metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(RC,SFe)-1-[3,5-Bis(tri­fluoro­meth­yl)phen­yl]-3-{1-[2-(di­phenyl­phosphan­yl)ferro­cen­yl]eth­yl}thio­urea (unknown solvate)

aDepartment of Medicinal Chemistry, School of Pharmacy, Fourth Military Medical University, Changle Xilu 169, 710032 Xi-An, People's Republic of China, and bPharmacy Department of 323 Military Hospital, Jianshe Xilu 6, 710054 Xi-An, People's Republic of China
*Correspondence e-mail: jiangru@fmmu.edu.cn

(Received 13 March 2013; accepted 27 March 2013; online 5 April 2013)

In the molecule of the the title compound, [Fe(C5H5)(C28H22F6N2PS)], the absolute configuration is RC,SFe. The dihedral angle between the trifluoro­methyl-substituted phenyl ring and the thio­urea plane is 41.8 (9)°. The iron atom is bound to the cyclo­penta­dienyl rings in the typical η5-manner in a close to eclipsed conformation. The crystal structure features N—H⋯S hydrogen bonds, with the S atom as an acceptor for both N—H groups, forming a layered arrangement parallel to (1-10). The two –CF3 groups are each disordered over two positions with refined occupancy rates for the major components of 0.66 (7) and 0.55 (5). The crystal was grown from mixed solvents (n-hexane and ethyl acetate). These solvents are disordered in the crystal and the resulting electron density was found to be uninterpretable. The solvent contribution to the structure factors was taken into account by back-Fourier transformation of all density found in the disordered solvent area using the SQUEEZE routine in PLATON [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155]. The formula mass and density do not take account of the solvent.

Related literature

For an introduction to the Morita–Baylis–Hillman reaction, see: Basavaiah et al. (2010[Basavaiah, D., Reddy, B. S. & Badsara, S. S. (2010). Chem. Rev. 110, 5447-5674.]). For the synthesis of (RC,SFe)-1-(2-(diphenyl­phosphan­yl)ferrocen­yl)ethanamine and structures related to the title compound, see: Chen et al. (2006[Chen, W. P., Mbafor, W., Roberts, S. M. & Whittall, J. (2006). Tetrahedron Asymmetry, 17, 1161-1164.]). For the synthesis of the title compound, see: Sohtome et al. (2004[Sohtome, Y., Tanatani, A., Hashimoto, Y. & Nagasawa, K. (2004). Tetrahedron Lett. 45, 5589-5592.]). For refinement details concerning the use of SQUEEZE, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C28H22F6N2PS)]

  • Mr = 684.45

  • Tetragonal, P 43 21 2

  • a = 20.0898 (16) Å

  • c = 18.012 (2) Å

  • V = 7269.6 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 296 K

  • 0.37 × 0.31 × 0.25 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.818, Tmax = 0.869

  • 36567 measured reflections

  • 6472 independent reflections

  • 3487 reflections with I > 2σ(I)

  • Rint = 0.116

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.119

  • S = 0.95

  • 6472 reflections

  • 455 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3680 Friedel pairs

  • Flack parameter: 0.01 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.86 2.46 3.302 (5) 168
N2—H2⋯S1i 0.86 2.64 3.445 (4) 157
Symmetry code: (i) [-y+{\script{3\over 2}}, x-{\script{1\over 2}}, z-{\script{1\over 4}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The compound, synthesized by reaction of 1-isothiocyanato-3,5-bis (trifluoromethyl)benzene with (RC,SFe)-1-(2-(diphenylphosphanyl)ferrocenyl)ethanamine (Chen et al., 2006), is part of our work towards the synthesis of new phosphanylthiourea ferrocenyl derivatives and their applications in the Morita–Baylis–Hillman (MBH) reaction. The MBH reaction is an atom-economic carbon-carbon bond-forming reaction between the α–position of activated alkenes (alkynes) with carbon electrophiles under the influence of tertiary amines or alkyl (aryl) phosphines (Basavaiah et al., 2010).

The absolute configuration of the title molecule is RC,SFe (Chen et al., 2006). The dihedral angle between the trifluoromethyl substituted phenyl ring C2 C7 and the plane (S1, C9, N2, N1, H2, H1) comprising the thiourea moiety is 41.8 (9) °. The structure is stabilized by intermolecular N—H···S hydrogen bonds (Fig. 2), with the S atom an acceptor for both N—H groups with an H1···S1 distance of 2.46 Å and an H2···S1 distance of 2.64 Å. The N—H···S angles are 168.4 ° and 165.5 ° (Table 1).

The iron center is bound to the cyclopentadienyl rings in the typical η5 manner. The ferrocene group deviates ca. 5 ° from an ideal eclipsed conformation. The angle between the planes of the two cyclopentadienyl rings is 2.8 (9) °.

There are solvent acessible voids in the crystal structure that accomodate solvent molecules in a very disordered way which were corrected for by back-Fourier transformation of all density found in the disordered solvent area using the Squeeze algorithm as implemented in Platon (Spek, 2009). These solvent molecules were not included in the calculation of the overall formula weight, density and absorption coefficient (see refinement section for details).

Related literature top

For an introduction to the Morita–Baylis–Hillman (MBH) reaction, see: Basavaiah et al. (2010). For the synthesis of (RC,SFe)-1-(2-(diphenylphosphanyl)ferrocenyl)ethanamine and structures related to the title compound, see: Chen et al. (2006). For the synthesis of the title compound, see: Sohtome et al. (2004). For refinement details concerning the use of SQUEEZE, see: Spek (2009).

Experimental top

The title compound was prepared as follows (Sohtome et al., 2004): To a solution of (RC,SFe)-1-(2-(diphenylphosphanyl)ferrocenyl) ethanamine (2.19 g, 5.30 mmol) in 20 ml THF was added 1-isothiocyanato-3,5-bis (trifluoromethyl)benzene (1.58 g, 5.8 mmol) at room temperature, and the reaction mixture was stirred for 4 h. The solvent was removed under reduced pressure. The residue was purified by column chromatography (silica gel 60–120 mesh, EtOAc/n-hexane 1/5) to provide the desired pure title product as a yellow solid (3.44 g, 95%). mp = 404 K; IR (KBr, cm-1): ν 3488, 3420, 3235, 2982, 2930, 2028, 1617, 1528, 1381, 1277, 1178, 1135, 886, 748, 698; 1H NMR (CDCl3, 500 MHz): δ 7.73 (s, 3H), 7.37–7.30 (m, 5H), 7.22 (s, 5H), 7.10 (s, 2H), 5.59–5.58 (m, 1H), 4.51 (s, 1H), 4.33 (s, 1H), 3.96 (s, 5H), 3.78 (s, 1H), 1.46 (s, 3H); 13C NMR (CDCl3, 126 MHz): δ 138.92, 135.82, 134.84, 134.67, 132.34, 129.53, 128.30, 128.21 (d, J = 7.5 Hz), 124.83, 124.01, 121.83, 119.45, 95.04 (d, J = 24.6 Hz), 73.21, 72.13, 71.27, 69.85, 69.70, 65.86, 22.26, 15.28; 31P NMR (CDCl3, 202 MHz): δ -24.79; HRMS calcd for C33H27FeN2PS([M+1]+): 684.0886, found: 685.0931.

Single crystals were obtained from a solution of the title compound in a mixture of n-hexane and EtOAc.

Refinement top

All H atoms were placed in idealized positions and allowed to ride on the respective parent atom with C—H distances of 0.98 Å (ferrocenyl), 0.93 Å (aromatic), 0.96 Å (CH3), or 0.98 Å (CH) and N—H distance of 0.86 Å, and with Uiso(H) = 1.5 Ueq(C) for methyl H atoms, with Uiso(H) = 1.2 Ueq(C) for aromatic and methylene H atoms.

In the crystal molecule, the two CF3 groups are both disordered over two orientations. The refined occupancy rate for the major moiety of group (F1, F2, F3) is 0.55 (5) [0.66 (7) for group (F4, F5, F6)].

Some residual electron densities were difficult to model, therefore the SQUEEZE function of PLATON (Spek, 2009) was used to eliminate the contribution of the electron density in the solvent region from the intensity data, and the solvent-free model was employed for the final refinement. There are two cavities of 652 Å3 per unit cell. PLATON estimated that each cavity contains 74 electrons. PLATON estimated that each single crystal molecular contains 20 residual electrons. Because single crystals were obtained from a solution of the title compound in a mixture of n-hexane and EtOAc, so we could not be sure which solvent it was. It may be n-hexane [CH3(CH2)3CH3], EtOAc (CH3COOCH2CH3) or water (H2O). The solvent is therefore not given in the formula, scheme, Mr etc. .

Structure description top

The compound, synthesized by reaction of 1-isothiocyanato-3,5-bis (trifluoromethyl)benzene with (RC,SFe)-1-(2-(diphenylphosphanyl)ferrocenyl)ethanamine (Chen et al., 2006), is part of our work towards the synthesis of new phosphanylthiourea ferrocenyl derivatives and their applications in the Morita–Baylis–Hillman (MBH) reaction. The MBH reaction is an atom-economic carbon-carbon bond-forming reaction between the α–position of activated alkenes (alkynes) with carbon electrophiles under the influence of tertiary amines or alkyl (aryl) phosphines (Basavaiah et al., 2010).

The absolute configuration of the title molecule is RC,SFe (Chen et al., 2006). The dihedral angle between the trifluoromethyl substituted phenyl ring C2 C7 and the plane (S1, C9, N2, N1, H2, H1) comprising the thiourea moiety is 41.8 (9) °. The structure is stabilized by intermolecular N—H···S hydrogen bonds (Fig. 2), with the S atom an acceptor for both N—H groups with an H1···S1 distance of 2.46 Å and an H2···S1 distance of 2.64 Å. The N—H···S angles are 168.4 ° and 165.5 ° (Table 1).

The iron center is bound to the cyclopentadienyl rings in the typical η5 manner. The ferrocene group deviates ca. 5 ° from an ideal eclipsed conformation. The angle between the planes of the two cyclopentadienyl rings is 2.8 (9) °.

There are solvent acessible voids in the crystal structure that accomodate solvent molecules in a very disordered way which were corrected for by back-Fourier transformation of all density found in the disordered solvent area using the Squeeze algorithm as implemented in Platon (Spek, 2009). These solvent molecules were not included in the calculation of the overall formula weight, density and absorption coefficient (see refinement section for details).

For an introduction to the Morita–Baylis–Hillman (MBH) reaction, see: Basavaiah et al. (2010). For the synthesis of (RC,SFe)-1-(2-(diphenylphosphanyl)ferrocenyl)ethanamine and structures related to the title compound, see: Chen et al. (2006). For the synthesis of the title compound, see: Sohtome et al. (2004). For refinement details concerning the use of SQUEEZE, see: Spek (2009).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids at the 30% probability level. All H atoms have been omitted for clarity. The disorder of the CF3 groups has been indicated.
[Figure 2] Fig. 2. Crystal packing in the title compound where molecules are linked via N–H···S hydrogen bonds (dashed lines). Except for those involved in hydrogen-bonding interactions, H atoms have been omitted for clarity.
(RC,SFe)-1-[3,5-Bis(trifluoromethyl)phenyl]-3-{1-[2-(diphenylphosphanyl)ferrocenyl]ethyl}thiourea (unknown solvate) top
Crystal data top
[Fe(C5H5)(C28H22F6N2PS)]Dx = 1.251 Mg m3
Mr = 684.45Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43212Cell parameters from 3087 reflections
Hall symbol: P 4nw 2abwθ = 2.5–15.4°
a = 20.0898 (16) ŵ = 0.57 mm1
c = 18.012 (2) ÅT = 296 K
V = 7269.6 (12) Å3Column, yellow
Z = 80.37 × 0.31 × 0.25 mm
F(000) = 2800
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6472 independent reflections
Radiation source: fine-focus sealed tube3487 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.116
phi and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2321
Tmin = 0.818, Tmax = 0.869k = 2322
36567 measured reflectionsl = 2121
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.054 w = 1/[σ2(Fo2) + (0.0469P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.119(Δ/σ)max = 0.001
S = 0.95Δρmax = 0.21 e Å3
6472 reflectionsΔρmin = 0.19 e Å3
455 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00072 (19)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 3680 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (2)
Crystal data top
[Fe(C5H5)(C28H22F6N2PS)]Z = 8
Mr = 684.45Mo Kα radiation
Tetragonal, P43212µ = 0.57 mm1
a = 20.0898 (16) ÅT = 296 K
c = 18.012 (2) Å0.37 × 0.31 × 0.25 mm
V = 7269.6 (12) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6472 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3487 reflections with I > 2σ(I)
Tmin = 0.818, Tmax = 0.869Rint = 0.116
36567 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.119Δρmax = 0.21 e Å3
S = 0.95Δρmin = 0.19 e Å3
6472 reflectionsAbsolute structure: Flack (1983), 3680 Friedel pairs
455 parametersAbsolute structure parameter: 0.01 (2)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe11.03592 (4)0.27046 (4)0.90856 (4)0.0791 (3)
P10.87204 (7)0.31616 (7)0.91033 (8)0.0779 (4)
S10.88996 (6)0.53723 (7)0.86099 (6)0.0725 (4)
N10.9005 (2)0.5092 (2)0.7164 (2)0.0824 (13)
H10.91290.48050.68380.099*
N20.9655 (2)0.44743 (19)0.7912 (2)0.0723 (11)
H20.97740.43040.74950.087*
F10.7195 (16)0.6313 (10)0.4957 (19)0.169 (12)0.55 (5)
F20.6984 (12)0.533 (2)0.5454 (8)0.165 (12)0.55 (5)
F30.7835 (11)0.5518 (18)0.4735 (9)0.141 (9)0.55 (5)
F40.7825 (10)0.7839 (8)0.683 (2)0.136 (5)0.66 (7)
F50.8914 (15)0.7744 (15)0.678 (2)0.129 (7)0.66 (7)
F60.835 (2)0.7507 (6)0.7759 (6)0.127 (9)0.66 (7)
F1'0.753 (2)0.5192 (16)0.500 (2)0.166 (16)0.45 (5)
F2'0.755 (2)0.6185 (17)0.4681 (12)0.154 (12)0.45 (5)
F3'0.6802 (10)0.586 (2)0.5446 (9)0.143 (11)0.45 (5)
F4'0.883 (4)0.7539 (10)0.770 (2)0.131 (12)0.34 (7)
F5'0.789 (2)0.774 (2)0.726 (4)0.134 (16)0.34 (7)
F6'0.864 (3)0.786 (2)0.659 (2)0.117 (12)0.34 (7)
C10.7441 (6)0.5779 (6)0.5286 (6)0.127 (3)
C20.7878 (3)0.5970 (4)0.5932 (3)0.0953 (17)
C30.8220 (3)0.5467 (3)0.6282 (3)0.0840 (16)
H30.81850.50300.61140.101*
C40.8613 (3)0.5617 (3)0.6880 (3)0.0769 (15)
C50.8671 (3)0.6269 (3)0.7140 (3)0.0844 (15)
H50.89470.63680.75390.101*
C60.8310 (3)0.6761 (3)0.6793 (3)0.0855 (17)
C70.7920 (3)0.6615 (4)0.6185 (4)0.0983 (19)
H70.76850.69520.59460.118*
C80.8385 (6)0.7456 (4)0.7049 (5)0.107 (2)
C90.9223 (3)0.4961 (3)0.7875 (3)0.0687 (13)
C101.0638 (3)0.4510 (3)0.8698 (4)0.114 (2)
H10A1.05770.49600.88620.171*
H10B1.08850.45080.82420.171*
H10C1.08780.42640.90680.171*
C110.9958 (2)0.4186 (2)0.8571 (3)0.0687 (13)
H110.96730.42750.90010.082*
C120.9997 (2)0.3449 (2)0.8450 (2)0.0636 (12)
C130.9480 (2)0.2979 (3)0.8596 (2)0.0663 (13)
C140.9697 (3)0.2346 (3)0.8330 (3)0.0825 (15)
H140.94510.19270.83670.099*
C151.0332 (3)0.2433 (3)0.7997 (3)0.0829 (16)
H151.06010.20830.77650.099*
C161.0515 (3)0.3111 (3)0.8070 (3)0.0776 (15)
H161.09320.33110.78960.093*
C171.0393 (4)0.2044 (4)0.9946 (4)0.115 (2)
H171.01160.16461.00010.138*
C181.1014 (4)0.2080 (5)0.9573 (4)0.121 (2)
H181.12460.17090.93320.146*
C191.1240 (4)0.2719 (5)0.9628 (4)0.118 (2)
H191.16610.28860.94250.141*
C201.0774 (4)0.3099 (4)1.0026 (4)0.106 (2)
H201.08110.35741.01460.127*
C211.0246 (4)0.2680 (5)1.0218 (3)0.108 (2)
H210.98460.28071.04950.130*
C220.8187 (3)0.3452 (3)0.8353 (3)0.0748 (14)
C230.8331 (3)0.3392 (3)0.7626 (4)0.0925 (18)
H230.87210.31770.74870.111*
C240.7910 (4)0.3642 (4)0.7074 (4)0.113 (2)
H240.80130.35960.65730.135*
C250.7343 (4)0.3957 (4)0.7299 (5)0.115 (2)
H250.70590.41330.69410.139*
C260.7185 (3)0.4020 (4)0.7996 (5)0.120 (2)
H260.67910.42310.81320.144*
C270.7606 (3)0.3772 (3)0.8526 (4)0.1024 (18)
H270.74920.38230.90230.123*
C280.8417 (3)0.2309 (3)0.9269 (4)0.0954 (19)
C290.8552 (3)0.2030 (4)0.9948 (4)0.124 (2)
H290.87620.22811.03130.149*
C300.8373 (4)0.1364 (5)1.0092 (6)0.144 (3)
H300.84750.11671.05460.173*
C310.8057 (5)0.1022 (5)0.9568 (7)0.148 (4)
H310.79490.05790.96600.178*
C320.7886 (4)0.1290 (5)0.8910 (6)0.147 (3)
H320.76410.10480.85650.177*
C330.8088 (3)0.1945 (4)0.8757 (4)0.112 (2)
H330.79930.21310.82960.134*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0709 (5)0.0911 (6)0.0755 (5)0.0309 (4)0.0026 (4)0.0142 (4)
P10.0686 (9)0.0906 (11)0.0745 (8)0.0174 (8)0.0099 (8)0.0051 (8)
S10.0756 (9)0.0757 (9)0.0663 (7)0.0083 (7)0.0027 (7)0.0090 (7)
N10.109 (3)0.067 (3)0.071 (3)0.025 (3)0.001 (3)0.000 (2)
N20.079 (3)0.071 (3)0.067 (3)0.017 (2)0.004 (2)0.003 (2)
F10.15 (2)0.190 (13)0.16 (2)0.070 (14)0.058 (17)0.021 (14)
F20.117 (12)0.20 (3)0.175 (10)0.037 (17)0.021 (9)0.004 (12)
F30.130 (11)0.18 (2)0.109 (8)0.002 (11)0.027 (7)0.005 (9)
F40.168 (10)0.092 (5)0.150 (14)0.053 (5)0.010 (10)0.022 (8)
F50.127 (12)0.101 (11)0.158 (19)0.013 (8)0.028 (10)0.013 (10)
F60.19 (3)0.090 (5)0.097 (6)0.021 (8)0.012 (9)0.006 (4)
F1'0.18 (3)0.165 (19)0.16 (2)0.008 (18)0.06 (2)0.016 (16)
F2'0.15 (2)0.18 (3)0.131 (12)0.003 (19)0.026 (12)0.004 (12)
F3'0.101 (11)0.16 (3)0.164 (11)0.012 (11)0.023 (8)0.024 (12)
F4'0.16 (4)0.083 (9)0.153 (18)0.006 (12)0.011 (17)0.001 (8)
F5'0.14 (2)0.107 (17)0.16 (3)0.021 (13)0.04 (2)0.01 (2)
F6'0.17 (4)0.082 (11)0.104 (13)0.005 (18)0.027 (19)0.025 (9)
C10.135 (10)0.114 (9)0.134 (9)0.025 (8)0.011 (8)0.013 (7)
C20.098 (5)0.100 (5)0.088 (4)0.022 (4)0.006 (4)0.006 (4)
C30.094 (4)0.079 (4)0.079 (4)0.018 (3)0.001 (3)0.018 (3)
C40.091 (4)0.070 (4)0.070 (3)0.019 (3)0.001 (3)0.012 (3)
C50.101 (4)0.074 (4)0.078 (4)0.022 (3)0.011 (3)0.008 (3)
C60.100 (5)0.071 (4)0.086 (4)0.017 (4)0.022 (3)0.009 (3)
C70.096 (5)0.097 (5)0.102 (5)0.031 (4)0.003 (4)0.033 (4)
C80.125 (8)0.088 (7)0.110 (7)0.023 (6)0.023 (6)0.014 (5)
C90.074 (4)0.063 (3)0.069 (3)0.003 (3)0.001 (3)0.002 (3)
C100.096 (5)0.092 (5)0.155 (6)0.001 (4)0.028 (4)0.011 (4)
C110.069 (3)0.073 (4)0.064 (3)0.002 (3)0.010 (3)0.003 (3)
C120.056 (3)0.071 (3)0.064 (3)0.013 (3)0.007 (3)0.005 (3)
C130.059 (3)0.077 (4)0.062 (3)0.015 (3)0.009 (2)0.011 (3)
C140.083 (4)0.082 (4)0.083 (4)0.009 (3)0.006 (3)0.006 (3)
C150.088 (4)0.085 (4)0.075 (3)0.023 (3)0.013 (3)0.000 (3)
C160.072 (4)0.079 (4)0.082 (4)0.006 (3)0.006 (3)0.010 (3)
C170.119 (7)0.125 (7)0.102 (5)0.031 (5)0.004 (5)0.037 (4)
C180.113 (6)0.129 (7)0.122 (6)0.055 (5)0.014 (5)0.028 (5)
C190.092 (5)0.155 (7)0.105 (5)0.023 (6)0.024 (4)0.009 (6)
C200.104 (5)0.126 (6)0.087 (4)0.025 (5)0.035 (4)0.009 (4)
C210.112 (6)0.131 (6)0.080 (4)0.034 (5)0.011 (4)0.019 (4)
C220.061 (3)0.071 (3)0.092 (4)0.002 (3)0.006 (3)0.007 (3)
C230.081 (4)0.095 (4)0.102 (5)0.013 (3)0.016 (4)0.017 (4)
C240.105 (6)0.119 (6)0.114 (5)0.014 (5)0.017 (5)0.020 (5)
C250.091 (5)0.116 (6)0.140 (7)0.008 (5)0.031 (5)0.023 (5)
C260.090 (5)0.114 (6)0.156 (7)0.021 (4)0.021 (6)0.009 (6)
C270.080 (4)0.105 (5)0.121 (5)0.023 (4)0.013 (4)0.006 (4)
C280.068 (4)0.105 (5)0.114 (5)0.012 (4)0.017 (4)0.032 (5)
C290.096 (5)0.135 (7)0.142 (7)0.018 (5)0.024 (5)0.043 (5)
C300.119 (7)0.145 (9)0.168 (9)0.018 (6)0.032 (6)0.063 (7)
C310.108 (7)0.136 (8)0.201 (11)0.005 (6)0.041 (7)0.047 (8)
C320.117 (6)0.135 (8)0.190 (9)0.002 (6)0.007 (6)0.041 (7)
C330.096 (5)0.099 (5)0.140 (6)0.017 (4)0.016 (5)0.023 (5)
Geometric parameters (Å, º) top
Fe1—C182.018 (6)C10—H10B0.9600
Fe1—C122.019 (4)C10—H10C0.9600
Fe1—C192.021 (6)C11—C121.497 (6)
Fe1—C162.028 (5)C11—H110.9800
Fe1—C142.034 (5)C12—C161.419 (6)
Fe1—C152.036 (5)C12—C131.428 (6)
Fe1—C172.040 (6)C13—C141.426 (6)
Fe1—C202.048 (6)C14—C151.420 (7)
Fe1—C132.049 (4)C14—H140.9800
Fe1—C212.053 (6)C15—C161.416 (7)
P1—C131.817 (5)C15—H150.9800
P1—C221.820 (5)C16—H160.9800
P1—C281.843 (7)C17—C211.399 (8)
S1—C91.690 (5)C17—C181.419 (9)
N1—C91.378 (6)C17—H170.9800
N1—C41.413 (6)C18—C191.366 (9)
N1—H10.8600C18—H180.9800
N2—C91.309 (5)C19—C201.405 (9)
N2—C111.455 (5)C19—H190.9800
N2—H20.8600C20—C211.398 (8)
F1—C11.32 (2)C20—H200.9800
F2—C11.32 (2)C21—H210.9800
F3—C11.37 (2)C22—C231.346 (7)
F4—C81.42 (2)C22—C271.370 (7)
F5—C81.30 (2)C23—C241.399 (7)
F6—C81.286 (13)C23—H230.9300
F1'—C11.30 (2)C24—C251.365 (9)
F2'—C11.38 (2)C24—H240.9300
F3'—C11.33 (3)C25—C261.302 (8)
F4'—C81.49 (3)C25—H250.9300
F5'—C81.22 (4)C26—C271.369 (8)
F6'—C81.27 (4)C26—H260.9300
C1—C21.508 (10)C27—H270.9300
C2—C31.375 (7)C28—C331.349 (8)
C2—C71.377 (8)C28—C291.373 (8)
C3—C41.369 (7)C29—C301.410 (10)
C3—H30.9300C29—H290.9300
C4—C51.396 (7)C30—C311.330 (10)
C5—C61.377 (7)C30—H300.9300
C5—H50.9300C31—C321.348 (10)
C6—C71.378 (7)C31—H310.9300
C6—C81.478 (9)C32—C331.403 (9)
C7—H70.9300C32—H320.9300
C10—C111.529 (7)C33—H330.9300
C10—H10A0.9600
C18—Fe1—C12160.3 (3)N2—C9—S1125.4 (4)
C18—Fe1—C1939.5 (3)N1—C9—S1120.8 (4)
C12—Fe1—C19125.3 (3)C11—C10—H10A109.5
C18—Fe1—C16122.8 (3)C11—C10—H10B109.5
C12—Fe1—C1641.04 (18)H10A—C10—H10B109.5
C19—Fe1—C16107.2 (3)C11—C10—H10C109.5
C18—Fe1—C14119.8 (3)H10A—C10—H10C109.5
C12—Fe1—C1469.4 (2)H10B—C10—H10C109.5
C19—Fe1—C14154.3 (3)N2—C11—C12107.3 (4)
C16—Fe1—C1468.9 (2)N2—C11—C10109.0 (4)
C18—Fe1—C15105.6 (3)C12—C11—C10113.3 (4)
C12—Fe1—C1569.09 (19)N2—C11—H11109.0
C19—Fe1—C15119.5 (3)C12—C11—H11109.0
C16—Fe1—C1540.79 (18)C10—C11—H11109.0
C14—Fe1—C1540.85 (19)C16—C12—C13107.7 (4)
C18—Fe1—C1740.9 (2)C16—C12—C11125.6 (5)
C12—Fe1—C17157.5 (3)C13—C12—C11126.1 (4)
C19—Fe1—C1767.3 (3)C16—C12—Fe169.8 (3)
C16—Fe1—C17160.3 (3)C13—C12—Fe170.6 (3)
C14—Fe1—C17107.4 (3)C11—C12—Fe1132.0 (3)
C15—Fe1—C17123.9 (3)C14—C13—C12107.8 (4)
C18—Fe1—C2067.4 (3)C14—C13—P1127.3 (4)
C12—Fe1—C20109.2 (3)C12—C13—P1124.7 (4)
C19—Fe1—C2040.4 (2)C14—C13—Fe169.0 (3)
C16—Fe1—C20121.9 (3)C12—C13—Fe168.3 (3)
C14—Fe1—C20163.0 (3)P1—C13—Fe1124.2 (2)
C15—Fe1—C20155.7 (3)C15—C14—C13107.9 (5)
C17—Fe1—C2067.1 (3)C15—C14—Fe169.7 (3)
C18—Fe1—C13156.3 (4)C13—C14—Fe170.1 (3)
C12—Fe1—C1341.10 (17)C15—C14—H14126.1
C19—Fe1—C13163.4 (3)C13—C14—H14126.1
C16—Fe1—C1368.64 (19)Fe1—C14—H14126.1
C14—Fe1—C1340.87 (18)C16—C15—C14108.1 (5)
C15—Fe1—C1368.5 (2)C16—C15—Fe169.3 (3)
C17—Fe1—C13122.0 (3)C14—C15—Fe169.5 (3)
C20—Fe1—C13127.1 (3)C16—C15—H15125.9
C18—Fe1—C2168.0 (3)C14—C15—H15125.9
C12—Fe1—C21122.8 (3)Fe1—C15—H15125.9
C19—Fe1—C2167.5 (3)C15—C16—C12108.4 (5)
C16—Fe1—C21157.4 (3)C15—C16—Fe169.9 (3)
C14—Fe1—C21125.7 (3)C12—C16—Fe169.2 (3)
C15—Fe1—C21161.3 (3)C15—C16—H16125.8
C17—Fe1—C2140.0 (2)C12—C16—H16125.8
C20—Fe1—C2139.9 (2)Fe1—C16—H16125.8
C13—Fe1—C21109.8 (2)C21—C17—C18107.8 (7)
C13—P1—C22100.7 (2)C21—C17—Fe170.5 (4)
C13—P1—C2899.9 (3)C18—C17—Fe168.7 (4)
C22—P1—C28102.9 (3)C21—C17—H17126.1
C9—N1—C4131.0 (4)C18—C17—H17126.1
C9—N1—H1114.5Fe1—C17—H17126.1
C4—N1—H1114.5C19—C18—C17107.8 (7)
C9—N2—C11128.1 (4)C19—C18—Fe170.3 (4)
C9—N2—H2116.0C17—C18—Fe170.4 (4)
C11—N2—H2116.0C19—C18—H18126.1
F1'—C1—F264.6 (18)C17—C18—H18126.1
F1'—C1—F1127.5 (14)Fe1—C18—H18126.1
F2—C1—F1113.3 (16)C18—C19—C20109.1 (7)
F1'—C1—F3'109.3 (19)C18—C19—Fe170.1 (4)
F2—C1—F3'50.1 (11)C20—C19—Fe170.8 (4)
F1—C1—F3'68.7 (11)C18—C19—H19125.4
F2—C1—F3107.8 (15)C20—C19—H19125.4
F1—C1—F3101.6 (16)Fe1—C19—H19125.4
F3'—C1—F3139.6 (12)C21—C20—C19107.6 (7)
F1'—C1—F2'101.4 (19)C21—C20—Fe170.2 (4)
F2—C1—F2'134.3 (13)C19—C20—Fe168.8 (4)
F3'—C1—F2'105.1 (15)C21—C20—H20126.2
F3—C1—F2'63.8 (14)C19—C20—H20126.2
F1'—C1—C2117.2 (11)Fe1—C20—H20126.2
F2—C1—C2113.7 (12)C20—C21—C17107.7 (7)
F1—C1—C2111.0 (12)C20—C21—Fe169.9 (4)
F3'—C1—C2111.5 (13)C17—C21—Fe169.5 (4)
F3—C1—C2108.6 (11)C20—C21—H21126.2
F2'—C1—C2111.3 (13)C17—C21—H21126.2
C3—C2—C7120.7 (6)Fe1—C21—H21126.2
C3—C2—C1117.2 (7)C23—C22—C27116.5 (5)
C7—C2—C1122.0 (7)C23—C22—P1124.6 (5)
C4—C3—C2119.1 (6)C27—C22—P1118.9 (5)
C4—C3—H3120.4C22—C23—C24122.0 (6)
C2—C3—H3120.4C22—C23—H23119.0
C3—C4—C5121.2 (5)C24—C23—H23119.0
C3—C4—N1116.2 (5)C25—C24—C23117.4 (7)
C5—C4—N1122.2 (5)C25—C24—H24121.3
C6—C5—C4118.6 (5)C23—C24—H24121.3
C6—C5—H5120.7C26—C25—C24122.4 (7)
C4—C5—H5120.7C26—C25—H25118.8
C5—C6—C7120.5 (6)C24—C25—H25118.8
C5—C6—C8118.9 (7)C25—C26—C27119.1 (7)
C7—C6—C8120.5 (7)C25—C26—H26120.5
C2—C7—C6119.8 (6)C27—C26—H26120.5
C2—C7—H7120.1C26—C27—C22122.7 (6)
C6—C7—H7120.1C26—C27—H27118.7
F5'—C8—F6'104 (2)C22—C27—H27118.7
F5'—C8—F667 (2)C33—C28—C29119.0 (7)
F6'—C8—F6128 (2)C33—C28—P1123.7 (6)
F5'—C8—F5125.2 (19)C29—C28—P1117.2 (7)
F6—C8—F5112.1 (16)C28—C29—C30120.1 (8)
F6'—C8—F478 (2)C28—C29—H29120.0
F6—C8—F4101.0 (12)C30—C29—H29120.0
F5—C8—F4107.7 (14)C31—C30—C29118.8 (10)
F5'—C8—C6117.4 (17)C31—C30—H30120.6
F6'—C8—C6116 (2)C29—C30—H30120.6
F6—C8—C6112.4 (9)C30—C31—C32122.7 (11)
F5—C8—C6112.7 (14)C30—C31—H31118.7
F4—C8—C6110.3 (11)C32—C31—H31118.7
F5'—C8—F4'101.5 (18)C31—C32—C33118.3 (9)
F6'—C8—F4'102 (2)C31—C32—H32120.9
F5—C8—F4'75.8 (18)C33—C32—H32120.9
F4—C8—F4'129.2 (14)C28—C33—C32121.1 (8)
C6—C8—F4'114.5 (11)C28—C33—H33119.5
N2—C9—N1113.6 (4)C32—C33—H33119.5
F1'—C1—C2—C315 (4)C16—Fe1—C15—C14119.8 (4)
F2—C1—C2—C357 (3)C17—Fe1—C15—C1476.9 (4)
F1—C1—C2—C3174 (2)C20—Fe1—C15—C14172.7 (6)
F3'—C1—C2—C3112 (2)C13—Fe1—C15—C1438.0 (3)
F3—C1—C2—C363 (2)C21—Fe1—C15—C1450.5 (9)
F2'—C1—C2—C3131 (2)C14—C15—C16—C120.2 (5)
F1'—C1—C2—C7167 (3)Fe1—C15—C16—C1258.6 (3)
F2—C1—C2—C7121 (2)C14—C15—C16—Fe158.8 (3)
F1—C1—C2—C79 (3)C13—C12—C16—C151.6 (5)
F3'—C1—C2—C766 (2)C11—C12—C16—C15173.1 (4)
F3—C1—C2—C7119.4 (19)Fe1—C12—C16—C1559.1 (3)
F2'—C1—C2—C751 (3)C13—C12—C16—Fe160.7 (3)
C7—C2—C3—C41.0 (9)C11—C12—C16—Fe1127.8 (5)
C1—C2—C3—C4178.7 (8)C18—Fe1—C16—C1575.1 (5)
C2—C3—C4—C50.1 (8)C12—Fe1—C16—C15119.9 (4)
C2—C3—C4—N1173.4 (5)C19—Fe1—C16—C15115.5 (4)
C9—N1—C4—C3149.3 (5)C14—Fe1—C16—C1537.5 (3)
C9—N1—C4—C537.2 (8)C17—Fe1—C16—C1545.2 (9)
C3—C4—C5—C61.6 (8)C20—Fe1—C16—C15157.3 (4)
N1—C4—C5—C6174.7 (5)C13—Fe1—C16—C1581.5 (3)
C4—C5—C6—C72.3 (8)C21—Fe1—C16—C15171.9 (6)
C4—C5—C6—C8178.0 (6)C18—Fe1—C16—C12164.9 (4)
C3—C2—C7—C60.3 (9)C19—Fe1—C16—C12124.5 (4)
C1—C2—C7—C6177.9 (8)C14—Fe1—C16—C1282.5 (3)
C5—C6—C7—C21.4 (9)C15—Fe1—C16—C12119.9 (4)
C8—C6—C7—C2177.0 (7)C17—Fe1—C16—C12165.2 (7)
C5—C6—C8—F5'122 (5)C20—Fe1—C16—C1282.8 (4)
C7—C6—C8—F5'62 (5)C13—Fe1—C16—C1238.5 (3)
C5—C6—C8—F6'115 (4)C21—Fe1—C16—C1252.0 (7)
C7—C6—C8—F6'61 (4)C18—Fe1—C17—C21119.1 (7)
C5—C6—C8—F647 (2)C12—Fe1—C17—C2147.2 (9)
C7—C6—C8—F6137 (2)C19—Fe1—C17—C2181.6 (5)
C5—C6—C8—F581 (2)C16—Fe1—C17—C21158.9 (7)
C7—C6—C8—F595 (2)C14—Fe1—C17—C21125.3 (5)
C5—C6—C8—F4158.7 (16)C15—Fe1—C17—C21167.2 (4)
C7—C6—C8—F425.6 (19)C20—Fe1—C17—C2137.6 (4)
C5—C6—C8—F4'3 (3)C13—Fe1—C17—C2182.9 (5)
C7—C6—C8—F4'179 (3)C12—Fe1—C17—C18166.3 (6)
C11—N2—C9—N1176.6 (4)C19—Fe1—C17—C1837.5 (5)
C11—N2—C9—S11.0 (7)C16—Fe1—C17—C1839.8 (10)
C4—N1—C9—N2171.2 (5)C14—Fe1—C17—C18115.7 (5)
C4—N1—C9—S113.0 (8)C15—Fe1—C17—C1873.8 (6)
C9—N2—C11—C12140.7 (5)C20—Fe1—C17—C1881.5 (5)
C9—N2—C11—C1096.2 (6)C13—Fe1—C17—C18158.1 (5)
N2—C11—C12—C1684.9 (5)C21—Fe1—C17—C18119.1 (7)
C10—C11—C12—C1635.5 (7)C21—C17—C18—C190.8 (7)
N2—C11—C12—C1385.0 (6)Fe1—C17—C18—C1960.7 (5)
C10—C11—C12—C13154.6 (5)C21—C17—C18—Fe159.9 (4)
N2—C11—C12—Fe1179.1 (4)C12—Fe1—C18—C1946.2 (11)
C10—C11—C12—Fe158.6 (6)C16—Fe1—C18—C1976.7 (6)
C18—Fe1—C12—C1640.5 (9)C14—Fe1—C18—C19159.6 (5)
C19—Fe1—C12—C1674.8 (4)C15—Fe1—C18—C19117.7 (5)
C14—Fe1—C12—C1681.1 (3)C17—Fe1—C18—C19118.1 (7)
C15—Fe1—C12—C1637.3 (3)C20—Fe1—C18—C1937.6 (5)
C17—Fe1—C12—C16167.0 (7)C13—Fe1—C18—C19170.2 (5)
C20—Fe1—C12—C16116.9 (4)C21—Fe1—C18—C1980.8 (5)
C13—Fe1—C12—C16118.2 (4)C12—Fe1—C18—C17164.4 (7)
C21—Fe1—C12—C16158.9 (4)C19—Fe1—C18—C17118.1 (7)
C18—Fe1—C12—C13158.7 (8)C16—Fe1—C18—C17165.2 (4)
C19—Fe1—C12—C13167.0 (4)C14—Fe1—C18—C1782.3 (5)
C16—Fe1—C12—C13118.2 (4)C15—Fe1—C18—C17124.2 (5)
C14—Fe1—C12—C1337.1 (3)C20—Fe1—C18—C1780.5 (5)
C15—Fe1—C12—C1380.9 (3)C13—Fe1—C18—C1752.1 (9)
C17—Fe1—C12—C1348.8 (8)C21—Fe1—C18—C1737.3 (4)
C20—Fe1—C12—C13124.9 (4)C17—C18—C19—C200.4 (8)
C21—Fe1—C12—C1382.8 (4)Fe1—C18—C19—C2060.4 (5)
C18—Fe1—C12—C1179.7 (10)C17—C18—C19—Fe160.7 (5)
C19—Fe1—C12—C1145.4 (6)C12—Fe1—C19—C18162.7 (4)
C16—Fe1—C12—C11120.2 (6)C16—Fe1—C19—C18121.1 (5)
C14—Fe1—C12—C11158.7 (5)C14—Fe1—C19—C1844.2 (9)
C15—Fe1—C12—C11157.5 (5)C15—Fe1—C19—C1878.5 (6)
C17—Fe1—C12—C1172.8 (9)C17—Fe1—C19—C1838.8 (5)
C20—Fe1—C12—C113.3 (6)C20—Fe1—C19—C18119.6 (7)
C13—Fe1—C12—C11121.6 (6)C13—Fe1—C19—C18166.1 (7)
C21—Fe1—C12—C1138.7 (6)C21—Fe1—C19—C1882.2 (5)
C16—C12—C13—C142.5 (5)C18—Fe1—C19—C20119.6 (7)
C11—C12—C13—C14173.9 (4)C12—Fe1—C19—C2077.7 (6)
Fe1—C12—C13—C1457.8 (3)C16—Fe1—C19—C20119.3 (5)
C16—C12—C13—P1177.6 (3)C14—Fe1—C19—C20163.8 (5)
C11—C12—C13—P111.0 (7)C15—Fe1—C19—C20161.9 (5)
Fe1—C12—C13—P1117.4 (3)C17—Fe1—C19—C2080.8 (5)
C16—C12—C13—Fe160.2 (3)C13—Fe1—C19—C2046.5 (11)
C11—C12—C13—Fe1128.4 (5)C21—Fe1—C19—C2037.4 (4)
C22—P1—C13—C1497.6 (4)C18—C19—C20—C210.2 (7)
C28—P1—C13—C147.6 (5)Fe1—C19—C20—C2159.7 (4)
C22—P1—C13—C1288.2 (4)C18—C19—C20—Fe159.9 (5)
C28—P1—C13—C12166.6 (4)C18—Fe1—C20—C2182.2 (5)
C22—P1—C13—Fe1174.0 (3)C12—Fe1—C20—C21118.5 (4)
C28—P1—C13—Fe180.8 (4)C19—Fe1—C20—C21119.0 (7)
C18—Fe1—C13—C1441.9 (7)C16—Fe1—C20—C21162.1 (4)
C12—Fe1—C13—C14120.4 (4)C14—Fe1—C20—C2136.5 (11)
C19—Fe1—C13—C14160.4 (8)C15—Fe1—C20—C21160.0 (6)
C16—Fe1—C13—C1482.0 (3)C17—Fe1—C20—C2137.7 (4)
C15—Fe1—C13—C1438.0 (3)C13—Fe1—C20—C2176.0 (5)
C17—Fe1—C13—C1479.5 (4)C18—Fe1—C20—C1936.8 (5)
C20—Fe1—C13—C14163.5 (4)C12—Fe1—C20—C19122.4 (5)
C21—Fe1—C13—C14122.1 (4)C16—Fe1—C20—C1978.8 (6)
C18—Fe1—C13—C12162.3 (6)C14—Fe1—C20—C19155.6 (8)
C19—Fe1—C13—C1240.0 (10)C15—Fe1—C20—C1941.0 (9)
C16—Fe1—C13—C1238.4 (3)C17—Fe1—C20—C1981.4 (5)
C14—Fe1—C13—C12120.4 (4)C13—Fe1—C20—C19164.9 (5)
C15—Fe1—C13—C1282.4 (3)C21—Fe1—C20—C19119.0 (7)
C17—Fe1—C13—C12160.2 (4)C19—C20—C21—C170.7 (7)
C20—Fe1—C13—C1276.1 (4)Fe1—C20—C21—C1759.5 (4)
C21—Fe1—C13—C12117.5 (4)C19—C20—C21—Fe158.8 (4)
C18—Fe1—C13—P179.6 (7)C18—C17—C21—C200.9 (7)
C12—Fe1—C13—P1118.1 (5)Fe1—C17—C21—C2059.7 (4)
C19—Fe1—C13—P178.1 (10)C18—C17—C21—Fe158.8 (4)
C16—Fe1—C13—P1156.5 (4)C18—Fe1—C21—C2080.7 (5)
C14—Fe1—C13—P1121.6 (5)C12—Fe1—C21—C2080.7 (5)
C15—Fe1—C13—P1159.6 (4)C19—Fe1—C21—C2037.8 (4)
C17—Fe1—C13—P142.1 (5)C16—Fe1—C21—C2042.8 (8)
C20—Fe1—C13—P141.9 (5)C14—Fe1—C21—C20167.6 (4)
C21—Fe1—C13—P10.5 (5)C15—Fe1—C21—C20153.9 (7)
C12—C13—C14—C152.3 (5)C17—Fe1—C21—C20118.8 (6)
P1—C13—C14—C15177.3 (3)C13—Fe1—C21—C20124.6 (4)
Fe1—C13—C14—C1559.7 (3)C18—Fe1—C21—C1738.1 (4)
C12—C13—C14—Fe157.4 (3)C12—Fe1—C21—C17160.5 (4)
P1—C13—C14—Fe1117.6 (4)C19—Fe1—C21—C1781.0 (5)
C18—Fe1—C14—C1579.2 (4)C16—Fe1—C21—C17161.6 (6)
C12—Fe1—C14—C1581.5 (3)C14—Fe1—C21—C1773.5 (5)
C19—Fe1—C14—C1548.4 (7)C15—Fe1—C21—C1735.1 (10)
C16—Fe1—C14—C1537.4 (3)C20—Fe1—C21—C17118.8 (6)
C17—Fe1—C14—C15122.1 (4)C13—Fe1—C21—C17116.6 (5)
C20—Fe1—C14—C15169.7 (8)C13—P1—C22—C2311.6 (5)
C13—Fe1—C14—C15118.8 (4)C28—P1—C22—C2391.3 (5)
C21—Fe1—C14—C15162.3 (4)C13—P1—C22—C27166.5 (4)
C18—Fe1—C14—C13162.0 (4)C28—P1—C22—C2790.7 (5)
C12—Fe1—C14—C1337.3 (3)C27—C22—C23—C240.0 (9)
C19—Fe1—C14—C13167.2 (6)P1—C22—C23—C24178.1 (4)
C16—Fe1—C14—C1381.4 (3)C22—C23—C24—C250.3 (9)
C15—Fe1—C14—C13118.8 (4)C23—C24—C25—C260.9 (11)
C17—Fe1—C14—C13119.1 (4)C24—C25—C26—C271.1 (12)
C20—Fe1—C14—C1350.9 (10)C25—C26—C27—C220.7 (11)
C21—Fe1—C14—C1378.9 (4)C23—C22—C27—C260.2 (9)
C13—C14—C15—C161.3 (5)P1—C22—C27—C26178.4 (5)
Fe1—C14—C15—C1658.7 (3)C13—P1—C28—C3380.4 (5)
C13—C14—C15—Fe160.0 (3)C22—P1—C28—C3323.1 (6)
C18—Fe1—C15—C16122.5 (4)C13—P1—C28—C2997.9 (5)
C12—Fe1—C15—C1637.5 (3)C22—P1—C28—C29158.6 (5)
C19—Fe1—C15—C1682.2 (4)C33—C28—C29—C302.6 (10)
C14—Fe1—C15—C16119.8 (4)P1—C28—C29—C30175.7 (5)
C17—Fe1—C15—C16163.3 (4)C28—C29—C30—C311.9 (11)
C20—Fe1—C15—C1652.9 (7)C29—C30—C31—C321.5 (14)
C13—Fe1—C15—C1681.7 (3)C30—C31—C32—C333.9 (13)
C21—Fe1—C15—C16170.3 (7)C29—C28—C33—C320.2 (10)
C18—Fe1—C15—C14117.7 (4)P1—C28—C33—C32178.1 (5)
C12—Fe1—C15—C1482.3 (3)C31—C32—C33—C283.1 (11)
C19—Fe1—C15—C14158.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.862.463.302 (5)168
N2—H2···S1i0.862.643.445 (4)157
Symmetry code: (i) y+3/2, x1/2, z1/4.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C28H22F6N2PS)]
Mr684.45
Crystal system, space groupTetragonal, P43212
Temperature (K)296
a, c (Å)20.0898 (16), 18.012 (2)
V3)7269.6 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.37 × 0.31 × 0.25
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.818, 0.869
No. of measured, independent and
observed [I > 2σ(I)] reflections
36567, 6472, 3487
Rint0.116
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.119, 0.95
No. of reflections6472
No. of parameters455
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.19
Absolute structureFlack (1983), 3680 Friedel pairs
Absolute structure parameter0.01 (2)

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.862.463.302 (5)168.4
N2—H2···S1i0.862.643.445 (4)156.5
Symmetry code: (i) y+3/2, x1/2, z1/4.
 

Acknowledgements

We thank the Natural Science Foundation of China (grant No. 20972189) for financial support.

References

First citationBasavaiah, D., Reddy, B. S. & Badsara, S. S. (2010). Chem. Rev. 110, 5447–5674.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2008). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, W. P., Mbafor, W., Roberts, S. M. & Whittall, J. (2006). Tetrahedron Asymmetry, 17, 1161–1164.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSohtome, Y., Tanatani, A., Hashimoto, Y. & Nagasawa, K. (2004). Tetrahedron Lett. 45, 5589–5592.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds