organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-{1,2-Bis(pyridin-3-yl)-2-[(E)-(pyridin-3-yl)methyl­­idene­amino]­eth­yl}nicotinamide

aCentro de Graduados e Investigación del Instituto Tecnológico de Tijuana, Apdo. Postal 1166, 22500 Tijuana, BC, Mexico, and bInstituto de Química, Universidad Nacional Autónoma de México, Circuito exterior, Ciudad Universitaria, México, DF, 04510, Mexico
*Correspondence e-mail: miguelhake@yahoo.com

(Received 10 February 2013; accepted 28 March 2013; online 10 April 2013)

In the title compound, C24H20N6O, the pyridin-3-yl groups on the ethyl­ene fragment are found in a trans conformation with a C(py)—C(e)—C(e)—C(py) (py = pyridine, e = ethylene) torsion angle of 179.2 (3)°. The dihedral angle between the pyridine rings is 3.5 (1)°. In the crystal, N—H⋯N and C—H⋯O=C inter­actions form a layer arrangement parallel to the bc plane. The compound displays disorder of the ethyl­ene fragment over two positions with an occupancy ratio of 0.676 (7) to 0.324 (7) that extends into the amide section of the nicotinamide moiety.

Related literature

For supra­molecular structures, see: Nyburg & Wood (1964[Nyburg, S. C. & Wood, J. S. (1964). Inorg. Chem. 3, 468-476.]); House & Sadler (1973[House, D. A. & Sadler, W. A. (1973). J. Chem. Soc. Dalton Trans. pp. 1937-1941.]); Koçak (2000[Koçak, M. (2000). Transition Met. Chem. 25, 231-233.]). For a related enanti­oselective catalyst, see: Jacobsen et al. (1990[Jacobsen, E. N., Zhang, W., Loebach, J. L. & Wilson, S. R. (1990). J. Am. Chem. Soc. 112, 2801-2803.]); Corey & Kühnle (1997[Corey, E. J. & Kühnle, F. (1997). Tetrahedron Lett. 38, 8631-8634.]); Corey et al. (1989[Corey, E. J., Imwinkelried, R., Pikul, S. & Xiang, Y. B. (1989). J. Am. Chem. Soc. 111, 5493-5495.]). For coordination compounds with polypyridine ligands related to the title compound, see: Parra-Hake et al. (2000[Parra-Hake, M., Larter, M. L., Gantzel, P., Aguirre, G., Ortega, F., Somanathan, R. & Walsh, P. J. (2000). Inorg. Chem. 39, 5400-5403.]); Cruz Enríquez et al. (2012[Cruz Enríquez, A., Figueroa Pérez, M. G., Almaral Sánchez, J. L., Höpfl, H., Parra-Hake, M. & Campos-Gaxiola, J. J. (2012). CrystEngComm, 14, 6146-6151.]). For the synthesis of analogous compounds, see: Proskurnina et al. (2002[Proskurnina, M. V., Lozinskaya, N. A., Tkachenko, S. E. & Zefirov, N. S. (2002). Russ. J. Org. Chem. 38, 1149-1153.]); Tu et al. (2009[Tu, S.-J., Ai, T., Jiang, B., Wang, X., Shi, F., Ballew, A. & Li, G. (2009). J. Org. Chem. 74, 9486-9489.]); Irving & Parkins (1965[Irving, M. N. H. & Parkins, R. M. (1965). J. Inorg. Nucl. Chem. 27, 270-271.]).

[Scheme 1]

Experimental

Crystal data
  • C24H20N6O

  • Mr = 408.46

  • Monoclinic, P 21 /c

  • a = 11.4868 (17) Å

  • b = 8.7275 (13) Å

  • c = 21.105 (3) Å

  • β = 99.857 (3)°

  • V = 2084.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.28 × 0.26 × 0.14 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.984, Tmax = 0.992

  • 17508 measured reflections

  • 3821 independent reflections

  • 2371 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.198

  • S = 1.02

  • 3821 reflections

  • 312 parameters

  • 48 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8⋯N25i 0.84 (3) 2.33 (3) 3.168 (4) 174 (3)
C28—H28⋯O1ii 0.93 2.25 3.163 (16) 169
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,2-Diaryl-1,2-diaminoethanes have long been used as complexation agents for transition metal ions (House & Sadler, 1973; Koçak, 2000; Nyburg & Wood, 1964). These compounds are also important building blocks in the design of enantioselective catalysts (Corey & Kühnle, 1997; Corey et al., 1989; Jacobsen et al., 1990). The synthesis of diamines involves the reaction of aromatic aldehydes with ammonia to produce hydrobenzamides and amarine (2,4,5-triphenyl-2,5-dihydro-1H-imidazole).

For some time we have been interested in the coordination chemistry of polypyridine ligands which may have fluorescent properties, could act as sensors for transition metal ions, or could be used as building blocks for the construction of different coordination polymers. Some of the compounds that have been studied for this purposes are: cis-(±)-2,4,5-tri(2-pyridyl)imidazoline (Parra-Hake et al., 2000), 2,4,6-tri(2-pyridyl)-1,3,5-triazinane, 2,4,5-tri(2-pyridyl)imidazole, trans-(±)-2,4,5-tri(4-pyridyl)imidazoline and 2,4,5-tri(4-pyridyl)imidazole (Cruz Enríquez et al., 2012, Koçak, 2000).

As a part of our ongoing research on the chemistry of polypyridine ligands, in our attempts to synthesize the ligand cis-(±)-3-(2,5-di(pyridin-3-yl)-4,5-dihydro-1H-imidazol-4-yl)pyridine, we have been able to isolate the title compound, (E)—N-(1,2-di(pyridin-3-yl)-2-(pyridin-3-ylmethyleneamino)ethyl)nicotinamide (I). 1,2-diaryl-1,2-diaminoethane analogues to the title compound are obtained from the reactions of aromatic benzaldehydes with ammonia (Irving & Parkins, 1965; Proskurnina et al., 2002; Tu et al., 2009). The structure of the title compound I with the atom numbering is shown in Figure 1.

In the title compound I, C24H20N6O, the ethylene fragment presents a trans conformation between the two pyridin-3-yl groups with a torsion angle of 179.2 (3)° [C27—C10—C9—C21], and the nicotinamide groups presents a torsion angle of 175.1 (3)° [N1—C10—C9—N8].

Compound I has an imine group with a C—N distance of 1.329 (4) Å and the crystal structure is stabilized by hydrogen bonds (N—H···N and C—H···O=C). The hydrogen bond between the carboxyl group and the C—H bond produces a centrosymmetric dimer with a H···O distance of 2.25 Å. The dimers are further connected by N—H···N interactions between the imine group and one pyridine N-atom, and these interactions give rise to a layer arrangement parallel to the bc plane. The ethylene group (C9—C10) and the oxygen (O1) atom exhibit a statistical orientational disorder, Figure 3. The statistical fractions of the major and minor disordered components refined to 0.676 (7) and 0.324 (7) for the ethylene group (C9—C10), and 0.61 (6) and 0.39 (6) for the oxygen atom (O1).

Related literature top

For supramolecular structures, see: Nyburg & Wood (1964); House & Sadler (1973); Koçak (2000). For a related enantioselective catalyst, see: Jacobsen et al. (1990); Corey & Kühnle (1997); Corey et al. (1989). For coordination compounds with polypyridine ligands related to the title compound, see: Parra-Hake et al. (2000); Cruz Enríquez et al. (2012). For the synthesis of analogous compounds, see: Proskurnina et al. (2002); Tu et al. (2009); Irving & Parkins (1965).

Experimental top

The synthesis of the title compound included reagent grade starting materials and solvents. A mixture of 2 ml of pyridine-3-carboxaldehyde and 8.17 g of ammonium acetate was heated to 120 °C under stirring for 3 h. The reaction mixture was cooled and diluted with dichloromethane (50 ml), washed with water (3 x 30 ml) dried over MgSO4 and rotary evaporated, and crystallized by gas phase diffusion of diethyl ether into dichloromethane, providing yellow crystals. IR (KBr pellet) 3240, 3038, 3853, 1651, 1630, 1584, 1530, 1421, 1322, 1024, 804, 710 cm-1. 1H NMR (CDCl3-d6, 200 MHz) δ 8.87 (d, J= 2.2 Hz, 1H), 8.86 (d, J= 2.6 Hz, 1H), 8.69 (dd, J= 2.0, 1.4 Hz, 1H), 8.67 (dd, J= 1.8, 1.2 Hz, 1H), 8.63 (d, J= 2.2 Hz, 1H), 8.52–8.45 (m, 3H), 8.35 (s, 1H), 8.12 (ddd, J= 8.0, 2.2, 1.8 Hz, 1H), 8.02 (ddd, J= 8.0, 2.2, 1.8 Hz, 1H), 7.62 (ddd, J= 8.0, 2.2, 1.8 Hz, 1H), 7.56 (ddd, J= 8.0, 2.2, 1.8 Hz, 1H), 7.41–7.16 (m, 5H), 5.68 (dd, J= 8.0, 5.6 Hz, 1H), 5.10 (d, J= 5.6 Hz, 1H). 13C NMR (CDCl3-d6, 200 MHz) δ 165.2, 161.6, 152.6, 152.5, 150.4, 149.8, 149.4, 148.9, 147.8, 136.4, 135.3, 135.2, 134.9, 133.2, 130.8, 129.7, 123.9, 123.6, 123.6, 123.3, 97.0, 74.5, 57.9.

Refinement top

H atoms were included in calculated positions (C—H = 0.93 Å for aromatic H, C—H = 0.97 Å for methyn H), and refined using a riding model, with Uiso(H) = 1.2 Ueq of the carrier atom. H atoms on N were located in a Fourier map and refined with Uiso(H) = 1.2 Ueq(N).

The disorder was modelled by splitting atoms with the highest prolate anisotropic displacement parameters (ADPs) into two components; the naming convention used involved appending a "B" suffix to the index number, such that O1, C9 and C10 became O1B, C9B and C10B. To ensure a sensible geometry for the disordered model, the bond distances and angles along the ethylene and carbonyl moieties were restrained to be similar (instructions SAME and SADI), and the ADPs of the disordered atoms were also restrained to be similar (instruction SIMU), with an s.u. value of 0.01 Å2. Subject to these conditions, the refined occupancies for the two major components were 0.676 (7) for the ethylene moiety and 0.61 (6) for the oxygen atom.

The positions and displacement parameters of the rest of the atoms are sufficiently well defined to allow for a refinement without any additional positional or similarity restraints.

Structure description top

1,2-Diaryl-1,2-diaminoethanes have long been used as complexation agents for transition metal ions (House & Sadler, 1973; Koçak, 2000; Nyburg & Wood, 1964). These compounds are also important building blocks in the design of enantioselective catalysts (Corey & Kühnle, 1997; Corey et al., 1989; Jacobsen et al., 1990). The synthesis of diamines involves the reaction of aromatic aldehydes with ammonia to produce hydrobenzamides and amarine (2,4,5-triphenyl-2,5-dihydro-1H-imidazole).

For some time we have been interested in the coordination chemistry of polypyridine ligands which may have fluorescent properties, could act as sensors for transition metal ions, or could be used as building blocks for the construction of different coordination polymers. Some of the compounds that have been studied for this purposes are: cis-(±)-2,4,5-tri(2-pyridyl)imidazoline (Parra-Hake et al., 2000), 2,4,6-tri(2-pyridyl)-1,3,5-triazinane, 2,4,5-tri(2-pyridyl)imidazole, trans-(±)-2,4,5-tri(4-pyridyl)imidazoline and 2,4,5-tri(4-pyridyl)imidazole (Cruz Enríquez et al., 2012, Koçak, 2000).

As a part of our ongoing research on the chemistry of polypyridine ligands, in our attempts to synthesize the ligand cis-(±)-3-(2,5-di(pyridin-3-yl)-4,5-dihydro-1H-imidazol-4-yl)pyridine, we have been able to isolate the title compound, (E)—N-(1,2-di(pyridin-3-yl)-2-(pyridin-3-ylmethyleneamino)ethyl)nicotinamide (I). 1,2-diaryl-1,2-diaminoethane analogues to the title compound are obtained from the reactions of aromatic benzaldehydes with ammonia (Irving & Parkins, 1965; Proskurnina et al., 2002; Tu et al., 2009). The structure of the title compound I with the atom numbering is shown in Figure 1.

In the title compound I, C24H20N6O, the ethylene fragment presents a trans conformation between the two pyridin-3-yl groups with a torsion angle of 179.2 (3)° [C27—C10—C9—C21], and the nicotinamide groups presents a torsion angle of 175.1 (3)° [N1—C10—C9—N8].

Compound I has an imine group with a C—N distance of 1.329 (4) Å and the crystal structure is stabilized by hydrogen bonds (N—H···N and C—H···O=C). The hydrogen bond between the carboxyl group and the C—H bond produces a centrosymmetric dimer with a H···O distance of 2.25 Å. The dimers are further connected by N—H···N interactions between the imine group and one pyridine N-atom, and these interactions give rise to a layer arrangement parallel to the bc plane. The ethylene group (C9—C10) and the oxygen (O1) atom exhibit a statistical orientational disorder, Figure 3. The statistical fractions of the major and minor disordered components refined to 0.676 (7) and 0.324 (7) for the ethylene group (C9—C10), and 0.61 (6) and 0.39 (6) for the oxygen atom (O1).

For supramolecular structures, see: Nyburg & Wood (1964); House & Sadler (1973); Koçak (2000). For a related enantioselective catalyst, see: Jacobsen et al. (1990); Corey & Kühnle (1997); Corey et al. (1989). For coordination compounds with polypyridine ligands related to the title compound, see: Parra-Hake et al. (2000); Cruz Enríquez et al. (2012). For the synthesis of analogous compounds, see: Proskurnina et al. (2002); Tu et al. (2009); Irving & Parkins (1965).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound I with displacement ellipsoids at the 50% probability. The minor fraction of the disorder was omitted.
[Figure 2] Fig. 2. Representation of hydrogen bonds (N—H···N and C—H···O=C) found in the structure of the title compound. The hydrogen atoms not involved in the hydrogen bond interactions were omitted.
[Figure 3] Fig. 3. The major and minor component of the disorder of compound I, dashed lines indicate the minor fraction. The displacement ellipsoids are at the 50% probability.
N-{1,2-Bis(pyridin-3-yl)-2-[(E)-(pyridin-3-yl)methylideneamino]ethyl}nicotinamide top
Crystal data top
C24H20N6OF(000) = 856
Mr = 408.46Dx = 1.301 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3500 reflections
a = 11.4868 (17) Åθ = 2.4–23.6°
b = 8.7275 (13) ŵ = 0.08 mm1
c = 21.105 (3) ÅT = 298 K
β = 99.857 (3)°Prism, colourless
V = 2084.6 (5) Å30.28 × 0.26 × 0.14 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
3821 independent reflections
Radiation source: fine-focus sealed tube2371 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 0.661 pixels mm-1θmax = 25.4°, θmin = 1.8°
ω–scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2007
k = 1010
Tmin = 0.984, Tmax = 0.992l = 2525
17508 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.198H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0806P)2 + 0.8743P]
where P = (Fo2 + 2Fc2)/3
3821 reflections(Δ/σ)max < 0.001
312 parametersΔρmax = 0.34 e Å3
48 restraintsΔρmin = 0.25 e Å3
Crystal data top
C24H20N6OV = 2084.6 (5) Å3
Mr = 408.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.4868 (17) ŵ = 0.08 mm1
b = 8.7275 (13) ÅT = 298 K
c = 21.105 (3) Å0.28 × 0.26 × 0.14 mm
β = 99.857 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3821 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007
2371 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.992Rint = 0.050
17508 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07148 restraints
wR(F2) = 0.198H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.34 e Å3
3821 reflectionsΔρmin = 0.25 e Å3
312 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.3921 (12)0.342 (4)0.0332 (5)0.109 (5)0.61 (6)
O1B0.388 (2)0.408 (5)0.0340 (9)0.121 (7)0.39 (6)
N10.1399 (3)0.3383 (5)0.18544 (14)0.1025 (11)
C20.2412 (3)0.3745 (4)0.16651 (14)0.0731 (9)
H20.29210.44130.19210.088*
C30.2751 (2)0.3191 (3)0.11162 (12)0.0571 (7)
C40.2000 (3)0.2207 (4)0.07388 (16)0.0878 (10)
H40.21950.18150.03610.105*
C50.0947 (3)0.1806 (5)0.0931 (2)0.1138 (14)
H50.04240.11270.06910.137*
C60.0703 (3)0.2443 (6)0.1484 (2)0.1124 (15)
H60.00120.21880.16070.135*
C70.3861 (3)0.3661 (4)0.08965 (13)0.0665 (8)
N80.4788 (2)0.4040 (3)0.13361 (11)0.0601 (6)
H80.479 (3)0.397 (3)0.1736 (15)0.072*
C90.5966 (4)0.4277 (5)0.1140 (2)0.0568 (12)0.676 (7)
H90.58240.46370.06940.068*0.676 (7)
C100.6602 (4)0.5549 (6)0.1553 (2)0.0574 (12)0.676 (7)
H100.67930.52190.20030.069*0.676 (7)
C9B0.5658 (7)0.5179 (11)0.1168 (4)0.057 (2)0.324 (7)
H9B0.56160.52350.07010.068*0.324 (7)
C10B0.6859 (6)0.4612 (10)0.1491 (4)0.059 (2)0.324 (7)
H10B0.69200.45780.19600.071*0.324 (7)
N110.7701 (2)0.5794 (3)0.12864 (11)0.0712 (7)
N121.1564 (3)0.7923 (6)0.1683 (2)0.1422 (16)
C131.0551 (4)0.7403 (5)0.18534 (19)0.1078 (13)
H131.04380.75620.22740.129*
C140.9677 (3)0.6652 (4)0.14390 (16)0.0712 (8)
C150.9841 (3)0.6467 (4)0.08213 (18)0.0862 (10)
H150.92620.59880.05250.103*
C161.0847 (4)0.6976 (6)0.0634 (2)0.1156 (15)
H161.09600.68500.02110.139*
C171.1665 (4)0.7655 (7)0.1062 (3)0.1348 (19)
H171.23560.79700.09260.162*
C180.8618 (3)0.6101 (4)0.16693 (14)0.0697 (8)
H180.86340.59790.21080.084*
N190.7524 (3)0.1072 (3)0.04909 (13)0.0848 (8)
C200.7026 (3)0.2381 (4)0.05998 (15)0.0755 (9)
H200.68100.30320.02510.091*
C210.6799 (3)0.2862 (3)0.11762 (17)0.0752 (9)
C220.7164 (3)0.1917 (4)0.16992 (16)0.0744 (9)
H220.70540.22080.21090.089*
C230.7687 (3)0.0550 (4)0.16045 (16)0.0746 (9)
H230.79320.01120.19470.090*
C240.7842 (3)0.0183 (4)0.10042 (18)0.0846 (10)
H240.81950.07540.09440.102*
N250.4976 (3)0.8743 (3)0.21511 (13)0.0795 (8)
C260.5503 (3)0.7463 (4)0.20567 (17)0.0863 (10)
H260.57460.68510.24160.104*
C270.5731 (3)0.6934 (4)0.14883 (18)0.0860 (11)
C280.5332 (3)0.7813 (4)0.09498 (16)0.0772 (9)
H280.54580.75020.05460.093*
C290.4749 (3)0.9150 (4)0.10240 (15)0.0778 (9)
H290.44670.97690.06730.093*
C300.4591 (3)0.9551 (4)0.16320 (17)0.0842 (10)
H300.41851.04540.16800.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.089 (4)0.189 (14)0.055 (3)0.054 (6)0.026 (3)0.040 (4)
O1B0.144 (10)0.172 (17)0.049 (6)0.066 (10)0.022 (5)0.009 (7)
N10.0616 (17)0.170 (3)0.0795 (19)0.006 (2)0.0214 (15)0.001 (2)
C20.0564 (17)0.103 (2)0.0609 (18)0.0009 (16)0.0132 (14)0.0014 (16)
C30.0552 (15)0.0628 (17)0.0527 (15)0.0015 (13)0.0074 (12)0.0027 (13)
C40.074 (2)0.111 (3)0.078 (2)0.016 (2)0.0106 (17)0.018 (2)
C50.076 (3)0.149 (4)0.113 (3)0.046 (3)0.004 (2)0.012 (3)
C60.062 (2)0.179 (4)0.097 (3)0.026 (3)0.017 (2)0.020 (3)
C70.0663 (18)0.090 (2)0.0447 (16)0.0137 (16)0.0145 (14)0.0084 (15)
N80.0593 (14)0.0737 (16)0.0497 (13)0.0127 (12)0.0164 (12)0.0006 (12)
C90.060 (3)0.061 (3)0.052 (2)0.004 (2)0.0180 (19)0.001 (2)
C100.062 (3)0.062 (3)0.050 (2)0.002 (2)0.0136 (18)0.001 (2)
C9B0.065 (4)0.056 (5)0.051 (4)0.003 (4)0.016 (3)0.001 (4)
C10B0.062 (4)0.063 (5)0.053 (4)0.007 (4)0.012 (3)0.004 (4)
N110.0568 (14)0.0999 (19)0.0586 (14)0.0186 (14)0.0144 (12)0.0066 (13)
N120.085 (2)0.204 (4)0.131 (3)0.063 (3)0.001 (2)0.024 (3)
C130.089 (3)0.149 (4)0.083 (2)0.028 (3)0.006 (2)0.015 (2)
C140.0514 (16)0.084 (2)0.078 (2)0.0023 (16)0.0122 (15)0.0171 (17)
C150.072 (2)0.100 (3)0.088 (2)0.0076 (19)0.0172 (18)0.002 (2)
C160.089 (3)0.166 (4)0.100 (3)0.010 (3)0.038 (3)0.018 (3)
C170.081 (3)0.187 (5)0.142 (4)0.027 (3)0.036 (3)0.050 (4)
C180.0616 (18)0.087 (2)0.0602 (18)0.0030 (16)0.0107 (15)0.0063 (16)
N190.108 (2)0.0748 (18)0.0763 (18)0.0132 (16)0.0290 (16)0.0048 (15)
C200.078 (2)0.076 (2)0.077 (2)0.0063 (18)0.0268 (17)0.0182 (17)
C210.092 (2)0.0555 (17)0.093 (2)0.0013 (16)0.0553 (19)0.0079 (17)
C220.082 (2)0.073 (2)0.075 (2)0.0111 (17)0.0341 (17)0.0086 (17)
C230.0673 (19)0.081 (2)0.076 (2)0.0040 (17)0.0114 (16)0.0153 (17)
C240.098 (3)0.069 (2)0.093 (3)0.0172 (19)0.033 (2)0.0021 (19)
N250.101 (2)0.0716 (18)0.0682 (17)0.0071 (16)0.0199 (15)0.0082 (14)
C260.109 (3)0.071 (2)0.090 (2)0.010 (2)0.046 (2)0.0196 (18)
C270.116 (3)0.0551 (18)0.107 (3)0.0028 (18)0.075 (2)0.0085 (18)
C280.094 (2)0.071 (2)0.075 (2)0.0136 (18)0.0402 (18)0.0158 (17)
C290.082 (2)0.082 (2)0.0651 (19)0.0154 (18)0.0010 (16)0.0035 (17)
C300.100 (3)0.076 (2)0.075 (2)0.0219 (19)0.0088 (19)0.0157 (18)
Geometric parameters (Å, º) top
O1—C71.223 (8)N12—C171.357 (6)
O1B—C71.234 (12)C13—C141.379 (5)
N1—C61.307 (5)C13—H130.9300
N1—C21.332 (4)C14—C151.359 (5)
C2—C31.371 (4)C14—C181.465 (4)
C2—H20.9300C15—C161.358 (5)
C3—C41.372 (4)C15—H150.9300
C3—C71.487 (4)C16—C171.326 (6)
C4—C51.385 (5)C16—H160.9300
C4—H40.9300C17—H170.9300
C5—C61.365 (6)C18—H180.9300
C5—H50.9300N19—C201.316 (4)
C6—H60.9300N19—C241.332 (4)
C7—N81.329 (4)C20—C211.353 (4)
N8—C9B1.495 (9)C20—H200.9300
N8—C91.495 (5)C21—C221.384 (5)
N8—H80.84 (3)C22—C231.366 (4)
C9—C101.520 (5)C22—H220.9300
C9—C211.556 (6)C23—C241.348 (4)
C9—H90.9800C23—H230.9300
C10—N111.483 (4)C24—H240.9300
C10—C271.561 (6)N25—C261.302 (4)
C10—H100.9800N25—C301.314 (4)
C9B—C10B1.514 (8)C26—C271.352 (4)
C9B—C271.671 (11)C26—H260.9300
C9B—H9B0.9800C27—C281.382 (5)
C10B—N111.526 (7)C28—C291.368 (4)
C10B—C211.662 (10)C28—H280.9300
C10B—H10B0.9800C29—C301.372 (4)
N11—C181.242 (3)C29—H290.9300
N12—C131.354 (5)C30—H300.9300
C6—N1—C2116.5 (3)N12—C13—H13118.1
N1—C2—C3124.0 (3)C14—C13—H13118.1
N1—C2—H2118.0C15—C14—C13117.3 (3)
C3—C2—H2118.0C15—C14—C18122.6 (3)
C2—C3—C4118.0 (3)C13—C14—C18120.1 (3)
C2—C3—C7123.3 (3)C16—C15—C14120.4 (4)
C4—C3—C7118.6 (3)C16—C15—H15119.8
C3—C4—C5118.8 (3)C14—C15—H15119.8
C3—C4—H4120.6C17—C16—C15119.2 (4)
C5—C4—H4120.6C17—C16—H16120.4
C6—C5—C4117.7 (4)C15—C16—H16120.4
C6—C5—H5121.1C16—C17—N12124.5 (4)
C4—C5—H5121.1C16—C17—H17117.7
N1—C6—C5125.0 (3)N12—C17—H17117.7
N1—C6—H6117.5N11—C18—C14121.0 (3)
C5—C6—H6117.5N11—C18—H18119.5
O1—C7—N8123.4 (7)C14—C18—H18119.5
O1B—C7—N8116.5 (13)C20—N19—C24115.5 (3)
O1—C7—C3116.8 (8)N19—C20—C21125.7 (3)
O1B—C7—C3122.5 (12)N19—C20—H20117.2
N8—C7—C3118.6 (2)C21—C20—H20117.2
C7—N8—C9B119.2 (4)C20—C21—C22117.0 (3)
C7—N8—C9119.7 (3)C20—C21—C9114.4 (3)
C7—N8—H8123 (2)C22—C21—C9127.7 (3)
C9B—N8—H8113 (2)C20—C21—C10B130.0 (4)
C9—N8—H8116 (2)C22—C21—C10B104.0 (4)
N8—C9—C10108.1 (3)C23—C22—C21119.0 (3)
N8—C9—C21117.0 (3)C23—C22—H22120.5
C10—C9—C21108.7 (4)C21—C22—H22120.5
N8—C9—H9107.6C24—C23—C22118.5 (3)
C10—C9—H9107.6C24—C23—H23120.7
C21—C9—H9107.6C22—C23—H23120.7
N11—C10—C9104.1 (3)N19—C24—C23124.3 (3)
N11—C10—C27115.5 (3)N19—C24—H24117.8
C9—C10—C27106.1 (4)C23—C24—H24117.8
N11—C10—H10110.3C26—N25—C30115.6 (3)
C9—C10—H10110.3N25—C26—C27126.5 (3)
C27—C10—H10110.3N25—C26—H26116.8
N8—C9B—C10B105.6 (6)C27—C26—H26116.8
N8—C9B—C27120.2 (6)C26—C27—C28117.0 (3)
C10B—C9B—C2798.0 (7)C26—C27—C10113.9 (3)
N8—C9B—H9B110.7C28—C27—C10128.2 (3)
C10B—C9B—H9B110.7C26—C27—C9B131.9 (4)
C27—C9B—H9B110.7C28—C27—C9B100.9 (4)
C9B—C10B—N11103.0 (6)C10—C27—C9B46.6 (3)
C9B—C10B—C2198.5 (7)C29—C28—C27118.6 (3)
N11—C10B—C21119.5 (6)C29—C28—H28120.7
C9B—C10B—H10B111.5C27—C28—H28120.7
N11—C10B—H10B111.5C28—C29—C30118.1 (3)
C21—C10B—H10B111.5C28—C29—H29121.0
C18—N11—C10117.8 (3)C30—C29—H29121.0
C18—N11—C10B118.0 (4)N25—C30—C29124.3 (3)
C13—N12—C17114.7 (4)N25—C30—H30117.9
N12—C13—C14123.8 (4)C29—C30—H30117.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···N25i0.84 (3)2.33 (3)3.168 (4)174 (3)
C28—H28···O1ii0.932.253.163 (16)169
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC24H20N6O
Mr408.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.4868 (17), 8.7275 (13), 21.105 (3)
β (°) 99.857 (3)
V3)2084.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.28 × 0.26 × 0.14
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007
Tmin, Tmax0.984, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
17508, 3821, 2371
Rint0.050
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.198, 1.02
No. of reflections3821
No. of parameters312
No. of restraints48
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.25

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···N25i0.84 (3)2.33 (3)3.168 (4)174 (3)
C28—H28···O1ii0.932.253.163 (16)169
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z.
 

Acknowledgements

This work was supported by the Dirección General de Educación Superior Tecnológica (DGEST) (grant No. 2785.09-P). Support from the Consejo Nacional de Ciencia y Tecnología (CONACyT) in the form of a graduate scholarship for CMQM is gratefully acknowledged. DMM would like to acknowledge Dr Alfredo Toscano for technical assistance.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorey, E. J., Imwinkelried, R., Pikul, S. & Xiang, Y. B. (1989). J. Am. Chem. Soc. 111, 5493–5495.  CrossRef CAS Web of Science Google Scholar
First citationCorey, E. J. & Kühnle, F. (1997). Tetrahedron Lett. 38, 8631–8634.  CSD CrossRef CAS Web of Science Google Scholar
First citationCruz Enríquez, A., Figueroa Pérez, M. G., Almaral Sánchez, J. L., Höpfl, H., Parra-Hake, M. & Campos-Gaxiola, J. J. (2012). CrystEngComm, 14, 6146–6151.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHouse, D. A. & Sadler, W. A. (1973). J. Chem. Soc. Dalton Trans. pp. 1937–1941.  Google Scholar
First citationIrving, M. N. H. & Parkins, R. M. (1965). J. Inorg. Nucl. Chem. 27, 270–271.  CrossRef CAS Web of Science Google Scholar
First citationJacobsen, E. N., Zhang, W., Loebach, J. L. & Wilson, S. R. (1990). J. Am. Chem. Soc. 112, 2801–2803.  Google Scholar
First citationKoçak, M. (2000). Transition Met. Chem. 25, 231–233.  Web of Science CrossRef CAS Google Scholar
First citationNyburg, S. C. & Wood, J. S. (1964). Inorg. Chem. 3, 468–476.  CrossRef CAS Web of Science Google Scholar
First citationParra-Hake, M., Larter, M. L., Gantzel, P., Aguirre, G., Ortega, F., Somanathan, R. & Walsh, P. J. (2000). Inorg. Chem. 39, 5400–5403.  Web of Science PubMed CAS Google Scholar
First citationProskurnina, M. V., Lozinskaya, N. A., Tkachenko, S. E. & Zefirov, N. S. (2002). Russ. J. Org. Chem. 38, 1149–1153.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTu, S.-J., Ai, T., Jiang, B., Wang, X., Shi, F., Ballew, A. & Li, G. (2009). J. Org. Chem. 74, 9486–9489.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds