metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2,4-di­bromo-6-(N-{4-[(E)-1-(benzyl­­oxy­imino)­eth­yl]phen­yl}carboximido­yl)phenolato]copper(II)

aInformation Centre, Gansu Institute of Forestry Survey and Planning, Lanzhou 730020, People's Republic of China, bCollege of Earth and Environmental Scieces, Lanzhou University, Lanzhou 730000, People's Republic of China, cZhaosheng Office of Gansu Province, Lanzhou 730030, People's Republic of China, and dSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: li_gang78@126.com

(Received 7 April 2013; accepted 10 April 2013; online 13 April 2013)

In the title complex, [Cu(C22H17Br2N2O2)2], the CuII ion is four-coordinated in a trans-CuN2O2 square-planar geometry by two phenolate O and two imino N atoms from two deprotonated N,O-bidentate ligands. In the crystal, the packing of the mol­ecules is controlled by C—H⋯π and ππ inter­actions [centroid–centroid distances = 3.568 (3), 3.678 (2), 3.717 (3) and 3.799 (2) Å] and weak Br⋯Br halogen bonds [3.508 (4) Å], linking the mol­ecules into an infinite three-dimensional supra­molecular network.

Related literature

For background to oxime-based salen-type tetra­dentate ligands, see: Akine et al. (2001[Akine, S., Taniguchi, T. & Nabeshima, T. (2001). Chem. Lett. 30, 682-683.]); Dong & Ding (2007[Dong, W.-K. & Ding, Y.-J. (2007). Cryst. Res. Technol. 43, 321-326.]); Dong et al. (2012[Dong, W.-K., Wang, G., Gong, S.-S., Tong, J.-F., Sun, J.-F. & Gao, X.-H. (2012). Transition Met. Chem. 37, 271-277.]); Bertolasi et al. (1982[Bertolasi, V., Gilli, G. & Veronese, A. C. (1982). Acta Cryst. B38, 502-511.]); Tarafder et al. (2002[Tarafder, M. T. H., Jin, K. T. & Crouse, K. A. (2002). Polyhedron, 21, 2547-2554.]). For the synthesis and related crystal structures, see: Zhao & Ng (2010[Zhao, L. & Ng, S. W. (2010). Acta Cryst. E66, o2473.]); Zhao et al. (2012[Zhao, L., Dong, X.-T., Sun, Y.-X., Cheng, Q., Dong, X.-Y. & Wang, L. (2012). Chin. J. Inorg. Chem. 28, 2413-2418.]); Dong et al. (2010[Dong, W.-K., Sun, Y.-X., Zhao, C.-Y., Dong, X.-Y. & Xu, L. (2010). Polyhedron, 29, 2087-2097.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C22H17Br2N2O2)2]

  • Mr = 1065.93

  • Monoclinic, C 2/c

  • a = 27.4484 (7) Å

  • b = 13.3116 (3) Å

  • c = 22.3609 (5) Å

  • β = 91.165 (2)°

  • V = 8168.6 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.50 mm−1

  • T = 293 K

  • 0.30 × 0.21 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.346, Tmax = 0.662

  • 27775 measured reflections

  • 7199 independent reflections

  • 4682 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.078

  • S = 1.01

  • 7199 reflections

  • 514 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the Cu/O4/C33–C31/N4 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯Cg1i 0.93 2.82 3.575 (5) 118
C16—H16BCg2i 0.97 2.96 3.511 (5) 117
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{3\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

CuII complexes with Schiff base ligands have been widely investigated in coordination chemistry and biological chemistry (Akine et al., 2001; Dong et al., 2012). In the last few years there has been a burgeoning effort to identify the biological activities of CuII ions, primarily through techniques associated with the interface of biology/biochemistry/coordination chemistry (Dong et al., 2007; Tarafder et al., 2002). The oxime moiety can both donate and accept hydrogen bonds, which makes it a very interesting building block in supramolecular chemistry (Bertolasi et al., 1982). Herein a new double functional group ligand bearing both a Schiff base and an oxime group, 2,4-dibromo-6-(N-{4-[(E)-1-(phenoxyimino)ethyl]phenyl}carboximidoyl)phenol and its CuII complex, [Cu(C22H17Br2N2O2)2], are reported.

The structure of the title complex is shown in Fig. 1. In the title complex, all bond lengths and angles are in normal ranges. The molecule has approximate chemical inversion symmetry, but no crystallographic inversion symmetry. The CuII ion is four-coordinated in a trans-CuN2O2 square-planar geometry, with two phenolate O and two imino N atoms from two deprotonated N,O-bidentate ligands (Dong et al., 2010). The copper atom of [Cu(C22H17Br2N2O2)2] has a square planar geometry distorted tetrahedrally by 13.91 (5)° (defined by the angle between two sets of N—Cu—O planes). A similar distortion has also been observed for the ethoxyl analogue of the title complex (23.33 (3)°) (Zhao et al., 2012).

In the crystal structure, the molecules are linked into an infinite supramolecular network by two C—H···π interactions, C19—H19···Cg1 (N4/Cu1/O4/C31—C33) and C16—H16B···Cg2 (C10—C15), and four intermolecular π···π stacking interactions, Cg2i···Cg3 (Cu1/O2/N2/C9—C11) [3.799 (2) Å], Cg3···Cg4ii (C17—C22) [3.568 (3)Å], Cg2···Cg2i [3.678 (2) Å] and Cg5 (C32—C37)···Cg5iii [3.717 (3) Å] [symmetry codes: (i) 1/2 - x,3/2 - y,1 - z, (ii) x, 1-y, -1/2+z, (iii) 1-x, y, 3/2-z] (Fig. 2). In addition, the crystal packing is further stabilized by weak intermolecular Br···Br halogen bonds with a distance of 3.508 (4) Å.

Related literature top

For background to oxime-based salen-type tetradentate ligands, see: Akine et al. (2001); Dong & Ding (2007); Dong et al. (2012); Bertolasi et al. (1982); Tarafder et al. (2002). For the synthesis and related crystal structures, see: Zhao & Ng (2010); Zhao et al. (2012); Dong et al. (2010).

Experimental top

1-(4-{[(E)-3,5-dibromo-2-hydroxybenzylidene]amino}phenyl)ethanone O-benzyloxime was synthesized by reaction of O-benzylhydroxylamine, 4-aminoacetophenone and 3,5-dibromosalicylaldehyde (Zhao et al., 2010).

To an ethanol solution (6 ml) of O-benzylhydroxylamine (340.9 mg, 3 mmol) was added an ethanol solution (12 ml) of 4-aminoacetophenone (349.5 mg, 3 mmol) and 3 drops of acetic acid. The reaction solution was stirred at 338 K for 24 h. The solvent was evaporated under vacuo. After cooling to room temperature, the formed precipitate was filtered off and washed successively with ethanol and ethanol/water (1:4), respectively, resulting in 640.6 mg of ({4-amino}phenyl)ethanone O-benzyloxime as a crystalline solid. Yield, 92.8%, m.p. 348–350 K. Anal. Calcd. for C15H16N2O (%): C, 74.97; H, 6.71; N, 11.66. Found: C, 74.68; H, 6.80; N, 11.52.

To an ethanol solution (4 ml) of ({4-amino}phenyl)ethanone O-benzyloxime (213.2 mg, 0.89 mmol) was added an ethanol solution (2 ml) of 3,5-dibromosalicylaldehyde (2 49.3 mg, 0.89 mmol). The reaction solution was stirred at 333 K for 18 h. After cooling to room temperature, the formed precipitate was filtered off and washed successively with ethanol and ethanol/n-hexane (1:4), respectively. The product was dried in vacuo and purified by recrystallization from ethanol to yield 273.3 mg of 1-(4-{[(E)-3,5-dibromo-2-hydroxybenzylidene]amino}phenyl)ethanone O-benzyloxime. Yield, 59.1%. m.p. 441–442 K. IR: ν C=N, 1608 cm-1 and ν Ar—O, 1198 cm-1. Anal. Calcd. for C22H18Br2N2O2 (%): C, 52.62; H, 3.61; N, 5.58. Found: C, 52.49; H, 3.57, N, 5.53.

A pale-blue methanol solution (3 ml) of CuII acetate monohydrate (0.5 mg, 0.001 mmol) was added dropwise to a red ethyl acetate solution (3 ml) of 1-(4-{[(E)-3,5-dibromo-2-hydroxybenzylidene]amino}phenyl)ethanone O-benzyloxime (2.6 mg, 0.002 mmol) at room temperature. Upon mixing, the color of the solution turned slowly to brown and the solution was allowed to stand at room temperature for about one week. The solvent was partially evaporated and brown block-like single crystals suitable for X-ray crystallographic analysis were obtained. IR: ν C=N, 1605 cm-1 and ν Ar—O, 1186 cm-1. Anal. Calcd. for [Cu(C22H17Br2N2O2)2] (C44H34Br4CuN4O4) (%): C, 49.58; H, 3.22; N, 5.26; Cu, 5.96. Found: C, 49.75; H, 3.13; N, 5.06; Cu, 5.72.

Refinement top

H atoms were placed in calculated positions and non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.96 Å (CH3) and 0.93 Å (CH). The isotropic displacement parameters for all H atoms were set equal to 1.2 or 1.5 Ueq of the carrier atom.

Structure description top

CuII complexes with Schiff base ligands have been widely investigated in coordination chemistry and biological chemistry (Akine et al., 2001; Dong et al., 2012). In the last few years there has been a burgeoning effort to identify the biological activities of CuII ions, primarily through techniques associated with the interface of biology/biochemistry/coordination chemistry (Dong et al., 2007; Tarafder et al., 2002). The oxime moiety can both donate and accept hydrogen bonds, which makes it a very interesting building block in supramolecular chemistry (Bertolasi et al., 1982). Herein a new double functional group ligand bearing both a Schiff base and an oxime group, 2,4-dibromo-6-(N-{4-[(E)-1-(phenoxyimino)ethyl]phenyl}carboximidoyl)phenol and its CuII complex, [Cu(C22H17Br2N2O2)2], are reported.

The structure of the title complex is shown in Fig. 1. In the title complex, all bond lengths and angles are in normal ranges. The molecule has approximate chemical inversion symmetry, but no crystallographic inversion symmetry. The CuII ion is four-coordinated in a trans-CuN2O2 square-planar geometry, with two phenolate O and two imino N atoms from two deprotonated N,O-bidentate ligands (Dong et al., 2010). The copper atom of [Cu(C22H17Br2N2O2)2] has a square planar geometry distorted tetrahedrally by 13.91 (5)° (defined by the angle between two sets of N—Cu—O planes). A similar distortion has also been observed for the ethoxyl analogue of the title complex (23.33 (3)°) (Zhao et al., 2012).

In the crystal structure, the molecules are linked into an infinite supramolecular network by two C—H···π interactions, C19—H19···Cg1 (N4/Cu1/O4/C31—C33) and C16—H16B···Cg2 (C10—C15), and four intermolecular π···π stacking interactions, Cg2i···Cg3 (Cu1/O2/N2/C9—C11) [3.799 (2) Å], Cg3···Cg4ii (C17—C22) [3.568 (3)Å], Cg2···Cg2i [3.678 (2) Å] and Cg5 (C32—C37)···Cg5iii [3.717 (3) Å] [symmetry codes: (i) 1/2 - x,3/2 - y,1 - z, (ii) x, 1-y, -1/2+z, (iii) 1-x, y, 3/2-z] (Fig. 2). In addition, the crystal packing is further stabilized by weak intermolecular Br···Br halogen bonds with a distance of 3.508 (4) Å.

For background to oxime-based salen-type tetradentate ligands, see: Akine et al. (2001); Dong & Ding (2007); Dong et al. (2012); Bertolasi et al. (1982); Tarafder et al. (2002). For the synthesis and related crystal structures, see: Zhao & Ng (2010); Zhao et al. (2012); Dong et al. (2010).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with the atom numbering scheme, showing 30% probability displacement ellipsoids. All the H atoms on carbon have been omitted for clarity.
[Figure 2] Fig. 2. View of the C—H···π and π···π interactions of the title complex (hydrogen atoms, except those forming hydrogen bonds, are omitted for clarity).
[Figure 3] Fig. 3. Synthetic route to 1-(4-{[(E)-3,5-dibromo-2-hydroxybenzylidene]amino} phenyl)ethanone O-benzyloxime
Bis[2,4-dibromo-6-(N-{4-[(E)-1-(benzyloxyimino)ethyl]phenyl}carboximidoyl)phenolato]copper(II) top
Crystal data top
[Cu(C22H17Br2N2O2)2]F(000) = 4216
Mr = 1065.93Dx = 1.733 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5329 reflections
a = 27.4484 (7) Åθ = 2.5–28.4°
b = 13.3116 (3) ŵ = 4.50 mm1
c = 22.3609 (5) ÅT = 293 K
β = 91.165 (2)°Block-like, brown
V = 8168.6 (3) Å30.30 × 0.21 × 0.10 mm
Z = 8
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
7199 independent reflections
Radiation source: fine-focus sealed tube4682 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
phi and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3232
Tmin = 0.346, Tmax = 0.662k = 1515
27775 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0217P)2 + 4.428P]
where P = (Fo2 + 2Fc2)/3
7199 reflections(Δ/σ)max = 0.001
514 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Cu(C22H17Br2N2O2)2]V = 8168.6 (3) Å3
Mr = 1065.93Z = 8
Monoclinic, C2/cMo Kα radiation
a = 27.4484 (7) ŵ = 4.50 mm1
b = 13.3116 (3) ÅT = 293 K
c = 22.3609 (5) Å0.30 × 0.21 × 0.10 mm
β = 91.165 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
7199 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4682 reflections with I > 2σ(I)
Tmin = 0.346, Tmax = 0.662Rint = 0.063
27775 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.01Δρmax = 0.38 e Å3
7199 reflectionsΔρmin = 0.36 e Å3
514 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.393085 (19)0.80478 (4)0.56844 (2)0.03676 (15)
Br10.313417 (19)1.00341 (3)0.41540 (2)0.05451 (16)
Br20.202079 (18)0.66785 (3)0.34341 (2)0.04794 (14)
Br30.51425 (2)0.59414 (4)0.66431 (3)0.07055 (19)
Br40.61488 (2)0.93975 (4)0.74609 (3)0.0720 (2)
N10.40018 (14)0.3244 (3)0.75569 (17)0.0462 (10)
N20.36392 (12)0.6673 (2)0.56013 (14)0.0334 (9)
N30.34560 (16)1.3351 (3)0.44525 (19)0.0558 (12)
N40.41632 (12)0.9450 (2)0.58442 (15)0.0369 (9)
O10.41180 (12)0.2328 (2)0.78465 (14)0.0582 (9)
O20.35153 (10)0.85865 (18)0.50786 (12)0.0377 (7)
O30.32379 (14)1.4261 (2)0.42526 (16)0.0681 (11)
O40.44441 (10)0.74996 (19)0.61628 (12)0.0427 (8)
C10.4484 (2)0.2458 (4)0.6779 (2)0.0712 (17)
H1A0.47980.27190.66800.107*
H1B0.43260.21970.64250.107*
H1C0.45230.19290.70680.107*
C20.41821 (17)0.3274 (3)0.7033 (2)0.0403 (11)
C30.40625 (15)0.4177 (3)0.66696 (19)0.0356 (11)
C40.38720 (17)0.5041 (3)0.69259 (19)0.0466 (12)
H40.38280.50630.73370.056*
C50.37466 (17)0.5867 (3)0.6582 (2)0.0457 (12)
H50.36290.64440.67650.055*
C60.37943 (15)0.5841 (3)0.59716 (19)0.0352 (11)
C70.39876 (15)0.4995 (3)0.57136 (19)0.0406 (11)
H70.40300.49760.53020.049*
C80.41192 (16)0.4171 (3)0.60602 (19)0.0390 (11)
H80.42480.36050.58770.047*
C90.33200 (15)0.6446 (3)0.51906 (17)0.0354 (11)
H90.32250.57760.51750.042*
C100.30944 (15)0.7097 (3)0.47563 (17)0.0312 (10)
C110.32100 (15)0.8134 (3)0.47231 (18)0.0331 (10)
C120.29653 (15)0.8671 (3)0.42596 (18)0.0325 (10)
C130.26243 (15)0.8249 (3)0.38851 (18)0.0363 (11)
H130.24680.86360.35930.044*
C140.25130 (15)0.7241 (3)0.39428 (18)0.0360 (11)
C150.27448 (15)0.6672 (3)0.43670 (18)0.0372 (11)
H150.26700.59920.43990.045*
C160.38905 (19)0.2287 (4)0.8420 (2)0.0617 (15)
H16A0.37830.16050.84940.074*
H16B0.36050.27170.84130.074*
C170.42285 (17)0.2612 (4)0.8916 (2)0.0478 (13)
C180.44426 (19)0.1915 (4)0.9290 (2)0.0588 (14)
H180.43750.12370.92350.071*
C190.4758 (2)0.2208 (5)0.9748 (2)0.0738 (17)
H190.48980.17291.00000.089*
C200.4861 (2)0.3197 (6)0.9829 (3)0.0772 (18)
H200.50740.33951.01350.093*
C210.4656 (2)0.3894 (5)0.9463 (3)0.0780 (18)
H210.47270.45710.95190.094*
C220.4340 (2)0.3602 (4)0.9009 (2)0.0674 (16)
H220.41990.40870.87610.081*
C230.28957 (18)1.3574 (3)0.5297 (2)0.0584 (14)
H23A0.30381.38910.56440.088*
H23B0.26591.30890.54190.088*
H23C0.27401.40730.50490.088*
C240.32845 (18)1.3061 (3)0.4953 (2)0.0445 (12)
C250.35100 (17)1.2114 (3)0.5185 (2)0.0408 (12)
C260.33122 (18)1.1602 (3)0.5662 (2)0.0509 (13)
H260.30391.18600.58480.061*
C270.35166 (17)1.0705 (3)0.5865 (2)0.0494 (13)
H270.33781.03610.61810.059*
C280.39222 (16)1.0333 (3)0.5599 (2)0.0364 (11)
C290.41171 (17)1.0817 (3)0.5122 (2)0.0496 (13)
H290.43871.05480.49350.060*
C300.39136 (18)1.1708 (3)0.4915 (2)0.0502 (13)
H300.40501.20360.45920.060*
C310.45492 (16)0.9665 (3)0.61517 (19)0.0432 (12)
H310.46221.03440.61910.052*
C320.48802 (16)0.8982 (3)0.64407 (19)0.0412 (12)
C330.48142 (17)0.7931 (3)0.64184 (18)0.0398 (11)
C340.51902 (17)0.7353 (3)0.66960 (19)0.0432 (12)
C350.55761 (17)0.7769 (3)0.70001 (19)0.0468 (13)
H350.58080.73590.71860.056*
C360.56205 (17)0.8805 (3)0.7030 (2)0.0482 (13)
C370.52853 (17)0.9402 (3)0.6752 (2)0.0504 (13)
H370.53231.00960.67650.060*
C380.3297 (2)1.4292 (4)0.3611 (2)0.0734 (17)
H38A0.36191.40470.35150.088*
H38B0.32711.49820.34740.088*
C390.2922 (2)1.3669 (4)0.3295 (2)0.0670 (16)
C400.2531 (3)1.4106 (5)0.2979 (3)0.094 (2)
H400.25121.48000.29370.112*
C410.2170 (3)1.3490 (7)0.2726 (3)0.099 (2)
H410.19131.37820.25120.119*
C420.2187 (3)1.2477 (7)0.2784 (3)0.100 (2)
H420.19361.20820.26250.120*
C430.2571 (3)1.2046 (5)0.3074 (2)0.088 (2)
H430.25891.13500.31040.106*
C440.2934 (2)1.2630 (4)0.3324 (2)0.0703 (17)
H440.31961.23190.35180.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0360 (3)0.0314 (3)0.0423 (3)0.0009 (2)0.0114 (3)0.0010 (2)
Br10.0655 (4)0.0335 (2)0.0637 (3)0.0007 (2)0.0166 (3)0.0084 (2)
Br20.0466 (3)0.0513 (3)0.0453 (3)0.0020 (2)0.0140 (2)0.0079 (2)
Br30.0702 (4)0.0431 (3)0.0970 (4)0.0108 (3)0.0295 (4)0.0048 (3)
Br40.0546 (4)0.0807 (4)0.0791 (4)0.0073 (3)0.0361 (3)0.0002 (3)
N10.048 (3)0.042 (2)0.049 (3)0.0007 (19)0.001 (2)0.015 (2)
N20.036 (2)0.0293 (18)0.035 (2)0.0047 (17)0.0067 (19)0.0026 (16)
N30.069 (3)0.037 (2)0.061 (3)0.010 (2)0.012 (3)0.007 (2)
N40.034 (2)0.0289 (19)0.047 (2)0.0040 (17)0.013 (2)0.0001 (17)
O10.067 (2)0.055 (2)0.053 (2)0.0056 (18)0.0068 (19)0.0220 (17)
O20.0375 (18)0.0325 (15)0.0427 (18)0.0023 (14)0.0125 (16)0.0009 (14)
O30.095 (3)0.043 (2)0.065 (2)0.018 (2)0.006 (2)0.0105 (18)
O40.044 (2)0.0315 (16)0.0516 (19)0.0005 (14)0.0208 (17)0.0043 (14)
C10.085 (4)0.065 (4)0.063 (4)0.029 (3)0.012 (3)0.016 (3)
C20.040 (3)0.039 (3)0.042 (3)0.005 (2)0.003 (2)0.008 (2)
C30.035 (3)0.035 (2)0.037 (3)0.000 (2)0.001 (2)0.002 (2)
C40.061 (3)0.048 (3)0.031 (3)0.006 (3)0.002 (2)0.005 (2)
C50.057 (3)0.038 (3)0.042 (3)0.008 (2)0.000 (3)0.002 (2)
C60.035 (3)0.031 (2)0.039 (3)0.002 (2)0.010 (2)0.003 (2)
C70.046 (3)0.045 (3)0.031 (3)0.002 (2)0.001 (2)0.003 (2)
C80.042 (3)0.035 (2)0.039 (3)0.004 (2)0.001 (2)0.001 (2)
C90.037 (3)0.033 (2)0.036 (3)0.002 (2)0.003 (2)0.003 (2)
C100.029 (3)0.034 (2)0.030 (2)0.002 (2)0.000 (2)0.001 (2)
C110.031 (3)0.034 (2)0.034 (3)0.004 (2)0.001 (2)0.002 (2)
C120.030 (3)0.033 (2)0.034 (2)0.004 (2)0.001 (2)0.002 (2)
C130.038 (3)0.040 (3)0.031 (2)0.007 (2)0.002 (2)0.002 (2)
C140.034 (3)0.043 (3)0.031 (2)0.001 (2)0.005 (2)0.007 (2)
C150.039 (3)0.034 (2)0.038 (3)0.004 (2)0.001 (2)0.001 (2)
C160.055 (4)0.073 (4)0.057 (3)0.007 (3)0.007 (3)0.028 (3)
C170.039 (3)0.058 (3)0.047 (3)0.000 (3)0.012 (3)0.012 (3)
C180.060 (4)0.062 (3)0.055 (3)0.009 (3)0.012 (3)0.013 (3)
C190.065 (4)0.100 (5)0.058 (4)0.014 (4)0.007 (3)0.020 (4)
C200.060 (4)0.115 (6)0.057 (4)0.015 (4)0.009 (3)0.001 (4)
C210.082 (5)0.077 (4)0.076 (4)0.013 (4)0.020 (4)0.006 (4)
C220.065 (4)0.067 (4)0.070 (4)0.004 (3)0.011 (3)0.017 (3)
C230.055 (3)0.042 (3)0.078 (4)0.006 (3)0.006 (3)0.007 (3)
C240.045 (3)0.033 (3)0.055 (3)0.001 (2)0.009 (3)0.002 (2)
C250.040 (3)0.030 (2)0.051 (3)0.003 (2)0.010 (3)0.001 (2)
C260.047 (3)0.047 (3)0.058 (3)0.015 (3)0.001 (3)0.007 (3)
C270.050 (3)0.043 (3)0.056 (3)0.009 (3)0.004 (3)0.009 (2)
C280.033 (3)0.029 (2)0.048 (3)0.003 (2)0.010 (2)0.000 (2)
C290.040 (3)0.044 (3)0.065 (3)0.008 (2)0.004 (3)0.006 (3)
C300.051 (3)0.043 (3)0.057 (3)0.002 (3)0.003 (3)0.012 (2)
C310.043 (3)0.034 (2)0.052 (3)0.002 (2)0.008 (3)0.002 (2)
C320.040 (3)0.036 (3)0.047 (3)0.002 (2)0.013 (2)0.003 (2)
C330.039 (3)0.044 (3)0.036 (3)0.005 (2)0.004 (2)0.000 (2)
C340.044 (3)0.042 (3)0.043 (3)0.006 (2)0.007 (3)0.002 (2)
C350.041 (3)0.054 (3)0.045 (3)0.007 (3)0.010 (3)0.006 (2)
C360.040 (3)0.056 (3)0.049 (3)0.000 (2)0.018 (3)0.001 (2)
C370.049 (3)0.043 (3)0.058 (3)0.003 (2)0.016 (3)0.004 (2)
C380.098 (5)0.059 (4)0.063 (4)0.017 (3)0.012 (4)0.020 (3)
C390.077 (5)0.078 (4)0.046 (3)0.030 (4)0.003 (3)0.007 (3)
C400.111 (6)0.103 (5)0.067 (4)0.053 (5)0.002 (4)0.005 (4)
C410.085 (6)0.144 (7)0.069 (5)0.057 (5)0.013 (4)0.006 (5)
C420.079 (5)0.150 (7)0.071 (5)0.015 (5)0.003 (4)0.008 (5)
C430.096 (5)0.108 (5)0.061 (4)0.003 (5)0.012 (4)0.003 (4)
C440.073 (4)0.081 (4)0.056 (4)0.010 (4)0.011 (3)0.003 (3)
Geometric parameters (Å, º) top
Cu1—O21.894 (2)C17—C181.373 (6)
Cu1—O41.897 (3)C18—C191.382 (7)
Cu1—N42.002 (3)C18—H180.9300
Cu1—N22.005 (3)C19—C201.358 (7)
Br1—C121.888 (4)C19—H190.9300
Br2—C141.902 (4)C20—C211.352 (7)
Br3—C341.887 (4)C20—H200.9300
Br4—C361.896 (4)C21—C221.377 (7)
N1—C21.282 (5)C21—H210.9300
N1—O11.413 (4)C22—H220.9300
N2—C91.292 (4)C23—C241.494 (6)
N2—C61.442 (5)C23—H23A0.9600
N3—C241.283 (6)C23—H23B0.9600
N3—O31.420 (4)C23—H23C0.9600
N4—C311.284 (5)C24—C251.492 (6)
N4—C281.451 (5)C25—C301.383 (6)
O1—C161.438 (5)C25—C261.385 (6)
O2—C111.292 (4)C26—C271.392 (5)
O3—C381.447 (6)C26—H260.9300
O4—C331.290 (5)C27—C281.366 (6)
C1—C21.487 (6)C27—H270.9300
C1—H1A0.9600C28—C291.364 (6)
C1—H1B0.9600C29—C301.387 (6)
C1—H1C0.9600C29—H290.9300
C2—C31.483 (5)C30—H300.9300
C3—C81.375 (5)C31—C321.430 (5)
C3—C41.393 (5)C31—H310.9300
C4—C51.381 (5)C32—C331.411 (5)
C4—H40.9300C32—C371.415 (5)
C5—C61.375 (6)C33—C341.420 (5)
C5—H50.9300C34—C351.364 (6)
C6—C71.377 (5)C35—C361.386 (6)
C7—C81.387 (5)C35—H350.9300
C7—H70.9300C36—C371.357 (6)
C8—H80.9300C37—H370.9300
C9—C101.433 (5)C38—C391.490 (7)
C9—H90.9300C38—H38A0.9700
C10—C151.402 (5)C38—H38B0.9700
C10—C111.419 (5)C39—C441.385 (7)
C11—C121.417 (5)C39—C401.398 (7)
C12—C131.365 (5)C40—C411.396 (9)
C13—C141.382 (5)C40—H400.9300
C13—H130.9300C41—C421.355 (9)
C14—C151.362 (5)C41—H410.9300
C15—H150.9300C42—C431.354 (8)
C16—C171.496 (6)C42—H420.9300
C16—H16A0.9700C43—C441.375 (7)
C16—H16B0.9700C43—H430.9300
C17—C221.368 (6)C44—H440.9300
O2—Cu1—O4168.03 (13)C21—C20—C19120.0 (6)
O2—Cu1—N487.69 (12)C21—C20—H20120.0
O4—Cu1—N491.59 (12)C19—C20—H20120.0
O2—Cu1—N292.63 (12)C20—C21—C22120.0 (6)
O4—Cu1—N289.52 (12)C20—C21—H21120.0
N4—Cu1—N2173.08 (15)C22—C21—H21120.0
C2—N1—O1111.0 (4)C17—C22—C21121.3 (5)
C9—N2—C6114.6 (3)C17—C22—H22119.3
C9—N2—Cu1122.9 (3)C21—C22—H22119.3
C6—N2—Cu1122.4 (2)C24—C23—H23A109.5
C24—N3—O3111.8 (4)C24—C23—H23B109.5
C31—N4—C28112.7 (3)H23A—C23—H23B109.5
C31—N4—Cu1124.0 (3)C24—C23—H23C109.5
C28—N4—Cu1123.2 (2)H23A—C23—H23C109.5
N1—O1—C16110.1 (3)H23B—C23—H23C109.5
C11—O2—Cu1129.6 (2)N3—C24—C25113.6 (5)
N3—O3—C38106.3 (4)N3—C24—C23126.2 (4)
C33—O4—Cu1130.3 (3)C25—C24—C23120.2 (4)
C2—C1—H1A109.5C30—C25—C26118.3 (4)
C2—C1—H1B109.5C30—C25—C24120.6 (4)
H1A—C1—H1B109.5C26—C25—C24121.1 (5)
C2—C1—H1C109.5C25—C26—C27120.8 (5)
H1A—C1—H1C109.5C25—C26—H26119.6
H1B—C1—H1C109.5C27—C26—H26119.6
N1—C2—C3116.2 (4)C28—C27—C26119.7 (5)
N1—C2—C1123.7 (4)C28—C27—H27120.2
C3—C2—C1120.1 (4)C26—C27—H27120.2
C8—C3—C4117.6 (4)C29—C28—C27120.4 (4)
C8—C3—C2120.7 (4)C29—C28—N4119.6 (4)
C4—C3—C2121.6 (4)C27—C28—N4119.9 (4)
C5—C4—C3121.4 (4)C28—C29—C30120.2 (5)
C5—C4—H4119.3C28—C29—H29119.9
C3—C4—H4119.3C30—C29—H29119.9
C6—C5—C4120.3 (4)C25—C30—C29120.6 (5)
C6—C5—H5119.8C25—C30—H30119.7
C4—C5—H5119.8C29—C30—H30119.7
C5—C6—C7118.8 (4)N4—C31—C32127.6 (4)
C5—C6—N2121.2 (4)N4—C31—H31116.2
C7—C6—N2120.0 (4)C32—C31—H31116.2
C6—C7—C8120.7 (4)C33—C32—C37120.5 (4)
C6—C7—H7119.6C33—C32—C31122.3 (4)
C8—C7—H7119.6C37—C32—C31117.2 (4)
C3—C8—C7121.1 (4)O4—C33—C32123.8 (4)
C3—C8—H8119.5O4—C33—C34120.7 (4)
C7—C8—H8119.5C32—C33—C34115.5 (4)
N2—C9—C10128.1 (4)C35—C34—C33123.2 (4)
N2—C9—H9115.9C35—C34—Br3119.2 (3)
C10—C9—H9115.9C33—C34—Br3117.6 (3)
C15—C10—C11120.8 (4)C34—C35—C36119.6 (4)
C15—C10—C9117.2 (4)C34—C35—H35120.2
C11—C10—C9122.0 (4)C36—C35—H35120.2
O2—C11—C12120.4 (4)C37—C36—C35120.1 (4)
O2—C11—C10124.3 (3)C37—C36—Br4119.6 (3)
C12—C11—C10115.2 (4)C35—C36—Br4120.3 (3)
C13—C12—C11123.3 (4)C36—C37—C32120.9 (4)
C13—C12—Br1119.1 (3)C36—C37—H37119.6
C11—C12—Br1117.5 (3)C32—C37—H37119.6
C12—C13—C14119.5 (4)O3—C38—C39111.4 (5)
C12—C13—H13120.2O3—C38—H38A109.4
C14—C13—H13120.2C39—C38—H38A109.4
C15—C14—C13120.3 (4)O3—C38—H38B109.4
C15—C14—Br2120.9 (3)C39—C38—H38B109.4
C13—C14—Br2118.8 (3)H38A—C38—H38B108.0
C14—C15—C10120.8 (4)C44—C39—C40117.2 (6)
C14—C15—H15119.6C44—C39—C38121.2 (5)
C10—C15—H15119.6C40—C39—C38121.6 (6)
O1—C16—C17112.1 (4)C41—C40—C39119.4 (6)
O1—C16—H16A109.2C41—C40—H40120.3
C17—C16—H16A109.2C39—C40—H40120.3
O1—C16—H16B109.2C42—C41—C40121.5 (6)
C17—C16—H16B109.2C42—C41—H41119.2
H16A—C16—H16B107.9C40—C41—H41119.2
C22—C17—C18117.8 (5)C43—C42—C41119.4 (7)
C22—C17—C16121.7 (5)C43—C42—H42120.3
C18—C17—C16120.6 (5)C41—C42—H42120.3
C17—C18—C19121.0 (5)C42—C43—C44120.4 (7)
C17—C18—H18119.5C42—C43—H43119.8
C19—C18—H18119.5C44—C43—H43119.8
C20—C19—C18119.9 (5)C43—C44—C39122.0 (6)
C20—C19—H19120.1C43—C44—H44119.0
C18—C19—H19120.1C39—C44—H44119.0
O2—Cu1—N2—C95.8 (3)C22—C17—C18—C190.4 (8)
O4—Cu1—N2—C9162.4 (3)C16—C17—C18—C19179.6 (5)
O2—Cu1—N2—C6178.4 (3)C17—C18—C19—C200.5 (8)
O4—Cu1—N2—C613.3 (3)C18—C19—C20—C210.3 (9)
O2—Cu1—N4—C31165.0 (4)C19—C20—C21—C220.1 (9)
O4—Cu1—N4—C313.0 (4)C18—C17—C22—C210.0 (8)
O2—Cu1—N4—C2812.1 (3)C16—C17—C22—C21179.3 (5)
O4—Cu1—N4—C28179.9 (4)C20—C21—C22—C170.2 (9)
C2—N1—O1—C16176.9 (4)O3—N3—C24—C25179.0 (3)
O4—Cu1—O2—C1193.3 (6)O3—N3—C24—C231.3 (6)
N4—Cu1—O2—C11179.9 (4)N3—C24—C25—C309.1 (6)
N2—Cu1—O2—C116.9 (4)C23—C24—C25—C30171.1 (4)
C24—N3—O3—C38156.9 (4)N3—C24—C25—C26168.6 (4)
O2—Cu1—O4—C3379.9 (7)C23—C24—C25—C2611.1 (6)
N4—Cu1—O4—C336.5 (4)C30—C25—C26—C270.5 (7)
N2—Cu1—O4—C33179.7 (4)C24—C25—C26—C27178.2 (4)
O1—N1—C2—C3176.8 (3)C25—C26—C27—C281.1 (7)
O1—N1—C2—C11.5 (6)C26—C27—C28—C292.3 (6)
N1—C2—C3—C8162.1 (4)C26—C27—C28—N4174.3 (4)
C1—C2—C3—C816.3 (7)C31—N4—C28—C2974.8 (5)
N1—C2—C3—C415.4 (7)Cu1—N4—C28—C29102.5 (4)
C1—C2—C3—C4166.3 (4)C31—N4—C28—C27101.9 (5)
C8—C3—C4—C50.4 (7)Cu1—N4—C28—C2780.7 (5)
C2—C3—C4—C5177.9 (4)C27—C28—C29—C302.0 (7)
C3—C4—C5—C62.0 (7)N4—C28—C29—C30174.6 (4)
C4—C5—C6—C72.7 (7)C26—C25—C30—C290.8 (7)
C4—C5—C6—N2176.4 (4)C24—C25—C30—C29178.5 (4)
C9—N2—C6—C5122.6 (4)C28—C29—C30—C250.5 (7)
Cu1—N2—C6—C561.4 (5)C28—N4—C31—C32178.1 (4)
C9—N2—C6—C756.4 (5)Cu1—N4—C31—C320.8 (7)
Cu1—N2—C6—C7119.6 (4)N4—C31—C32—C330.1 (8)
C5—C6—C7—C81.8 (7)N4—C31—C32—C37179.5 (5)
N2—C6—C7—C8177.2 (4)Cu1—O4—C33—C327.5 (7)
C4—C3—C8—C70.5 (7)Cu1—O4—C33—C34172.0 (3)
C2—C3—C8—C7177.1 (4)C37—C32—C33—O4177.3 (4)
C6—C7—C8—C30.3 (7)C31—C32—C33—O43.2 (7)
C6—N2—C9—C10179.8 (4)C37—C32—C33—C343.3 (7)
Cu1—N2—C9—C104.2 (6)C31—C32—C33—C34176.2 (4)
N2—C9—C10—C15178.1 (4)O4—C33—C34—C35176.4 (4)
N2—C9—C10—C110.9 (7)C32—C33—C34—C354.2 (7)
Cu1—O2—C11—C12174.0 (3)O4—C33—C34—Br32.9 (6)
Cu1—O2—C11—C105.7 (6)C32—C33—C34—Br3176.5 (3)
C15—C10—C11—O2177.6 (4)C33—C34—C35—C362.1 (7)
C9—C10—C11—O21.3 (7)Br3—C34—C35—C36178.6 (4)
C15—C10—C11—C122.7 (6)C34—C35—C36—C370.9 (8)
C9—C10—C11—C12178.4 (4)C34—C35—C36—Br4179.0 (4)
O2—C11—C12—C13177.2 (4)C35—C36—C37—C321.7 (8)
C10—C11—C12—C133.0 (6)Br4—C36—C37—C32178.3 (4)
O2—C11—C12—Br14.0 (5)C33—C32—C37—C360.5 (7)
C10—C11—C12—Br1175.8 (3)C31—C32—C37—C36179.0 (5)
C11—C12—C13—C141.5 (7)N3—O3—C38—C3980.7 (5)
Br1—C12—C13—C14177.3 (3)O3—C38—C39—C4471.0 (7)
C12—C13—C14—C150.6 (7)O3—C38—C39—C40106.2 (6)
C12—C13—C14—Br2177.9 (3)C44—C39—C40—C411.8 (9)
C13—C14—C15—C100.8 (7)C38—C39—C40—C41175.5 (6)
Br2—C14—C15—C10177.6 (3)C39—C40—C41—C420.6 (10)
C11—C10—C15—C140.9 (6)C40—C41—C42—C432.5 (11)
C9—C10—C15—C14179.8 (4)C41—C42—C43—C442.0 (10)
N1—O1—C16—C1796.1 (4)C42—C43—C44—C390.5 (10)
O1—C16—C17—C2275.4 (6)C40—C39—C44—C432.4 (9)
O1—C16—C17—C18103.8 (5)C38—C39—C44—C43174.9 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the Cu/O4/C33–C31/N4 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C19—H19···Cg1i0.932.823.575 (5)118
C16—H16B···Cg2i0.972.963.511 (5)117
Symmetry code: (i) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C22H17Br2N2O2)2]
Mr1065.93
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)27.4484 (7), 13.3116 (3), 22.3609 (5)
β (°) 91.165 (2)
V3)8168.6 (3)
Z8
Radiation typeMo Kα
µ (mm1)4.50
Crystal size (mm)0.30 × 0.21 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.346, 0.662
No. of measured, independent and
observed [I > 2σ(I)] reflections
27775, 7199, 4682
Rint0.063
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.078, 1.01
No. of reflections7199
No. of parameters514
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.36

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the Cu/O4/C33–C31/N4 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C19—H19···Cg1i0.932.823.575 (5)118
C16—H16B···Cg2i0.972.963.511 (5)117
Symmetry code: (i) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by the Foundation of the Education Department of Gansu Province (0904–11), which is gratefully acknowledged.

References

First citationAkine, S., Taniguchi, T. & Nabeshima, T. (2001). Chem. Lett. 30, 682–683.  CSD CrossRef Google Scholar
First citationBertolasi, V., Gilli, G. & Veronese, A. C. (1982). Acta Cryst. B38, 502–511.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, W.-K. & Ding, Y.-J. (2007). Cryst. Res. Technol. 43, 321–326.  Web of Science CSD CrossRef Google Scholar
First citationDong, W.-K., Sun, Y.-X., Zhao, C.-Y., Dong, X.-Y. & Xu, L. (2010). Polyhedron, 29, 2087–2097.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, W.-K., Wang, G., Gong, S.-S., Tong, J.-F., Sun, J.-F. & Gao, X.-H. (2012). Transition Met. Chem. 37, 271–277.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Jin, K. T. & Crouse, K. A. (2002). Polyhedron, 21, 2547–2554.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, L., Dong, X.-T., Sun, Y.-X., Cheng, Q., Dong, X.-Y. & Wang, L. (2012). Chin. J. Inorg. Chem. 28, 2413–2418.  CAS Google Scholar
First citationZhao, L. & Ng, S. W. (2010). Acta Cryst. E66, o2473.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds