metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4-chloro-2-(quinolin-8-yl­imino­meth­yl)phenolato-κ3N,N′,O]cobalt(III) tri­chlorido­methano­lcobaltate(II)

aCollege of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China, and bSchool of Chemistry & Chemical Engineering of Guangxi Normal University, Guilin 541004, People's Republic of China
*Correspondence e-mail: ycliugxnu@yahoo.cn

(Received 25 February 2013; accepted 13 April 2013; online 20 April 2013)

The reaction of 4-chloro-2-(quinolin-8-yl­imino­meth­yl)phenol (HClQP) with cobalt(II) dichloride hexa­hydrate in methanol/chloro­form under solvothermal conditions yielded the title compound, [Co(C16H10ClN2O)2][CoCl3(CH3OH)]. The CoIII atom is six-coordinated in a slightly distorted octa­hedral geometry by four N atoms and two O atoms of two tridentate HClQP ligands, which are nearly perpendicular to each other, making a dihedral angle of 86.95°. The CoII atom is four-coordinated by three Cl atoms and one O atom from a methanol ligand in a distorted tetra­hedral geometry. The crystal packing is consolidated by inter­molecular O—H⋯Cl, C—H⋯Cl and C—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular structure, in which [CoIICl3(CH3OH)] anions are connected via O—H⋯Cl and C—H⋯Cl hydrogen bonds into centrosymmetric dimers. Neighboring cobalt(III) complexes form dimers through C—H⋯O hydrogen bonds, as well as ππ stacking [centroid–centroid distances = 3.30 (2) Å] between the planar quinoline systems of one HClQP ligand and the phenolate ring of another.

Related literature

For the synthesis and analysis of the HClQP ligand, see: Donia & El-Boraey (1993[Donia, A. M. & El-Boraey, H. A. (1993). Transition Met. Chem. 18, 315-318.]), Sirirak et al. (2013[Sirirak, J., Phonsri, W., Harding, D. J., Harding, P., Phommon, P., Chaoprasa, W., Hendry, R. M., Roseveare, T. M. & Adams, H. (2013). J. Mol. Struct. 1036, 439-446.]). For related crystal structures of metal complexes of HClQP, see: Vasil'chenko et al. (1999[Vasil'chenko, I. S., Antsyshkina, A. S., Burlov, A. S., Sadikov, G. G., Uraev, A. I., Nivorozhkin, L. L., Garnovskii, D. A., Sergienko, V. S., Kurbatov, V. P., Korshunov, O. Yu. & Garnovskii, A. D. (1999). Russ. J. Inorg. Chem. 44, 1205-1213.]); Neves et al. (2009[Neves, A. I. S., Dias, J. C., Vieira, B. J. C., Santos, I. C., Castelo Branco, M. B., Pereira, L. C. J., Waerenborgh, J. C., Almeida, M., Belo, D. & da Gama, V. (2009). CrystEngComm, 11, 2160-2168.]). For applications of metal complexes of Schiff bases and their biological activity, catalytic reactions and photoelectric properties, see: Wu et al. (2009[Wu, P., Ma, D.-L., Leung, C.-H., Yan, S.-C., Zhu, N., Abagyan, R. & Che, C.-M. (2009). Chem. Eur. J. 15, 13008-13021.]); Zhuang et al. (2010[Zhuang, X., Oyaizu, K., Niu, Y., Koshika, K., Chen, X. & Nishide, H. (2010). Macromol. Chem. Phys. 211, 669-676.]); Leung et al. (2011[Leung, C.-F., Chen, Y.-Z., Yu, H.-Q., Yiu, S.-M., Ko, C.-C. & Lau, T.-C. (2011). Int. J. Hydrogen Energy, 36, 11640-11645.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C16H10ClN2O)2][CoCl3(CH4O)]

  • Mr = 819.67

  • Triclinic, [P \overline 1]

  • a = 12.0547 (6) Å

  • b = 12.1822 (4) Å

  • c = 13.2435 (7) Å

  • α = 65.156 (4)°

  • β = 83.108 (4)°

  • γ = 68.444 (4)°

  • V = 1640.06 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.46 mm−1

  • T = 293 K

  • 0.40 × 0.20 × 0.12 mm

Data collection
  • Agilent SuperNova diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.809, Tmax = 1.000

  • 14351 measured reflections

  • 6694 independent reflections

  • 5581 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.091

  • S = 1.05

  • 6694 reflections

  • 428 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯Cl4i 0.85 (2) 2.25 (2) 3.081 (3) 166 (2)
C1—H1⋯Cl3ii 0.93 2.72 3.532 (3) 146
C10—H10⋯O1iii 0.93 2.47 3.324 (3) 152
C33—H33A⋯Cl5i 0.96 2.82 3.745 (4) 161
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x+1, -y+1, -z+1; (iii) -x, -y, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Coordination chemistry research on metal complexes of Schiff bases has shown their potential for applications based on their biological activities, catalytic reactions and as photoelectric materials. 4-Chloro-2-(quinolin-8-yliminomethyl)-phenol (HClQP) is a Schiff base synthesized by condesation of 8-aminoquinoline and 5-chloro-2-hydroxybenzaldehyde. It can be used as an N,N,O–tridentate ligand for the synthesis of new metal complexes of Schiff bases. However, few crystal structural studies on the metal complexes of HClQP have so far been reported (Neves et al., 2009; Vasil'chenko et al., 1999). In the present work, we report the first cobalt(III) complex of HClQP in cationic form, with a simple cobalt(II) complex in anionic form as the counterion (Fig. 1).

Crystal structure refinement of the title complex revealed that half of the cobalt(II) of the starting material was oxidized to cobalt(III) under the solvothermal synthesis conditions. The cobalt(III) is six-coordinated by four N atoms and two O atoms of two HClQP ligands, both of which are in the same tridentate coordination mode via the deprotonated phenol O atoms, the quinoline N atoms and the N atoms from the Schiff base C=N, respectively, to form a slightly distorted octahedron. In each of the two coordinating ClQPs, two N atoms from the respective Schiff base C=N occupy the trans position of the octahedron (N2—Co1—N3 176.22 (8)°), while the two phenol O atoms and quinoline N atoms occupy the cis positions of the octahedron (O1—Co1—O2 90.31 (7)°, N1—Co1—N4 92.24 (8)°). As a result the two tridentate ClQPs are nearly perpendicular to each other, with a dihedral angle of 91.2°. The unoxidized cobalt(II) ion, on the other hand, is four-coordinated respectively by three Cl atoms and one O atom from a methanol solvate molecule, to form a distorted tetrahedron (Fig. 1).

The crystal packing is consolidated by intermolecular O–H···Cl, C–H···Cl and C–H···O hydrogen bonds to form a supramolecular structure, (Fig. 2). Each two [CoIICl3(CH3OH)] anions are connected via O–H···Cl and C–H···Cl hydrogen bonds into centrosymmetric dimers, in which the chlorides are all from [CoIICl3(CH3OH)]-, and the 4-Cl atom on the phenol group of HClQP ligand does not participate in the formation of the hydrogen bonding. Neighboring cobalt(III) complexes form dimers through C–H···O hydrogen bonds, as well as π-π stacking between the planar quinoline of one HClQP ligand and the phenol ring of another.

Related literature top

For the synthesis and analysis of the HClQP ligand, see: Donia & El-Boraey (1993), Sirirak et al. (2013). For related crystal structures of metal complexes of HClQP, see: Vasil'chenko et al. (1999); Neves et al. (2009). For applications of metal complexes of Schiff base and their biological activity, catalytic reactions and photoelectric properties, see: Wu et al. (2009); Zhuang et al. (2010); Leung et al. (2011).

Experimental top

Preparation of 4-Chloro-2-(quinolin-8-yliminomethyl)-phenol (HClQP):

A mixture of 5-chloro-2-hydroxybenzaldehyde (1 mmol, 0.156 g) and 8-aminoquinoline (1 mmol, 0.144 g) in anhydrous ethanol (30 ml) was stirred for 3 h at 323 K and then was concentrated to ca 10 ml. Hexane was then added to the solution and it was allowed to cool down to room temperature. The orange precipitate that formed was filtered off, washed with ethanol and then dried in vacuum at room temperature (yield: 0.216 g, 0.76 mmol, 76%). The analysis data (including IR, UV-vis) for HClQP are identical to those given in the original literature Donia et al. (1993), Sirirak et al. (2013).

Synthesis of the title complex:

CoCl2.6H2O (0.1 mmol, 0.023 g), HClQP (0.2 mmol, 0.056 g), 0.5 ml of ethanol and 0.3 ml of chloroform were placed in a thick Pyrex tube. The mixture was frozen by liquid N2, evacuated under vacuum and sealed. The mixture in the tube was then reacted at 363 K for 2 days. Dark green block crystals suitable for X-ray single-crystal diffraction analysis were harvested (yield: 0.060 g, 0.073 mmol, 73%). m.p. > 573 K (decomposed). IR (KBr, cm-1): 3434 (b), 2972 (w), 2906 (w), 1580 (m), 1563 (s), 1505 (s), 1487 (s), 1386 (s), 1274 (s), 1108 (s), 1090 (s), 1034 (s), 624 (s). UV-vis (tris buffer solution containing 1% of DMSO): ε227 nm = 6.76×104, ε264 nm = 4.12×104, ε227 nm = 1.40×104 (L×mol-1×cm-1).

Refinement top

C-bound H atoms were geometrically positioned (C—H 0.93 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C). N– and O– bound H atoms were located in a difference map and refined isotropically with restraints (O—H = 0.85 (2) Å; N—H = 0.90 (2) Å).

Structure description top

Coordination chemistry research on metal complexes of Schiff bases has shown their potential for applications based on their biological activities, catalytic reactions and as photoelectric materials. 4-Chloro-2-(quinolin-8-yliminomethyl)-phenol (HClQP) is a Schiff base synthesized by condesation of 8-aminoquinoline and 5-chloro-2-hydroxybenzaldehyde. It can be used as an N,N,O–tridentate ligand for the synthesis of new metal complexes of Schiff bases. However, few crystal structural studies on the metal complexes of HClQP have so far been reported (Neves et al., 2009; Vasil'chenko et al., 1999). In the present work, we report the first cobalt(III) complex of HClQP in cationic form, with a simple cobalt(II) complex in anionic form as the counterion (Fig. 1).

Crystal structure refinement of the title complex revealed that half of the cobalt(II) of the starting material was oxidized to cobalt(III) under the solvothermal synthesis conditions. The cobalt(III) is six-coordinated by four N atoms and two O atoms of two HClQP ligands, both of which are in the same tridentate coordination mode via the deprotonated phenol O atoms, the quinoline N atoms and the N atoms from the Schiff base C=N, respectively, to form a slightly distorted octahedron. In each of the two coordinating ClQPs, two N atoms from the respective Schiff base C=N occupy the trans position of the octahedron (N2—Co1—N3 176.22 (8)°), while the two phenol O atoms and quinoline N atoms occupy the cis positions of the octahedron (O1—Co1—O2 90.31 (7)°, N1—Co1—N4 92.24 (8)°). As a result the two tridentate ClQPs are nearly perpendicular to each other, with a dihedral angle of 91.2°. The unoxidized cobalt(II) ion, on the other hand, is four-coordinated respectively by three Cl atoms and one O atom from a methanol solvate molecule, to form a distorted tetrahedron (Fig. 1).

The crystal packing is consolidated by intermolecular O–H···Cl, C–H···Cl and C–H···O hydrogen bonds to form a supramolecular structure, (Fig. 2). Each two [CoIICl3(CH3OH)] anions are connected via O–H···Cl and C–H···Cl hydrogen bonds into centrosymmetric dimers, in which the chlorides are all from [CoIICl3(CH3OH)]-, and the 4-Cl atom on the phenol group of HClQP ligand does not participate in the formation of the hydrogen bonding. Neighboring cobalt(III) complexes form dimers through C–H···O hydrogen bonds, as well as π-π stacking between the planar quinoline of one HClQP ligand and the phenol ring of another.

For the synthesis and analysis of the HClQP ligand, see: Donia & El-Boraey (1993), Sirirak et al. (2013). For related crystal structures of metal complexes of HClQP, see: Vasil'chenko et al. (1999); Neves et al. (2009). For applications of metal complexes of Schiff base and their biological activity, catalytic reactions and photoelectric properties, see: Wu et al. (2009); Zhuang et al. (2010); Leung et al. (2011).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Dimeric presentations of the anionic complexes connected by C–H···Cl and O–H···Cl hydrogen bonding.
[Figure 3] Fig. 3. The neighboring two cationic complexes showing the π-π stacking interaction between the aromatic rings of the ClQP ligands.
[Figure 4] Fig. 4. Packing diagram viewed along the b-axis.
Bis[4-chloro-2-(quinolin-8-yliminomethyl)phenolato-κ3N,N',O]cobalt(III) trichloridomethanolcobaltate(II) top
Crystal data top
[Co(C16H10ClN2O)2][CoCl3(CH4O)]Z = 2
Mr = 819.67F(000) = 826
Triclinic, P1Dx = 1.660 Mg m3
a = 12.0547 (6) ÅMo Kα radiation, λ = 0.7107 Å
b = 12.1822 (4) ÅCell parameters from 6497 reflections
c = 13.2435 (7) Åθ = 3.1–28.7°
α = 65.156 (4)°µ = 1.46 mm1
β = 83.108 (4)°T = 293 K
γ = 68.444 (4)°Block, red
V = 1640.06 (13) Å30.40 × 0.20 × 0.12 mm
Data collection top
Agilent SuperNova
diffractometer
6694 independent reflections
Radiation source: SuperNova (Mo) X-ray Source5581 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 16.1623 pixels mm-1θmax = 26.4°, θmin = 3.1°
ω scansh = 1215
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1515
Tmin = 0.809, Tmax = 1.000l = 1616
14351 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.038P)2 + 0.697P]
where P = (Fo2 + 2Fc2)/3
6694 reflections(Δ/σ)max = 0.002
428 parametersΔρmax = 0.42 e Å3
2 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Co(C16H10ClN2O)2][CoCl3(CH4O)]γ = 68.444 (4)°
Mr = 819.67V = 1640.06 (13) Å3
Triclinic, P1Z = 2
a = 12.0547 (6) ÅMo Kα radiation
b = 12.1822 (4) ŵ = 1.46 mm1
c = 13.2435 (7) ÅT = 293 K
α = 65.156 (4)°0.40 × 0.20 × 0.12 mm
β = 83.108 (4)°
Data collection top
Agilent SuperNova
diffractometer
6694 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
5581 reflections with I > 2σ(I)
Tmin = 0.809, Tmax = 1.000Rint = 0.025
14351 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0352 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.42 e Å3
6694 reflectionsΔρmin = 0.38 e Å3
428 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.12319 (3)0.22080 (3)0.45839 (3)0.02213 (9)
Co20.48753 (3)0.83377 (4)0.18040 (3)0.04005 (11)
Cl10.04188 (9)0.30890 (10)0.96844 (7)0.0698 (3)
Cl20.34542 (7)0.29977 (8)0.11636 (6)0.0517 (2)
Cl30.58421 (7)0.67622 (7)0.33927 (6)0.0530 (2)
Cl40.50140 (7)0.75973 (7)0.04692 (6)0.04683 (18)
Cl50.30291 (7)0.96359 (8)0.19355 (7)0.0586 (2)
O10.04598 (15)0.15626 (15)0.59254 (14)0.0292 (4)
O20.02554 (14)0.34325 (15)0.38741 (14)0.0290 (4)
O30.57844 (19)0.9576 (2)0.12593 (19)0.0539 (5)
H3A0.5441 (19)1.0347 (16)0.079 (2)0.081*
N10.27402 (16)0.09373 (18)0.53280 (16)0.0249 (4)
N20.11356 (16)0.08503 (17)0.42660 (16)0.0243 (4)
N30.14397 (16)0.35254 (17)0.48906 (16)0.0246 (4)
N40.19894 (17)0.28896 (18)0.32078 (16)0.0253 (4)
C10.3534 (2)0.1060 (2)0.5853 (2)0.0313 (5)
H10.33990.18620.58520.038*
C20.4562 (2)0.0025 (3)0.6404 (2)0.0373 (6)
H20.51000.01440.67600.045*
C30.4772 (2)0.1157 (3)0.6418 (2)0.0380 (6)
H30.54430.18540.68020.046*
C40.3971 (2)0.1327 (2)0.5848 (2)0.0309 (5)
C50.2954 (2)0.0244 (2)0.53189 (19)0.0251 (5)
C60.4131 (2)0.2495 (2)0.5768 (2)0.0391 (6)
H60.47980.32240.61080.047*
C70.3306 (2)0.2552 (2)0.5191 (2)0.0388 (6)
H70.34260.33240.51370.047*
C80.2285 (2)0.1485 (2)0.4681 (2)0.0325 (6)
H80.17290.15550.43040.039*
C90.2103 (2)0.0326 (2)0.47373 (19)0.0246 (5)
C100.0272 (2)0.0961 (2)0.3685 (2)0.0272 (5)
H100.02910.02190.36280.033*
C110.0693 (2)0.2116 (2)0.3132 (2)0.0275 (5)
C120.1502 (2)0.2056 (2)0.2477 (2)0.0326 (6)
H120.13720.12850.24170.039*
C130.2457 (2)0.3108 (3)0.1938 (2)0.0348 (6)
C140.2673 (2)0.4280 (3)0.2014 (2)0.0394 (6)
H140.33290.50020.16340.047*
C150.1912 (2)0.4358 (2)0.2651 (2)0.0349 (6)
H150.20640.51410.26970.042*
C160.0908 (2)0.3290 (2)0.3237 (2)0.0266 (5)
C170.2202 (2)0.2537 (3)0.2361 (2)0.0340 (6)
H170.19740.18680.24040.041*
C180.2758 (3)0.3136 (3)0.1404 (2)0.0416 (6)
H180.28800.28710.08230.050*
C190.3119 (3)0.4100 (3)0.1323 (2)0.0428 (7)
H190.35030.44860.06950.051*
C200.2906 (2)0.4514 (2)0.2206 (2)0.0343 (6)
C210.2326 (2)0.3884 (2)0.3135 (2)0.0281 (5)
C220.2056 (2)0.4247 (2)0.4045 (2)0.0268 (5)
C230.2403 (2)0.5206 (2)0.4037 (2)0.0373 (6)
H230.22440.54470.46340.045*
C240.3000 (3)0.5822 (3)0.3119 (3)0.0474 (7)
H240.32350.64670.31220.057*
C250.3246 (3)0.5502 (3)0.2223 (3)0.0452 (7)
H250.36360.59320.16250.054*
C260.1089 (2)0.3756 (2)0.5764 (2)0.0286 (5)
H260.12020.44550.57970.034*
C270.0542 (2)0.3028 (2)0.6683 (2)0.0285 (5)
C280.0293 (2)0.3377 (3)0.7608 (2)0.0365 (6)
H280.04570.40780.75770.044*
C290.0180 (3)0.2699 (3)0.8533 (2)0.0430 (7)
C300.0474 (3)0.1671 (3)0.8581 (2)0.0465 (7)
H300.08150.12230.92120.056*
C310.0260 (2)0.1325 (3)0.7698 (2)0.0388 (6)
H310.04700.06450.77380.047*
C320.0270 (2)0.1967 (2)0.6726 (2)0.0273 (5)
C330.7040 (3)0.9195 (4)0.1170 (3)0.0818 (12)
H33A0.72330.94060.04020.123*
H33B0.73990.82790.15900.123*
H33C0.73410.96400.14570.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02356 (17)0.02188 (16)0.02563 (18)0.01028 (13)0.00196 (12)0.01228 (14)
Co20.0457 (2)0.0405 (2)0.0369 (2)0.01543 (18)0.00250 (17)0.01841 (18)
Cl10.0877 (7)0.0921 (7)0.0468 (5)0.0313 (5)0.0179 (4)0.0483 (5)
Cl20.0524 (5)0.0598 (5)0.0465 (4)0.0271 (4)0.0179 (3)0.0136 (4)
Cl30.0655 (5)0.0454 (4)0.0424 (4)0.0123 (4)0.0077 (4)0.0163 (4)
Cl40.0603 (5)0.0453 (4)0.0401 (4)0.0191 (3)0.0048 (3)0.0225 (3)
Cl50.0522 (5)0.0614 (5)0.0609 (5)0.0119 (4)0.0104 (4)0.0328 (4)
O10.0342 (9)0.0306 (9)0.0320 (10)0.0185 (7)0.0073 (7)0.0165 (8)
O20.0271 (9)0.0270 (8)0.0373 (10)0.0084 (7)0.0038 (7)0.0168 (8)
O30.0486 (13)0.0491 (12)0.0562 (15)0.0208 (10)0.0044 (10)0.0093 (11)
N10.0255 (10)0.0246 (10)0.0273 (11)0.0108 (8)0.0022 (8)0.0115 (9)
N20.0259 (10)0.0226 (9)0.0282 (11)0.0105 (8)0.0019 (8)0.0125 (9)
N30.0246 (10)0.0209 (9)0.0299 (11)0.0087 (8)0.0015 (8)0.0104 (9)
N40.0263 (10)0.0254 (10)0.0260 (11)0.0099 (8)0.0012 (8)0.0115 (9)
C10.0313 (13)0.0324 (13)0.0340 (14)0.0123 (11)0.0008 (10)0.0156 (11)
C20.0324 (14)0.0446 (15)0.0367 (15)0.0123 (12)0.0067 (11)0.0173 (13)
C30.0307 (14)0.0388 (15)0.0337 (15)0.0067 (11)0.0043 (11)0.0082 (12)
C40.0297 (13)0.0315 (13)0.0292 (14)0.0104 (10)0.0034 (10)0.0111 (11)
C50.0240 (12)0.0243 (11)0.0264 (12)0.0098 (9)0.0055 (9)0.0098 (10)
C60.0363 (15)0.0274 (13)0.0435 (17)0.0036 (11)0.0001 (12)0.0111 (12)
C70.0464 (16)0.0236 (12)0.0468 (17)0.0099 (11)0.0050 (13)0.0176 (12)
C80.0383 (14)0.0286 (13)0.0354 (15)0.0140 (11)0.0032 (11)0.0162 (11)
C90.0267 (12)0.0236 (11)0.0252 (12)0.0115 (10)0.0059 (9)0.0105 (10)
C100.0300 (13)0.0267 (12)0.0329 (14)0.0136 (10)0.0039 (10)0.0169 (11)
C110.0272 (12)0.0300 (12)0.0295 (13)0.0138 (10)0.0028 (10)0.0132 (11)
C120.0363 (14)0.0367 (14)0.0338 (14)0.0184 (12)0.0005 (11)0.0177 (12)
C130.0357 (14)0.0429 (15)0.0292 (14)0.0206 (12)0.0040 (11)0.0106 (12)
C140.0336 (14)0.0344 (14)0.0421 (16)0.0106 (11)0.0100 (12)0.0062 (12)
C150.0331 (14)0.0287 (13)0.0433 (16)0.0105 (11)0.0039 (11)0.0140 (12)
C160.0244 (12)0.0277 (12)0.0292 (13)0.0104 (10)0.0013 (9)0.0119 (11)
C170.0365 (14)0.0369 (14)0.0331 (14)0.0144 (11)0.0043 (11)0.0178 (12)
C180.0488 (17)0.0475 (16)0.0314 (15)0.0184 (14)0.0109 (12)0.0201 (13)
C190.0448 (16)0.0441 (16)0.0313 (15)0.0176 (13)0.0085 (12)0.0080 (13)
C200.0331 (14)0.0315 (13)0.0313 (14)0.0133 (11)0.0015 (11)0.0048 (11)
C210.0267 (12)0.0217 (11)0.0319 (14)0.0083 (10)0.0021 (10)0.0066 (10)
C220.0275 (12)0.0218 (11)0.0289 (13)0.0102 (10)0.0018 (10)0.0063 (10)
C230.0457 (16)0.0325 (14)0.0395 (16)0.0207 (12)0.0018 (12)0.0131 (12)
C240.0565 (19)0.0376 (15)0.055 (2)0.0319 (14)0.0009 (15)0.0108 (14)
C250.0471 (17)0.0406 (16)0.0431 (18)0.0264 (14)0.0040 (13)0.0039 (14)
C260.0293 (13)0.0244 (12)0.0354 (14)0.0091 (10)0.0021 (10)0.0147 (11)
C270.0287 (13)0.0279 (12)0.0312 (14)0.0078 (10)0.0004 (10)0.0159 (11)
C280.0367 (15)0.0400 (15)0.0407 (16)0.0132 (12)0.0038 (12)0.0246 (13)
C290.0444 (16)0.0550 (18)0.0351 (16)0.0136 (14)0.0075 (12)0.0283 (14)
C300.0534 (18)0.0498 (17)0.0339 (16)0.0197 (14)0.0142 (13)0.0166 (14)
C310.0435 (16)0.0394 (15)0.0397 (16)0.0214 (13)0.0137 (12)0.0190 (13)
C320.0265 (12)0.0276 (12)0.0293 (13)0.0082 (10)0.0029 (10)0.0146 (11)
C330.050 (2)0.106 (3)0.065 (3)0.028 (2)0.0050 (18)0.010 (2)
Geometric parameters (Å, º) top
Co1—O11.8995 (16)C10—C111.416 (3)
Co1—O21.8932 (16)C11—C121.421 (3)
Co1—N11.9374 (19)C11—C161.421 (3)
Co1—N21.9142 (17)C12—H120.9300
Co1—N31.9160 (17)C12—C131.349 (4)
Co1—N41.9315 (19)C13—C141.399 (4)
Co2—Cl32.2406 (9)C14—H140.9300
Co2—Cl42.2637 (8)C14—C151.370 (3)
Co2—Cl52.2443 (9)C15—H150.9300
Co2—O32.026 (2)C15—C161.407 (3)
Cl1—C291.743 (3)C17—H170.9300
Cl2—C131.746 (2)C17—C181.402 (4)
O1—C321.311 (3)C18—H180.9300
O2—C161.321 (3)C18—C191.356 (4)
O3—H3A0.852 (10)C19—H190.9300
O3—C331.417 (4)C19—C201.420 (4)
N1—C11.331 (3)C20—C211.410 (3)
N1—C51.371 (3)C20—C251.415 (4)
N2—C91.414 (3)C21—C221.415 (3)
N2—C101.302 (3)C22—C231.374 (3)
N3—C221.425 (3)C23—H230.9300
N3—C261.290 (3)C23—C241.407 (4)
N4—C171.328 (3)C24—H240.9300
N4—C211.376 (3)C24—C251.367 (4)
C1—H10.9300C25—H250.9300
C1—C21.398 (3)C26—H260.9300
C2—H20.9300C26—C271.425 (3)
C2—C31.360 (4)C27—C281.423 (3)
C3—H30.9300C27—C321.424 (3)
C3—C41.414 (4)C28—H280.9300
C4—C51.405 (3)C28—C291.355 (4)
C4—C61.411 (3)C29—C301.396 (4)
C5—C91.409 (3)C30—H300.9300
C6—H60.9300C30—C311.370 (4)
C6—C71.362 (4)C31—H310.9300
C7—H70.9300C31—C321.414 (3)
C7—C81.395 (4)C33—H33A0.9600
C8—H80.9300C33—H33B0.9600
C8—C91.380 (3)C33—H33C0.9600
C10—H100.9300
O1—Co1—N188.81 (8)C16—C11—C12119.4 (2)
O1—Co1—N287.06 (7)C11—C12—H12119.7
O1—Co1—N395.09 (7)C13—C12—C11120.7 (2)
O1—Co1—N4178.94 (8)C13—C12—H12119.7
O2—Co1—O190.31 (7)C12—C13—Cl2119.68 (19)
O2—Co1—N1179.05 (8)C12—C13—C14120.8 (2)
O2—Co1—N295.45 (7)C14—C13—Cl2119.5 (2)
O2—Co1—N387.66 (7)C13—C14—H14120.2
O2—Co1—N488.64 (8)C15—C14—C13119.6 (2)
N2—Co1—N184.13 (8)C15—C14—H14120.2
N2—Co1—N3176.22 (8)C14—C15—H15119.0
N2—Co1—N493.16 (8)C14—C15—C16122.0 (2)
N3—Co1—N192.78 (8)C16—C15—H15119.0
N3—Co1—N484.75 (8)O2—C16—C11124.5 (2)
N4—Co1—N192.24 (8)O2—C16—C15118.0 (2)
Cl3—Co2—Cl4111.68 (3)C15—C16—C11117.4 (2)
Cl3—Co2—Cl5117.17 (3)N4—C17—H17118.8
Cl5—Co2—Cl4113.63 (3)N4—C17—C18122.4 (2)
O3—Co2—Cl3104.95 (7)C18—C17—H17118.8
O3—Co2—Cl4106.02 (7)C17—C18—H18119.9
O3—Co2—Cl5101.79 (7)C19—C18—C17120.2 (2)
C32—O1—Co1125.83 (14)C19—C18—H18119.9
C16—O2—Co1125.11 (14)C18—C19—H19120.3
Co2—O3—H3A119.0 (19)C18—C19—C20119.3 (2)
C33—O3—Co2124.2 (2)C20—C19—H19120.3
C33—O3—H3A110.8 (17)C21—C20—C19117.4 (2)
C1—N1—Co1129.02 (16)C21—C20—C25117.9 (2)
C1—N1—C5118.4 (2)C25—C20—C19124.6 (2)
C5—N1—Co1112.51 (14)N4—C21—C20122.1 (2)
C9—N2—Co1113.45 (14)N4—C21—C22116.5 (2)
C10—N2—Co1124.82 (16)C20—C21—C22121.4 (2)
C10—N2—C9121.72 (18)C21—C22—N3113.31 (19)
C22—N3—Co1112.80 (15)C23—C22—N3127.5 (2)
C26—N3—Co1125.42 (16)C23—C22—C21119.2 (2)
C26—N3—C22121.77 (19)C22—C23—H23120.2
C17—N4—Co1129.00 (16)C22—C23—C24119.5 (3)
C17—N4—C21118.4 (2)C24—C23—H23120.2
C21—N4—Co1112.58 (15)C23—C24—H24118.9
N1—C1—H1118.8C25—C24—C23122.1 (2)
N1—C1—C2122.3 (2)C25—C24—H24118.9
C2—C1—H1118.8C20—C25—H25120.1
C1—C2—H2120.1C24—C25—C20119.8 (3)
C3—C2—C1119.7 (2)C24—C25—H25120.1
C3—C2—H2120.1N3—C26—H26117.2
C2—C3—H3120.0N3—C26—C27125.5 (2)
C2—C3—C4120.0 (2)C27—C26—H26117.2
C4—C3—H3120.0C28—C27—C26117.2 (2)
C5—C4—C3116.9 (2)C28—C27—C32119.4 (2)
C5—C4—C6118.5 (2)C32—C27—C26123.4 (2)
C6—C4—C3124.6 (2)C27—C28—H28119.6
N1—C5—C4122.6 (2)C29—C28—C27120.9 (2)
N1—C5—C9116.6 (2)C29—C28—H28119.6
C4—C5—C9120.8 (2)C28—C29—Cl1120.5 (2)
C4—C6—H6120.1C28—C29—C30120.5 (2)
C7—C6—C4119.9 (2)C30—C29—Cl1119.0 (2)
C7—C6—H6120.1C29—C30—H30120.0
C6—C7—H7119.1C31—C30—C29119.9 (3)
C6—C7—C8121.8 (2)C31—C30—H30120.0
C8—C7—H7119.1C30—C31—H31119.0
C7—C8—H8120.1C30—C31—C32122.1 (2)
C9—C8—C7119.9 (2)C32—C31—H31119.0
C9—C8—H8120.1O1—C32—C27124.6 (2)
C5—C9—N2113.18 (18)O1—C32—C31118.2 (2)
C8—C9—N2127.7 (2)C31—C32—C27117.2 (2)
C8—C9—C5119.1 (2)O3—C33—H33A109.5
N2—C10—H10117.3O3—C33—H33B109.5
N2—C10—C11125.5 (2)O3—C33—H33C109.5
C11—C10—H10117.3H33A—C33—H33B109.5
C10—C11—C12116.9 (2)H33A—C33—H33C109.5
C10—C11—C16123.6 (2)H33B—C33—H33C109.5
Co1—O1—C32—C274.7 (3)N4—C17—C18—C191.1 (4)
Co1—O1—C32—C31176.48 (18)N4—C21—C22—N31.5 (3)
Co1—O2—C16—C1110.9 (3)N4—C21—C22—C23178.0 (2)
Co1—O2—C16—C15171.66 (17)C1—N1—C5—C40.5 (3)
Co1—N1—C1—C2176.56 (18)C1—N1—C5—C9178.9 (2)
Co1—N1—C5—C4177.40 (18)C1—C2—C3—C41.9 (4)
Co1—N1—C5—C93.2 (2)C2—C3—C4—C52.2 (4)
Co1—N2—C9—C51.6 (2)C2—C3—C4—C6177.1 (3)
Co1—N2—C9—C8178.6 (2)C3—C4—C5—N11.1 (3)
Co1—N2—C10—C114.4 (3)C3—C4—C5—C9179.6 (2)
Co1—N3—C22—C213.2 (2)C3—C4—C6—C7179.6 (3)
Co1—N3—C22—C23176.3 (2)C4—C5—C9—N2179.5 (2)
Co1—N3—C26—C273.6 (3)C4—C5—C9—C80.7 (3)
Co1—N4—C17—C18179.5 (2)C4—C6—C7—C80.8 (4)
Co1—N4—C21—C20179.28 (19)C5—N1—C1—C20.9 (4)
Co1—N4—C21—C220.8 (3)C5—C4—C6—C70.3 (4)
Cl1—C29—C30—C31178.0 (2)C6—C4—C5—N1178.3 (2)
Cl2—C13—C14—C15177.9 (2)C6—C4—C5—C91.0 (3)
Cl3—Co2—O3—C3349.4 (3)C6—C7—C8—C91.2 (4)
Cl4—Co2—O3—C3368.9 (3)C7—C8—C9—N2179.4 (2)
Cl5—Co2—O3—C33172.0 (3)C7—C8—C9—C50.4 (3)
O1—Co1—O2—C1697.32 (18)C9—N2—C10—C11176.3 (2)
O1—Co1—N1—C193.7 (2)C10—N2—C9—C5179.0 (2)
O1—Co1—N1—C583.96 (15)C10—N2—C9—C80.8 (4)
O1—Co1—N2—C986.47 (15)C10—C11—C12—C13178.9 (2)
O1—Co1—N2—C1092.93 (19)C10—C11—C16—O21.6 (4)
O1—Co1—N3—C22178.17 (15)C10—C11—C16—C15179.1 (2)
O1—Co1—N3—C260.9 (2)C11—C12—C13—Cl2178.57 (19)
O2—Co1—O1—C3290.77 (19)C11—C12—C13—C140.0 (4)
O2—Co1—N2—C9176.51 (15)C12—C11—C16—O2175.9 (2)
O2—Co1—N2—C102.9 (2)C12—C11—C16—C151.6 (3)
O2—Co1—N3—C2291.72 (16)C12—C13—C14—C150.6 (4)
O2—Co1—N3—C2689.2 (2)C13—C14—C15—C160.1 (4)
O2—Co1—N4—C1789.4 (2)C14—C15—C16—O2176.7 (2)
O2—Co1—N4—C2189.83 (16)C14—C15—C16—C110.9 (4)
N1—Co1—O1—C3289.60 (19)C16—C11—C12—C131.1 (4)
N1—Co1—N2—C92.63 (15)C17—N4—C21—C201.4 (3)
N1—Co1—N2—C10178.0 (2)C17—N4—C21—C22178.6 (2)
N1—Co1—N3—C2289.12 (16)C17—C18—C19—C201.3 (4)
N1—Co1—N3—C2690.0 (2)C18—C19—C20—C210.3 (4)
N1—Co1—N4—C1790.2 (2)C18—C19—C20—C25179.6 (3)
N1—Co1—N4—C2190.54 (16)C19—C20—C21—N41.1 (4)
N1—C1—C2—C30.2 (4)C19—C20—C21—C22178.8 (2)
N1—C5—C9—N21.1 (3)C19—C20—C25—C24179.8 (3)
N1—C5—C9—C8178.7 (2)C20—C21—C22—N3178.4 (2)
N2—Co1—O1—C32173.79 (19)C20—C21—C22—C232.1 (4)
N2—Co1—O2—C1610.24 (19)C21—N4—C17—C180.3 (4)
N2—Co1—N1—C1179.2 (2)C21—C20—C25—C240.4 (4)
N2—Co1—N1—C53.20 (15)C21—C22—C23—C241.0 (4)
N2—Co1—N4—C175.9 (2)C22—N3—C26—C27175.4 (2)
N2—Co1—N4—C21174.79 (16)C22—C23—C24—C250.3 (4)
N2—C10—C11—C12175.8 (2)C23—C24—C25—C200.6 (5)
N2—C10—C11—C166.6 (4)C25—C20—C21—N4178.3 (2)
N3—Co1—O1—C323.09 (19)C25—C20—C21—C221.8 (4)
N3—Co1—O2—C16167.61 (18)C26—N3—C22—C21177.7 (2)
N3—Co1—N1—C11.4 (2)C26—N3—C22—C232.8 (4)
N3—Co1—N1—C5179.00 (16)C26—C27—C28—C29177.3 (2)
N3—Co1—N4—C17177.2 (2)C26—C27—C32—O11.9 (4)
N3—Co1—N4—C212.05 (16)C26—C27—C32—C31179.3 (2)
N3—C22—C23—C24179.5 (2)C27—C28—C29—Cl1177.1 (2)
N3—C26—C27—C28175.6 (2)C27—C28—C29—C302.3 (4)
N3—C26—C27—C322.6 (4)C28—C27—C32—O1179.9 (2)
N4—Co1—O2—C1682.80 (18)C28—C27—C32—C311.1 (3)
N4—Co1—N1—C186.2 (2)C28—C29—C30—C311.4 (5)
N4—Co1—N1—C596.15 (16)C29—C30—C31—C320.8 (5)
N4—Co1—N2—C994.56 (15)C30—C31—C32—O1179.1 (2)
N4—Co1—N2—C1086.04 (19)C30—C31—C32—C272.0 (4)
N4—Co1—N3—C222.88 (15)C32—C27—C28—C291.1 (4)
N4—Co1—N3—C26178.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···Cl4i0.85 (2)2.25 (2)3.081 (3)166 (2)
C1—H1···Cl3ii0.932.723.532 (3)146
C10—H10···O1iii0.932.473.324 (3)152
C33—H33A···Cl5i0.962.823.745 (4)161
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1, z+1; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Co(C16H10ClN2O)2][CoCl3(CH4O)]
Mr819.67
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)12.0547 (6), 12.1822 (4), 13.2435 (7)
α, β, γ (°)65.156 (4), 83.108 (4), 68.444 (4)
V3)1640.06 (13)
Z2
Radiation typeMo Kα
µ (mm1)1.46
Crystal size (mm)0.40 × 0.20 × 0.12
Data collection
DiffractometerAgilent SuperNova
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.809, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14351, 6694, 5581
Rint0.025
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.091, 1.05
No. of reflections6694
No. of parameters428
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.38

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···Cl4i0.85 (2)2.25 (2)3.081 (3)166 (2)
C1—H1···Cl3ii0.932.723.532 (3)146
C10—H10···O1iii0.932.473.324 (3)152
C33—H33A···Cl5i0.962.823.745 (4)161
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1, z+1; (iii) x, y, z+1.
 

Acknowledgements

The authors thank the Small Highland Project for the Talents of the Medicinal Industry of Guangxi Province (No. 1108) and the Foundation of the State Key Laboratory Cultivation Base for Chemistry and Mol­ecular Engineering of Medicinal Resources (CMEMR2012-A11). We also thank Dr Fu-Ping Huang for assistance with the crystallography.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDonia, A. M. & El-Boraey, H. A. (1993). Transition Met. Chem. 18, 315–318.  CrossRef CAS Google Scholar
First citationLeung, C.-F., Chen, Y.-Z., Yu, H.-Q., Yiu, S.-M., Ko, C.-C. & Lau, T.-C. (2011). Int. J. Hydrogen Energy, 36, 11640–11645.  Web of Science CrossRef CAS Google Scholar
First citationNeves, A. I. S., Dias, J. C., Vieira, B. J. C., Santos, I. C., Castelo Branco, M. B., Pereira, L. C. J., Waerenborgh, J. C., Almeida, M., Belo, D. & da Gama, V. (2009). CrystEngComm, 11, 2160–2168.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSirirak, J., Phonsri, W., Harding, D. J., Harding, P., Phommon, P., Chaoprasa, W., Hendry, R. M., Roseveare, T. M. & Adams, H. (2013). J. Mol. Struct. 1036, 439–446.  Web of Science CSD CrossRef CAS Google Scholar
First citationVasil'chenko, I. S., Antsyshkina, A. S., Burlov, A. S., Sadikov, G. G., Uraev, A. I., Nivorozhkin, L. L., Garnovskii, D. A., Sergienko, V. S., Kurbatov, V. P., Korshunov, O. Yu. & Garnovskii, A. D. (1999). Russ. J. Inorg. Chem. 44, 1205–1213.  Google Scholar
First citationWu, P., Ma, D.-L., Leung, C.-H., Yan, S.-C., Zhu, N., Abagyan, R. & Che, C.-M. (2009). Chem. Eur. J. 15, 13008–13021.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhuang, X., Oyaizu, K., Niu, Y., Koshika, K., Chen, X. & Nishide, H. (2010). Macromol. Chem. Phys. 211, 669–676.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds