organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1R,2S,5R)-(–)-Menthyl (S)-2-(meth­oxy­carbonyl)­benzene­sulfinate

aChemistry Department, Menarini Ricerche S.p.A., Via dei Sette Santi 3, I-50131 Firenze, Italy, bICS, Université de Strasbourg, France, and cDipartimento di Ingegneria Industriale, University of Firenze, Via S. Marta 3, I-50139 Firenze, Italy
*Correspondence e-mail: paolapaoli@unifi.it

(Received 28 February 2013; accepted 3 April 2013; online 13 April 2013)

In the title chiral sulfinic acid ester, C18H26O4S, the cyclo­hexane ring of the menthyl fragment adopts a chair conformation. The mol­ecular shape is defined by the dihedral angle of 47.87 (8)° between the mean planes of the cyclo­hexane and benzene rings. In the crystal, mol­ecules related by the screw axis are connected into chains along [010] by weak Car—H⋯O=S contacts.

Related literature

For the synthesis of the title compound, see: Klunder & Sharpless (1987[Klunder, J. M. & Sharpless, K. B. (1987). J. Org. Chem. 52, 2598-2602.]) and of chiral sulfoxides, see: Drabowicz et al. (1982[Drabowicz, J., Bujnicki, B. & Mikolajczyk, M. (1982). J. Org. Chem. 47, 3325-3327.]); Solladié et al. (1987[Solladié, G., Hutt, J. & Girardin, A. (1987). Synthesis, pp. 173-173.]). For applications of menthol in synthetic chemistry, see Oertling et al. (2007[Oertling, H., Reckziegel, A., Surburg, H. & Bertram, H.-J. (2007). Chem. Rev. 107, 2136-2164.]). For structural studies of analogous chiral sulfinic acid esters, see: Mariz et al. (2010[Mariz, R., Poater, A., Gatti, M., Drinkel, E., Bürgi, J. J., Luan, X., Blumentritt, S., Linden, A., Cavallo, L. & Dorta, R. (2010). Chem. Eur. J. 16, 14335-14347.]); Heinemann et al. (2007[Heinemann, F. W., Weber, I. & Zenneck, U. (2007). J. Chem. Crystallogr. 37, 165-170.]); Cherkaoui & Nicoud (1995[Cherkaoui, M. Z. & Nicoud, J.-F. (1995). New J. Chem. 19, 851-861.]).

[Scheme 1]

Experimental

Crystal data
  • C18H26O4S

  • Mr = 338.45

  • Monoclinic, P 21

  • a = 9.7918 (2) Å

  • b = 9.3938 (2) Å

  • c = 10.6998 (2) Å

  • β = 112.176 (2)°

  • V = 911.39 (3) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.72 mm−1

  • T = 150 K

  • 0.26 × 0.22 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur PX diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.660, Tmax = 0.872

  • 4681 measured reflections

  • 2354 independent reflections

  • 2115 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.078

  • S = 1.07

  • 2354 reflections

  • 209 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 767 Friedel pairs

  • Flack parameter: 0.038 (18)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O4i 0.95 2.42 3.337 (3) 161
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

As a result of the trigonal pyramidal stereochemistry which characterizes the sulfur atom in organic sulfinic acid esters and sulfoxides bearing two different substituents, these species are chiral. Chiral sulfoxides are key intermediates for asymmetric synthesis and can be obtained from the reaction of an organometallic reagent (e.g. a Grignard reagent) with a diastereomerically pure sulfinate ester of menthol (Drabowicz et al., 1982). On the other hand, menthyl sulfinates can be prepared by reaction of menthol (Oertling et al., 2007) either with sodium sulfinates (Solladié et al., 1987) or with a sulfonyl chloride in the presence of trimethylphosphite as in situ reducing agent (Klunder & Sharpless, 1987). We used the latter method to prepare the chiral sulfinic acid ester, (1R,2S,5R)-(-)-menthyl (S)-2-carbomethoxybenzenesulfinate, here reported. The overall molecular shape of the title compound depends on the dihedral angle formed between the mean plane defined by the ring atoms of the menthyl and of the phenyl groupings (132.13°(8)). Bond distances and angles about the sulfur atom, as well as the orientation of the isopropyl chain with respect to the menthyl ring are in keeping with those already reported for this molecular fragment (Heinemann et al., 2007; Mariz et al., 2010; Cherkaoui & Nicoud, 1995). In the crystal, molecules are connected via weak Car—H···O contacts involving the double bonded oxygen atom of the sulfinate group as acceptor. The resulting molecular chain propagates along the b axis direction around the screw axis.

Related literature top

For the synthesis of the title compound, see: Klunder & Sharpless (1987) and of chiral sulfoxides, see: Drabowicz et al. (1982); Solladié et al. (1987). For applications of menthol in synthetic chemistry, see Oertling et al. (2007). For structural studies of analogous chiral sulfinic acid esters, see: Mariz et al. (2010); Heinemann et al. (2007); Cherkaoui & Nicoud (1995).

Experimental top

For the synthesis of the title compound, see: Klunder & Sharpless (1987). Crystals of the title compound suitable for single-crystal X-ray diffraction analysis were obtained by slow evaporation from a diethyl ether solution of the sulfinate ester.

Refinement top

All the H atoms were positioned with idealized geometry using a riding model and refined with Uiso(H) 1.2 times Ueq(C) (1.5 for methyl H atoms).

Structure description top

As a result of the trigonal pyramidal stereochemistry which characterizes the sulfur atom in organic sulfinic acid esters and sulfoxides bearing two different substituents, these species are chiral. Chiral sulfoxides are key intermediates for asymmetric synthesis and can be obtained from the reaction of an organometallic reagent (e.g. a Grignard reagent) with a diastereomerically pure sulfinate ester of menthol (Drabowicz et al., 1982). On the other hand, menthyl sulfinates can be prepared by reaction of menthol (Oertling et al., 2007) either with sodium sulfinates (Solladié et al., 1987) or with a sulfonyl chloride in the presence of trimethylphosphite as in situ reducing agent (Klunder & Sharpless, 1987). We used the latter method to prepare the chiral sulfinic acid ester, (1R,2S,5R)-(-)-menthyl (S)-2-carbomethoxybenzenesulfinate, here reported. The overall molecular shape of the title compound depends on the dihedral angle formed between the mean plane defined by the ring atoms of the menthyl and of the phenyl groupings (132.13°(8)). Bond distances and angles about the sulfur atom, as well as the orientation of the isopropyl chain with respect to the menthyl ring are in keeping with those already reported for this molecular fragment (Heinemann et al., 2007; Mariz et al., 2010; Cherkaoui & Nicoud, 1995). In the crystal, molecules are connected via weak Car—H···O contacts involving the double bonded oxygen atom of the sulfinate group as acceptor. The resulting molecular chain propagates along the b axis direction around the screw axis.

For the synthesis of the title compound, see: Klunder & Sharpless (1987) and of chiral sulfoxides, see: Drabowicz et al. (1982); Solladié et al. (1987). For applications of menthol in synthetic chemistry, see Oertling et al. (2007). For structural studies of analogous chiral sulfinic acid esters, see: Mariz et al. (2010); Heinemann et al. (2007); Cherkaoui & Nicoud (1995).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the c-axis. Intermolecular interactions are shown as dashed lines.
(1R,2S,5R)-(-)-Menthyl (S)-2-(methoxycarbonyl)benzenesulfinate top
Crystal data top
C18H26O4SF(000) = 364
Mr = 338.45Dx = 1.233 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.5418 Å
a = 9.7918 (2) ÅCell parameters from 3618 reflections
b = 9.3938 (2) Åθ = 4.5–64.6°
c = 10.6998 (2) ŵ = 1.72 mm1
β = 112.176 (2)°T = 150 K
V = 911.39 (3) Å3Platelet, colourless
Z = 20.26 × 0.22 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur PX
diffractometer
2354 independent reflections
Radiation source: Enhance (Cu) X-ray Source2115 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 8.1241 pixels mm-1θmax = 64.8°, θmin = 4.5°
ω scansh = 1110
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 108
Tmin = 0.660, Tmax = 0.872l = 1112
4681 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0533P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2354 reflectionsΔρmax = 0.15 e Å3
209 parametersΔρmin = 0.22 e Å3
1 restraintAbsolute structure: Flack (1983), 767 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.038 (18)
Crystal data top
C18H26O4SV = 911.39 (3) Å3
Mr = 338.45Z = 2
Monoclinic, P21Cu Kα radiation
a = 9.7918 (2) ŵ = 1.72 mm1
b = 9.3938 (2) ÅT = 150 K
c = 10.6998 (2) Å0.26 × 0.22 × 0.08 mm
β = 112.176 (2)°
Data collection top
Oxford Diffraction Xcalibur PX
diffractometer
2354 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
2115 reflections with I > 2σ(I)
Tmin = 0.660, Tmax = 0.872Rint = 0.021
4681 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.078Δρmax = 0.15 e Å3
S = 1.07Δρmin = 0.22 e Å3
2354 reflectionsAbsolute structure: Flack (1983), 767 Friedel pairs
209 parametersAbsolute structure parameter: 0.038 (18)
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.13357 (6)0.36878 (7)0.29567 (5)0.02816 (16)
O10.12928 (17)0.2413 (2)0.29271 (17)0.0370 (5)
O20.14622 (19)0.0826 (2)0.44178 (18)0.0456 (5)
O30.10664 (16)0.26365 (17)0.16750 (14)0.0276 (4)
O40.27015 (18)0.4479 (2)0.31899 (17)0.0393 (5)
C10.1889 (2)0.2232 (3)0.4157 (2)0.0276 (6)
C20.0910 (3)0.1423 (3)0.4543 (2)0.0278 (5)
C30.1479 (3)0.0401 (3)0.5550 (2)0.0351 (6)
H30.08300.01300.58440.042*
C40.2987 (3)0.0150 (3)0.6128 (2)0.0401 (7)
H40.33640.05560.68080.048*
C50.3939 (3)0.0927 (3)0.5715 (2)0.0417 (7)
H50.49690.07410.60960.050*
C60.3395 (3)0.1976 (3)0.4747 (2)0.0350 (6)
H60.40560.25260.44840.042*
C70.0714 (2)0.1625 (3)0.3865 (2)0.0288 (5)
C80.3054 (3)0.0939 (4)0.3802 (3)0.0586 (9)
H8A0.35010.02790.42480.088*
H8B0.33860.07000.28420.088*
H8C0.33530.19150.39010.088*
C90.0431 (2)0.3366 (2)0.03670 (19)0.0252 (5)
H90.07070.43960.04960.030*
C100.1105 (3)0.2704 (3)0.0566 (2)0.0322 (6)
H100.08190.16760.06600.039*
C110.0369 (3)0.3372 (3)0.1967 (2)0.0404 (7)
H11A0.06420.43910.19200.048*
H11B0.07420.28980.26020.048*
C120.1312 (3)0.3239 (3)0.2505 (2)0.0439 (7)
H12A0.17400.37090.33970.053*
H12B0.15880.22200.26280.053*
C130.1943 (3)0.3903 (3)0.1564 (2)0.0377 (7)
H130.16910.49390.14860.045*
C140.1233 (2)0.3239 (3)0.0165 (2)0.0333 (6)
H14A0.16090.37210.04640.040*
H14B0.15110.22220.02100.040*
C150.3628 (3)0.3767 (5)0.2088 (3)0.0574 (8)
H15A0.39920.42120.14450.086*
H15B0.39030.27570.21880.086*
H15C0.40670.42420.29640.086*
C160.2812 (3)0.2752 (3)0.0022 (3)0.0397 (7)
H160.31510.22840.09280.048*
C170.3439 (3)0.4256 (3)0.0237 (3)0.0487 (8)
H17A0.30200.47960.07910.073*
H17B0.31880.47280.06390.073*
H17C0.45140.42140.06970.073*
C180.3433 (4)0.1894 (4)0.0842 (3)0.0599 (9)
H18A0.30170.09320.09700.090*
H18B0.45090.18390.03930.090*
H18C0.31760.23580.17220.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0300 (3)0.0257 (3)0.0306 (3)0.0036 (3)0.0135 (2)0.0045 (3)
O10.0298 (9)0.0443 (12)0.0374 (9)0.0010 (8)0.0133 (8)0.0100 (9)
O20.0312 (9)0.0591 (14)0.0451 (10)0.0078 (9)0.0127 (9)0.0180 (10)
O30.0333 (8)0.0240 (9)0.0245 (8)0.0019 (7)0.0099 (7)0.0007 (7)
O40.0361 (9)0.0407 (11)0.0410 (9)0.0146 (9)0.0144 (8)0.0045 (9)
C10.0289 (12)0.0302 (15)0.0209 (11)0.0024 (11)0.0065 (10)0.0045 (10)
C20.0302 (12)0.0306 (15)0.0225 (11)0.0002 (11)0.0097 (9)0.0035 (10)
C30.0395 (14)0.0363 (16)0.0276 (12)0.0029 (12)0.0104 (12)0.0004 (12)
C40.0456 (16)0.0387 (18)0.0291 (13)0.0101 (13)0.0062 (13)0.0005 (12)
C50.0318 (14)0.0530 (19)0.0331 (13)0.0105 (13)0.0040 (12)0.0082 (14)
C60.0303 (13)0.0414 (17)0.0332 (13)0.0015 (12)0.0119 (11)0.0065 (12)
C70.0310 (13)0.0292 (15)0.0279 (12)0.0023 (11)0.0131 (11)0.0033 (12)
C80.0299 (14)0.083 (3)0.0579 (18)0.0111 (16)0.0109 (14)0.0230 (18)
C90.0300 (11)0.0190 (15)0.0264 (11)0.0018 (10)0.0102 (9)0.0021 (10)
C100.0383 (13)0.0275 (15)0.0333 (12)0.0012 (12)0.0163 (11)0.0009 (11)
C110.0554 (16)0.038 (2)0.0332 (12)0.0040 (13)0.0226 (12)0.0031 (12)
C120.0538 (16)0.0390 (18)0.0301 (12)0.0056 (13)0.0058 (11)0.0043 (12)
C130.0370 (13)0.0301 (18)0.0368 (12)0.0022 (12)0.0034 (11)0.0035 (13)
C140.0284 (12)0.0338 (17)0.0352 (12)0.0003 (11)0.0092 (10)0.0000 (11)
C150.0369 (13)0.068 (2)0.0492 (15)0.0022 (17)0.0037 (12)0.0096 (18)
C160.0421 (15)0.0395 (18)0.0469 (15)0.0020 (13)0.0275 (12)0.0043 (14)
C170.0396 (15)0.053 (2)0.0575 (18)0.0113 (14)0.0229 (14)0.0056 (15)
C180.065 (2)0.056 (2)0.076 (2)0.0083 (18)0.0462 (17)0.0065 (19)
Geometric parameters (Å, º) top
S1—O41.4669 (17)C10—C161.548 (3)
S1—O31.6287 (16)C10—H101.0000
S1—C11.813 (2)C11—C121.530 (3)
O1—C71.203 (3)C11—H11A0.9900
O2—C71.333 (3)C11—H11B0.9900
O2—C81.449 (3)C12—C131.501 (4)
O3—C91.469 (2)C12—H12A0.9900
C1—C61.388 (3)C12—H12B0.9900
C1—C21.403 (3)C13—C141.525 (3)
C2—C31.392 (4)C13—C151.535 (3)
C2—C71.490 (3)C13—H131.0000
C3—C41.389 (4)C14—H14A0.9900
C3—H30.9500C14—H14B0.9900
C4—C51.382 (4)C15—H15A0.9800
C4—H40.9500C15—H15B0.9800
C5—C61.382 (4)C15—H15C0.9800
C5—H50.9500C16—C181.517 (4)
C6—H60.9500C16—C171.524 (4)
C8—H8A0.9800C16—H161.0000
C8—H8B0.9800C17—H17A0.9800
C8—H8C0.9800C17—H17B0.9800
C9—C141.514 (3)C17—H17C0.9800
C9—C101.522 (3)C18—H18A0.9800
C9—H91.0000C18—H18B0.9800
C10—C111.532 (3)C18—H18C0.9800
O4—S1—O3107.34 (9)C10—C11—H11A109.2
O4—S1—C1104.61 (10)C12—C11—H11B109.2
O3—S1—C192.81 (9)C10—C11—H11B109.2
C7—O2—C8115.7 (2)H11A—C11—H11B107.9
C9—O3—S1113.26 (13)C13—C12—C11111.8 (2)
C6—C1—C2119.9 (2)C13—C12—H12A109.3
C6—C1—S1115.80 (19)C11—C12—H12A109.3
C2—C1—S1124.25 (17)C13—C12—H12B109.3
C3—C2—C1118.9 (2)C11—C12—H12B109.3
C3—C2—C7120.4 (2)H12A—C12—H12B107.9
C1—C2—C7120.7 (2)C12—C13—C14109.7 (2)
C4—C3—C2120.6 (2)C12—C13—C15112.2 (2)
C4—C3—H3119.7C14—C13—C15110.7 (2)
C2—C3—H3119.7C12—C13—H13108.0
C5—C4—C3120.0 (3)C14—C13—H13108.0
C5—C4—H4120.0C15—C13—H13108.0
C3—C4—H4120.0C9—C14—C13111.34 (19)
C4—C5—C6120.0 (2)C9—C14—H14A109.4
C4—C5—H5120.0C13—C14—H14A109.4
C6—C5—H5120.0C9—C14—H14B109.4
C5—C6—C1120.5 (2)C13—C14—H14B109.4
C5—C6—H6119.8H14A—C14—H14B108.0
C1—C6—H6119.8C13—C15—H15A109.5
O1—C7—O2123.5 (2)C13—C15—H15B109.5
O1—C7—C2124.4 (2)H15A—C15—H15B109.5
O2—C7—C2112.1 (2)C13—C15—H15C109.5
O2—C8—H8A109.5H15A—C15—H15C109.5
O2—C8—H8B109.5H15B—C15—H15C109.5
H8A—C8—H8B109.5C18—C16—C17110.6 (2)
O2—C8—H8C109.5C18—C16—C10110.9 (2)
H8A—C8—H8C109.5C17—C16—C10113.6 (2)
H8B—C8—H8C109.5C18—C16—H16107.1
O3—C9—C14109.29 (17)C17—C16—H16107.1
O3—C9—C10107.54 (18)C10—C16—H16107.1
C14—C9—C10113.12 (18)C16—C17—H17A109.5
O3—C9—H9108.9C16—C17—H17B109.5
C14—C9—H9108.9H17A—C17—H17B109.5
C10—C9—H9108.9C16—C17—H17C109.5
C9—C10—C11108.34 (19)H17A—C17—H17C109.5
C9—C10—C16112.98 (19)H17B—C17—H17C109.5
C11—C10—C16115.0 (2)C16—C18—H18A109.5
C9—C10—H10106.7C16—C18—H18B109.5
C11—C10—H10106.7H18A—C18—H18B109.5
C16—C10—H10106.7C16—C18—H18C109.5
C12—C11—C10112.09 (19)H18A—C18—H18C109.5
C12—C11—H11A109.2H18B—C18—H18C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O4i0.952.423.337 (3)161
Symmetry code: (i) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC18H26O4S
Mr338.45
Crystal system, space groupMonoclinic, P21
Temperature (K)150
a, b, c (Å)9.7918 (2), 9.3938 (2), 10.6998 (2)
β (°) 112.176 (2)
V3)911.39 (3)
Z2
Radiation typeCu Kα
µ (mm1)1.72
Crystal size (mm)0.26 × 0.22 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur PX
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.660, 0.872
No. of measured, independent and
observed [I > 2σ(I)] reflections
4681, 2354, 2115
Rint0.021
(sin θ/λ)max1)0.587
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.078, 1.07
No. of reflections2354
No. of parameters209
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.22
Absolute structureFlack (1983), 767 Friedel pairs
Absolute structure parameter0.038 (18)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O4i0.9502.4243.337 (3)161
Symmetry code: (i) x+1, y1/2, z+1.
 

Acknowledgements

The authors acknowledge the CRIST (Centro di Cristallografia Strutturale, University of Firenze), where the data collection was performed.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCherkaoui, M. Z. & Nicoud, J.-F. (1995). New J. Chem. 19, 851–861.  CAS Google Scholar
First citationDrabowicz, J., Bujnicki, B. & Mikolajczyk, M. (1982). J. Org. Chem. 47, 3325–3327.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHeinemann, F. W., Weber, I. & Zenneck, U. (2007). J. Chem. Crystallogr. 37, 165–170.  Web of Science CSD CrossRef CAS Google Scholar
First citationKlunder, J. M. & Sharpless, K. B. (1987). J. Org. Chem. 52, 2598–2602.  CrossRef CAS Web of Science Google Scholar
First citationMariz, R., Poater, A., Gatti, M., Drinkel, E., Bürgi, J. J., Luan, X., Blumentritt, S., Linden, A., Cavallo, L. & Dorta, R. (2010). Chem. Eur. J. 16, 14335–14347.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOertling, H., Reckziegel, A., Surburg, H. & Bertram, H.-J. (2007). Chem. Rev. 107, 2136–2164.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSolladié, G., Hutt, J. & Girardin, A. (1987). Synthesis, pp. 173–173.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds