organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,4-Di­hydro-1H-benzo[c]chromene-1,6(2H)-dione

aSchool of Chemistry and Chemical Engineering, Henan Normal University, Henan 453007, People's Republic of China
*Correspondence e-mail: xuesen.fan@htu.cn

(Received 9 April 2013; accepted 14 April 2013; online 20 April 2013)

In the title compound, C13H10O3, the pyran­one and benzene rings are almost coplanar, making a dihedral angle of 1.9 (1)°. The cyclo­hexenone ring adopts an envelope conformation, with a methyl­ene C atom located at the flap and displaced by 0.639 (3) Å from the mean plane of the other five atoms. In the crystal, pairs of weak C—H⋯π inter­actions occur between inversion-related mol­ecules.

Related literature

For applications of benzo[c]chromen-6-ones, see: Schmidt et al. (2003[Schmidt, J. M., Tremblay, G. B., Pagé, M., Mercure, J., Feher, M., Dunn-Dufult, R., Peter, M. G. & Redden, P. R. (2003). J. Med. Chem. 46, 1289-1292.]); Pandey et al. (2004[Pandey, J., Jha, A. K. & Hajela, K. (2004). Bioorg. Med. Chem. 12, 2239-2249.]); Matsumoto & Hanawalt (2000[Matsumoto, A. & Hanawalt, P. C. (2000). Cancer Res. 60, 3921-3926.]); Sun et al. (2006[Sun, W., Cama, L. D., Birzin, E. T., Warrier, S., Locco, L., Mosley, R., Hammond, M. L. & Rohrer, S. P. (2006). Bioorg. Med. Chem. Lett. 16, 1468-1472.]). For the synthesis, see: Fan et al. (2012[Fan, X.-S., He, Y., Cui, L.-Y., Guo, S.-H., Wang, J.-J. & Zhang, X.-Y. (2012). Eur. J. Org. Chem. pp. 673-677.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10O3

  • Mr = 214.21

  • Monoclinic, P 21 /c

  • a = 8.234 (3) Å

  • b = 10.199 (3) Å

  • c = 11.927 (4) Å

  • β = 97.439 (4)°

  • V = 993.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.47 × 0.41 × 0.31 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • 6998 measured reflections

  • 1843 independent reflections

  • 1517 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.077

  • wR(F2) = 0.229

  • S = 1.18

  • 1843 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11BCgi 0.97 2.91 3.723 (5) 142
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzo[c]chromen-6-ones constitute one of the major classes of pharmacologically relevant natural products and display a wide range of biological activities (Schmidt et al., 2003; Pandey et al., 2004; Matsumoto et al., 2000; Sun et al., 2006). As part of our research (Fan et al. 2012), we have synthesized the title compound (I), and report its crystal structure here.

The title compound, C13H10O3, consists of three fused six-membered rings, benzene, pyranone and cyclohexenone ring. The pyranone ring is in the middle. All the bond lengths and bond angles are within normal ranges. The pyranone ring and the benzene ring are almost coplanar with a dihedral angle of 1.9 (1) °. The cyclohexenone ring adopts an envelope conformation, a methylene C atom located on the flap and displaced from the mean plane of the other five ring atoms (C8—C11/C13) by 0.639 (3) Å.

In the crystal, weak intermolecular C—H···π interactions occur between benzene ring and methylene group of adjacent molecules, the separation between the centroid of benzene ring and methylene H atom being 2.91 Å.

Related literature top

For applications of benzo[c]chromen-6-ones, see: Schmidt et al. (2003); Pandey et al. (2004); Matsumoto & Hanawalt (2000); Sun et al. (2006). For the synthesis, see: Fan et al. (2012).

Experimental top

The title compound was synthesized following the previously reported procedure (Fan et al., 2012). Single crystals, suitable for X-ray diffraction analysis, were obtained by slow evaporation of the solvents from a petroleum ether-ethyl acetate (5:1 v/v) solution of the title compound.

Refinement top

H atoms were positioned geometrically and refined using riding model with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Benzo[c]chromen-6-ones constitute one of the major classes of pharmacologically relevant natural products and display a wide range of biological activities (Schmidt et al., 2003; Pandey et al., 2004; Matsumoto et al., 2000; Sun et al., 2006). As part of our research (Fan et al. 2012), we have synthesized the title compound (I), and report its crystal structure here.

The title compound, C13H10O3, consists of three fused six-membered rings, benzene, pyranone and cyclohexenone ring. The pyranone ring is in the middle. All the bond lengths and bond angles are within normal ranges. The pyranone ring and the benzene ring are almost coplanar with a dihedral angle of 1.9 (1) °. The cyclohexenone ring adopts an envelope conformation, a methylene C atom located on the flap and displaced from the mean plane of the other five ring atoms (C8—C11/C13) by 0.639 (3) Å.

In the crystal, weak intermolecular C—H···π interactions occur between benzene ring and methylene group of adjacent molecules, the separation between the centroid of benzene ring and methylene H atom being 2.91 Å.

For applications of benzo[c]chromen-6-ones, see: Schmidt et al. (2003); Pandey et al. (2004); Matsumoto & Hanawalt (2000); Sun et al. (2006). For the synthesis, see: Fan et al. (2012).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the b axis.
3,4-Dihydro-1H-benzo[c]chromene-1,6(2H)-dione top
Crystal data top
C13H10O3F(000) = 448
Mr = 214.21Dx = 1.433 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2699 reflections
a = 8.234 (3) Åθ = 2.5–27.2°
b = 10.199 (3) ŵ = 0.10 mm1
c = 11.927 (4) ÅT = 296 K
β = 97.439 (4)°Block, colorless
V = 993.1 (6) Å30.47 × 0.41 × 0.31 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1517 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 25.5°, θmin = 2.5°
φ and ω scansh = 99
6998 measured reflectionsk = 1212
1843 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.229H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0741P)2 + 2.0297P]
where P = (Fo2 + 2Fc2)/3
1843 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C13H10O3V = 993.1 (6) Å3
Mr = 214.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.234 (3) ŵ = 0.10 mm1
b = 10.199 (3) ÅT = 296 K
c = 11.927 (4) Å0.47 × 0.41 × 0.31 mm
β = 97.439 (4)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1517 reflections with I > 2σ(I)
6998 measured reflectionsRint = 0.027
1843 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0770 restraints
wR(F2) = 0.229H-atom parameters constrained
S = 1.18Δρmax = 0.33 e Å3
1843 reflectionsΔρmin = 0.29 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1515 (4)0.4254 (4)0.4108 (3)0.0372 (8)
C20.0900 (5)0.2983 (4)0.3970 (4)0.0462 (10)
H20.02940.27370.32900.055*
C30.1189 (5)0.2095 (4)0.4836 (4)0.0556 (11)
H30.07970.12420.47410.067*
C40.2063 (6)0.2472 (5)0.5847 (4)0.0577 (12)
H40.22390.18710.64370.069*
C50.2681 (5)0.3725 (4)0.6002 (3)0.0494 (10)
H50.32660.39580.66930.059*
C60.2435 (4)0.4652 (4)0.5127 (3)0.0361 (8)
C70.1173 (5)0.5166 (4)0.3171 (3)0.0409 (9)
C80.2628 (4)0.6829 (4)0.4336 (3)0.0388 (9)
C90.3044 (4)0.6001 (4)0.5209 (3)0.0364 (8)
C100.4169 (5)0.6504 (4)0.6187 (3)0.0448 (10)
C110.4572 (6)0.7945 (5)0.6214 (4)0.0575 (12)
H11A0.46490.82490.69900.069*
H11B0.56400.80610.59670.069*
C120.3362 (5)0.8789 (4)0.5496 (4)0.0522 (11)
H12A0.37870.96750.54740.063*
H12B0.23450.88230.58240.063*
C130.3036 (6)0.8247 (4)0.4302 (4)0.0517 (11)
H13A0.21330.87190.38800.062*
H13B0.39980.83660.39220.062*
O10.0424 (4)0.4948 (3)0.2258 (2)0.0618 (9)
O20.1742 (3)0.6438 (3)0.3351 (2)0.0457 (7)
O30.4831 (4)0.5785 (3)0.6928 (2)0.0663 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0344 (18)0.038 (2)0.0388 (19)0.0033 (15)0.0045 (14)0.0020 (15)
C20.039 (2)0.043 (2)0.055 (2)0.0017 (17)0.0025 (17)0.0056 (18)
C30.050 (2)0.040 (2)0.078 (3)0.0044 (19)0.010 (2)0.006 (2)
C40.063 (3)0.051 (3)0.059 (3)0.002 (2)0.009 (2)0.018 (2)
C50.053 (2)0.052 (2)0.041 (2)0.001 (2)0.0006 (18)0.0082 (18)
C60.0314 (18)0.041 (2)0.0354 (18)0.0056 (15)0.0039 (14)0.0009 (15)
C70.045 (2)0.041 (2)0.0347 (19)0.0033 (16)0.0020 (16)0.0043 (16)
C80.0409 (19)0.039 (2)0.0356 (18)0.0035 (16)0.0010 (15)0.0034 (15)
C90.0349 (18)0.040 (2)0.0346 (18)0.0041 (15)0.0049 (14)0.0041 (15)
C100.042 (2)0.055 (2)0.037 (2)0.0001 (18)0.0021 (16)0.0071 (18)
C110.052 (2)0.064 (3)0.055 (3)0.011 (2)0.000 (2)0.016 (2)
C120.052 (2)0.041 (2)0.064 (3)0.0074 (19)0.009 (2)0.012 (2)
C130.061 (3)0.038 (2)0.055 (2)0.0033 (19)0.004 (2)0.0006 (19)
O10.081 (2)0.0545 (19)0.0429 (16)0.0025 (16)0.0182 (15)0.0078 (14)
O20.0594 (17)0.0378 (15)0.0365 (14)0.0017 (12)0.0069 (12)0.0001 (11)
O30.074 (2)0.076 (2)0.0433 (17)0.0031 (18)0.0168 (15)0.0024 (16)
Geometric parameters (Å, º) top
C1—C21.393 (5)C8—C91.349 (5)
C1—C61.406 (5)C8—O21.360 (4)
C1—C71.454 (5)C8—C131.486 (5)
C2—C31.372 (6)C9—C101.484 (5)
C2—H20.9300C10—O31.222 (5)
C3—C41.376 (6)C10—C111.506 (6)
C3—H30.9300C11—C121.499 (6)
C4—C51.379 (6)C11—H11A0.9700
C4—H40.9300C11—H11B0.9700
C5—C61.403 (5)C12—C131.519 (6)
C5—H50.9300C12—H12A0.9700
C6—C91.463 (5)C12—H12B0.9700
C7—O11.201 (4)C13—H13A0.9700
C7—O21.387 (5)C13—H13B0.9700
C2—C1—C6121.2 (3)C8—C9—C10117.4 (3)
C2—C1—C7118.3 (3)C6—C9—C10123.5 (3)
C6—C1—C7120.6 (3)O3—C10—C9122.4 (4)
C3—C2—C1120.1 (4)O3—C10—C11119.6 (4)
C3—C2—H2120.0C9—C10—C11117.9 (4)
C1—C2—H2120.0C12—C11—C10114.8 (3)
C2—C3—C4119.7 (4)C12—C11—H11A108.6
C2—C3—H3120.2C10—C11—H11A108.6
C4—C3—H3120.2C12—C11—H11B108.6
C3—C4—C5121.2 (4)C10—C11—H11B108.6
C3—C4—H4119.4H11A—C11—H11B107.5
C5—C4—H4119.4C11—C12—C13110.5 (4)
C4—C5—C6120.6 (4)C11—C12—H12A109.6
C4—C5—H5119.7C13—C12—H12A109.6
C6—C5—H5119.7C11—C12—H12B109.6
C5—C6—C1117.2 (4)C13—C12—H12B109.6
C5—C6—C9124.6 (3)H12A—C12—H12B108.1
C1—C6—C9118.1 (3)C8—C13—C12110.0 (3)
O1—C7—O2115.9 (3)C8—C13—H13A109.7
O1—C7—C1127.2 (4)C12—C13—H13A109.7
O2—C7—C1116.9 (3)C8—C13—H13B109.7
C9—C8—O2122.5 (3)C12—C13—H13B109.7
C9—C8—C13126.5 (3)H13A—C13—H13B108.2
O2—C8—C13111.0 (3)C8—O2—C7122.7 (3)
C8—C9—C6119.1 (3)
C6—C1—C2—C30.0 (6)C5—C6—C9—C8175.2 (4)
C7—C1—C2—C3179.7 (4)C1—C6—C9—C83.7 (5)
C1—C2—C3—C41.1 (6)C5—C6—C9—C107.6 (6)
C2—C3—C4—C51.1 (7)C1—C6—C9—C10173.5 (3)
C3—C4—C5—C60.1 (7)C8—C9—C10—O3167.7 (4)
C4—C5—C6—C11.2 (6)C6—C9—C10—O39.5 (6)
C4—C5—C6—C9179.8 (4)C8—C9—C10—C118.5 (5)
C2—C1—C6—C51.1 (5)C6—C9—C10—C11174.2 (3)
C7—C1—C6—C5178.5 (3)O3—C10—C11—C12162.4 (4)
C2—C1—C6—C9179.8 (3)C9—C10—C11—C1221.2 (6)
C7—C1—C6—C90.5 (5)C10—C11—C12—C1351.1 (5)
C2—C1—C7—O11.2 (6)C9—C8—C13—C1223.3 (6)
C6—C1—C7—O1179.1 (4)O2—C8—C13—C12156.4 (3)
C2—C1—C7—O2177.4 (3)C11—C12—C13—C850.7 (5)
C6—C1—C7—O22.3 (5)C9—C8—O2—C71.1 (6)
O2—C8—C9—C64.1 (5)C13—C8—O2—C7178.6 (3)
C13—C8—C9—C6175.5 (4)O1—C7—O2—C8179.1 (4)
O2—C8—C9—C10173.2 (3)C1—C7—O2—C82.2 (5)
C13—C8—C9—C107.1 (6)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C11—H11B···Cgi0.972.913.723 (5)142
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H10O3
Mr214.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.234 (3), 10.199 (3), 11.927 (4)
β (°) 97.439 (4)
V3)993.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.47 × 0.41 × 0.31
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6998, 1843, 1517
Rint0.027
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.229, 1.18
No. of reflections1843
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.29

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C11—H11B···Cgi0.972.913.723 (5)142
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21272058).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFan, X.-S., He, Y., Cui, L.-Y., Guo, S.-H., Wang, J.-J. & Zhang, X.-Y. (2012). Eur. J. Org. Chem. pp. 673–677.  Web of Science CrossRef Google Scholar
First citationMatsumoto, A. & Hanawalt, P. C. (2000). Cancer Res. 60, 3921–3926.  Web of Science PubMed CAS Google Scholar
First citationPandey, J., Jha, A. K. & Hajela, K. (2004). Bioorg. Med. Chem. 12, 2239–2249.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchmidt, J. M., Tremblay, G. B., Pagé, M., Mercure, J., Feher, M., Dunn-Dufult, R., Peter, M. G. & Redden, P. R. (2003). J. Med. Chem. 46, 1289–1292.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, W., Cama, L. D., Birzin, E. T., Warrier, S., Locco, L., Mosley, R., Hammond, M. L. & Rohrer, S. P. (2006). Bioorg. Med. Chem. Lett. 16, 1468–1472.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds