii) x1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x1/2, y+1/2, z1/2.
 

Acknowledgements

This work was supported financially by the Natural Science Foundation of Hainan Province, China (grant 212014) and the Scientific Research Foundation of Hainan Normal University.

References

First citationAdolph, M., Zevaco, T. A., Walter, O., Dinjus, E. & Döring, M. (2012). Polyhedron, 48, 92–98.  Web of Science CSD CrossRef CAS Google Scholar
First citationAgilent (2012). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationBarnes, D. J., Chapman, R. L., Vagg, R. S. & Watton, E. C. (1978). J. Chem. Eng. Data, 23, 349–350.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCornman, C. R., Zovinka, E. P., Boyajian, Y. D., Olmstead, M. M. & Noll, B. C. (1999). Inorg. Chim. Acta, 285, 134–137.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJain, S. L., Bhattacharyya, P., Milton, H. L., Slawin, A. M. A., Crayston, J. A. & Woollins, J. D. (2004). Dalton Trans. pp. 862–871.  Web of Science CSD CrossRef Google Scholar
First citationLee, S. J., Lee, S. S., Lee, J. Y. & Jung, J. H. (2006). Chem. Mater. 18, 4713–4715.  Web of Science CrossRef CAS Google Scholar
First citationMunro, O. Q. & Wilson, C. (2010). Acta Cryst. C66, o535–o539.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, A. K., Jacob, W., Boudalis, A. K., Tuchagues, J.-P. & Mukherjee, R. (2008). Eur. J. Inorg. Chem. pp. 2820–2829.  Web of Science CSD CrossRef Google Scholar
First citationSong, Y. J., Lee, J. H., Koo, H. G., Lee, T. G., Myoung, S.-H., Kim, C., Kim, S.-J. & Kim, Y. (2010). Inorg. Chem. Commun. 13, 753–756.  Web of Science CSD CrossRef CAS Google Scholar
First citationYan, Y., Zhao, W., Bhagavathy, G. V., Faurie, A., Mosey, N. J. & Petitjean, A. (2012). Chem. Commun. 48, 7829–7831.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds