metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-cyanido-tetra­cyanido(5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane)[N-(quinolin-8-yl)quinoline-2-carboxamidato]diiron(III)nickel(II) 2.07-hydrate

aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: xiaopingshen@163.com

(Received 7 April 2013; accepted 14 April 2013; online 20 April 2013)

The asymmetric unit of the title complex, [Fe2Ni(C19H12N3O)2(CN)6(C16H36N4)]·2.07H2O, contains one [Fe(qcq)(CN)3] anion, half a [Ni(teta)]2+ cation and two partially occupied inter­stitial water mol­ecules [qcq is the N-(quinolin-8-yl)quinoline-2-carboxamidate anion and teta is 5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­deca­ne]. In the complex mol­ecule, two [Fe(qcq)(CN)3] anions additionally coordinate the central [Ni(teta)]2+ cation through cyanide groups in a trans mode, resulting in a trinuclear structure with the Ni2+ cation lying on an inversion centre. The two inter­stitial water mol­ecules are partially occupied, with occupancy factors of 0.528 (10) and 0.506 (9). O—H⋯O and O—H⋯N hydrogen bonding involving the two lattice water molecules and the carbonyl function and a teta N atom in an adjacent cluster leads to the formation of layers extending parallel to (010).

Related literature

For the synthesis and background to low-dimensional systems based on modified hexa­cyanido­metalates, see: Liu et al. (2010[Liu, T., Zhang, Y. J., Kanegawa, S. & Sato, O. (2010). Angew. Chem. Int. Ed. 49, 8645-8648.]); Kim et al. (2009[Kim, J., Kwak, H. Y., Yoon, J. H., Ryu, D. W., Yoo, I. Y., Yang, N., Cho, B. K., Park, J. G., Lee, H. & Hong, C. S. (2009). Inorg. Chem. 48, 2956-2966.]); Curtis et al. (1964[Curtis, N. F. (1964). J. Chem. Soc. pp. 2644-2650.]). For related structures, see: Li et al. (2012[Li, Y., Zhou, H. & Shen, X. (2012). Acta Cryst. E68, o1688.]); Panja et al. (2012[Panja, A., Guionneau, P., Jeon, I., Holmes, S. M., Clérac, R. & Mathonière, C. (2012). Inorg. Chem. 51, 12350-12359.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe2Ni(C19H12N3O)2(CN)6(C16H36N4)]·2.07H2O

  • Mr = 1244.89

  • Monoclinic, P 21 /c

  • a = 9.4145 (13) Å

  • b = 15.7309 (17) Å

  • c = 20.590 (2) Å

  • β = 101.781 (3)°

  • V = 2985.1 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 291 K

  • 0.28 × 0.24 × 0.22 mm

Data collection
  • Rigaku Saturn 724 CCD diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Coporation, Tokyo, Japan.]) Tmin = 0.796, Tmax = 0.835

  • 12764 measured reflections

  • 5722 independent reflections

  • 4078 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.156

  • S = 0.97

  • 5722 reflections

  • 402 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H2WA⋯O1 0.82 (2) 2.14 (2) 2.882 (5) 151 (5)
O1W—H1WA⋯O2W 0.85 (2) 1.87 (7) 2.623 (8) 147 (11)
N8—H8A⋯O1Wi 0.91 2.19 3.091 (7) 169
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Modified hexacyanometalates, [Fe(qcq)(CN)3]- (qcq- = 8-(2-quinoline-2-carboxamido)quinoline anion) have been shown to be effective building blocks that can be used instead of hexacyanometalates for the design of low dimensional assemblies (Liu et al., 2010). The capping ligand qcq- (Li et al., 2012) allows to limit oligomerization or polymerization effects by partially blocking the coordination sites around hexacyanometalates, and promotes the formation of low-dimensional structures. More importantly, it plays a crucial role in reducing the molecular symmetry, enhancing the anisotropy, and tuning the electronic, steric demand and solubility properties of derived complexes (Panja et al., 2012). However, to the best of our knowledge, low dimensional compounds based on [Fe(qcq)(CN)3]- as a ligand have been rarely explored and only a few related complexes have been reported so far. Therefore, the investigation of related low dimensional assemblies based on [Fe(qcq)(CN)3]- is of significance. Considering that the macrocyclic cation of [Ni(teta)]2+ (teta = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane) can behave as a good electron acceptor, our synthesis strategy is to employ [Fe(qcq)(CN)3]- and [Ni(teta)]2+ as precursors to construct low dimensional assemblies. Herein, the crystal structure of a new trinuclear complex, [{Ni(teta)}{Fe(qcq)(CN)3}2].2H2O is presented.

The molecular structure of the title complex is shown in Fig. 1. Within the neutral trinuclear clusters, two [Fe(qcq)(CN)3]- anions coordinate to the central [Ni(teta)]2+ cation in a trans-mode, resulting in a nearly linear and centrosymmetric structure, where the Ni atom lies on an inversion centre. For the moieties of [Fe(qcq)(CN)3]-, the central Fe ion is coordinated by three C atoms from cyanide groups (Fe—C(cyanide) bond lengths: 1.951 (4)–1.965 (4) Å) and three N atoms from qcq- (Fe—N(qcq) bond lengths: (1.970 (4)–2.146 (3) Å), affording a distorted octahedral coordination for the metal centre. The Fe—N (amide) bond length (1.970 (4) Å) is shorter than those for the Fe—N (aromatic rings) (2.045 (4)–2.146 (3) Å), which can be attributed to the strong σ-donor effect of the deprotonated amide. The bond angles of Fe1—C1—N1 and Fe1—C2—N3 remain almost linear (172.6 (3)–179.1 (4)°), while the Fe1—C3—N2 one deviates significantly from linearity (150.7 (5) °). The bond angle of Ni—N—C(cyanide) also deviates from linearity (161.1 (3)°), which is comparable to values observed in many other cyano-bridged bimetallic assemblies (Kim et al., 2009). For the structural unit of [Ni(teta)]2+, the equatorial sites of the central Ni ion are occupied by four nitrogen atoms from the macrocyclic ligand of teta (Ni—Nmacro bond lengths: 2.077 (3)–2.092 (3) Å), while the axial positions are occupied by Ncyanide from [Fe(qcq)(CN)3]- (Ni—Ncyanide bond lengths: 2.116 (3) Å). The intramolecular Fe···Ni distance is 5.101 (3) Å. For the intermolecular interactions, the interstitial water molecules are positioned between the clusters and linked to the nitrogen atom of teta and the oxygen atom of adjacent clusters via hydrogen bonds, further extending the dimensionality of the structure to a supramolecular network, as shown in Fig. 2.

Related literature top

For the synthesis and background to low-dimensional systems based on modified hexacyanometalates, see: Liu et al. (2010); Kim et al. (2009); Curtis et al. (1964). For related structures, see: Li et al. (2012); Panja et al. (2012). Scheme should show .2.07H2O

Experimental top

The complex was obtained as black block crystals by slow diffusion of a methanol solution (5 ml) of PPh4[Fe(qcq)(CN)3] (0.10 mmol) (Kim et al., 2009) and a water/DMF (v:v = 7:8) solution (15 ml) of [Ni(teta)](ClO4)2 (0.10 mmol) (Curtis et al., 1964) through a H-shaped tube at room temperature for about two weeks. The resulting crystals were collected, washed with H2O and CH3OH, respectively, and dried in air. Anal. found: C, 57.70; H, 5.23; N, 18.04; Fe, 8.92; Ni, 4.87%. Calcd for C60H64.14Fe2N16NiO4.07: C, 57.95; H, 5.19; N, 18.02; Fe, 8.98; Ni, 4.72%.

Refinement top

All non-H atoms were refined with anisotropic thermal parameters. The C– and N-bound H atoms were placed in idealized positions and included in the refinement in a riding mode (C—H = 0.95 Å, N—H = 0.88 Å) with Uiso for H assigned as 1.2 or 1.5 times Ueq of the attached atoms. The oxygen atoms (O1W, O2W) of interstitial water molecules are refined with partial occupancy factors of 0.528 (10) for the water molecule of O1W and 0.506 (9) for that of O2W, respectively. The water H-atoms were located from difference maps and were refined with a O—H and H···H distance restraints of 0.82 (2) Å) and 1.36 (2) Å and with Uiso for H assigned as 1.5 times Ueq of the attached atoms. The H atom H2WA was further restrained to be 2.10 (2) Å from O1 to rationalize the hydrogen bonds interactions.

Structure description top

Modified hexacyanometalates, [Fe(qcq)(CN)3]- (qcq- = 8-(2-quinoline-2-carboxamido)quinoline anion) have been shown to be effective building blocks that can be used instead of hexacyanometalates for the design of low dimensional assemblies (Liu et al., 2010). The capping ligand qcq- (Li et al., 2012) allows to limit oligomerization or polymerization effects by partially blocking the coordination sites around hexacyanometalates, and promotes the formation of low-dimensional structures. More importantly, it plays a crucial role in reducing the molecular symmetry, enhancing the anisotropy, and tuning the electronic, steric demand and solubility properties of derived complexes (Panja et al., 2012). However, to the best of our knowledge, low dimensional compounds based on [Fe(qcq)(CN)3]- as a ligand have been rarely explored and only a few related complexes have been reported so far. Therefore, the investigation of related low dimensional assemblies based on [Fe(qcq)(CN)3]- is of significance. Considering that the macrocyclic cation of [Ni(teta)]2+ (teta = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane) can behave as a good electron acceptor, our synthesis strategy is to employ [Fe(qcq)(CN)3]- and [Ni(teta)]2+ as precursors to construct low dimensional assemblies. Herein, the crystal structure of a new trinuclear complex, [{Ni(teta)}{Fe(qcq)(CN)3}2].2H2O is presented.

The molecular structure of the title complex is shown in Fig. 1. Within the neutral trinuclear clusters, two [Fe(qcq)(CN)3]- anions coordinate to the central [Ni(teta)]2+ cation in a trans-mode, resulting in a nearly linear and centrosymmetric structure, where the Ni atom lies on an inversion centre. For the moieties of [Fe(qcq)(CN)3]-, the central Fe ion is coordinated by three C atoms from cyanide groups (Fe—C(cyanide) bond lengths: 1.951 (4)–1.965 (4) Å) and three N atoms from qcq- (Fe—N(qcq) bond lengths: (1.970 (4)–2.146 (3) Å), affording a distorted octahedral coordination for the metal centre. The Fe—N (amide) bond length (1.970 (4) Å) is shorter than those for the Fe—N (aromatic rings) (2.045 (4)–2.146 (3) Å), which can be attributed to the strong σ-donor effect of the deprotonated amide. The bond angles of Fe1—C1—N1 and Fe1—C2—N3 remain almost linear (172.6 (3)–179.1 (4)°), while the Fe1—C3—N2 one deviates significantly from linearity (150.7 (5) °). The bond angle of Ni—N—C(cyanide) also deviates from linearity (161.1 (3)°), which is comparable to values observed in many other cyano-bridged bimetallic assemblies (Kim et al., 2009). For the structural unit of [Ni(teta)]2+, the equatorial sites of the central Ni ion are occupied by four nitrogen atoms from the macrocyclic ligand of teta (Ni—Nmacro bond lengths: 2.077 (3)–2.092 (3) Å), while the axial positions are occupied by Ncyanide from [Fe(qcq)(CN)3]- (Ni—Ncyanide bond lengths: 2.116 (3) Å). The intramolecular Fe···Ni distance is 5.101 (3) Å. For the intermolecular interactions, the interstitial water molecules are positioned between the clusters and linked to the nitrogen atom of teta and the oxygen atom of adjacent clusters via hydrogen bonds, further extending the dimensionality of the structure to a supramolecular network, as shown in Fig. 2.

For the synthesis and background to low-dimensional systems based on modified hexacyanometalates, see: Liu et al. (2010); Kim et al. (2009); Curtis et al. (1964). For related structures, see: Li et al. (2012); Panja et al. (2012). Scheme should show .2.07H2O

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title complex with displacement ellipsoids drawn at the 30% probability level (The non-solvent H atoms have been omitted for clarity).
[Figure 2] Fig. 2. The packing and intermolecular interactions for the title complex (The dotted line represents the N—H···O and O—H···O hydrogen bonds).
Di-µ-cyanido-tetracyanido(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)[N-(quinolin-8-yl)quinoline-2-carboxamidato]diiron(III)nickel(II) dihydrate top
Crystal data top
[Fe2Ni(C19H12N3O)2(CN)6(C16H36N4)]·2.07H2OF(000) = 1297.4
Mr = 1244.89Dx = 1.384 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3735 reflections
a = 9.4145 (13) Åθ = 2.1–23.4°
b = 15.7309 (17) ŵ = 0.85 mm1
c = 20.590 (2) ÅT = 291 K
β = 101.781 (3)°Block, black
V = 2985.1 (6) Å30.28 × 0.24 × 0.22 mm
Z = 2
Data collection top
Rigaku Saturn 724 CCD
diffractometer
5722 independent reflections
Radiation source: fine-focus sealed tube4078 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 26.0°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1111
Tmin = 0.796, Tmax = 0.835k = 019
12764 measured reflectionsl = 025
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.095P)2]
where P = (Fo2 + 2Fc2)/3
5722 reflections(Δ/σ)max < 0.001
402 parametersΔρmax = 0.42 e Å3
7 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Fe2Ni(C19H12N3O)2(CN)6(C16H36N4)]·2.07H2OV = 2985.1 (6) Å3
Mr = 1244.89Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.4145 (13) ŵ = 0.85 mm1
b = 15.7309 (17) ÅT = 291 K
c = 20.590 (2) Å0.28 × 0.24 × 0.22 mm
β = 101.781 (3)°
Data collection top
Rigaku Saturn 724 CCD
diffractometer
5722 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4078 reflections with I > 2σ(I)
Tmin = 0.796, Tmax = 0.835Rint = 0.022
12764 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0577 restraints
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.42 e Å3
5722 reflectionsΔρmin = 0.42 e Å3
402 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. the restraints that were used for the refinement of the water H atoms are: DFIX 2.1 H2WA O1 DFIX 1.36 H1WA H1WB H2WA H2WB DFIX 0.82 O1W H1WA O1W H1WB O2W H2WA O2W H2WB

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6080 (3)0.3867 (2)0.85132 (16)0.0385 (8)
C20.4738 (3)0.1784 (2)0.92238 (15)0.0381 (8)
C30.6764 (4)0.2943 (3)0.9657 (2)0.0603 (12)
C40.4671 (4)0.3845 (2)1.00163 (18)0.0439 (8)
H40.55800.36781.02500.053*
C50.3788 (4)0.4394 (3)1.03091 (17)0.0475 (10)
H50.41350.45951.07370.057*
C60.2454 (4)0.4634 (3)0.99820 (18)0.0535 (10)
H60.18950.49991.01820.064*
C70.1919 (4)0.4330 (3)0.93380 (19)0.0507 (10)
C80.0562 (4)0.4568 (3)0.89958 (18)0.0479 (9)
H80.00110.49320.91880.057*
C90.0051 (4)0.4247 (3)0.83428 (19)0.0556 (11)
H90.08750.43870.81130.067*
C100.0903 (4)0.3742 (3)0.80565 (18)0.0480 (9)
H100.05700.35490.76260.058*
C110.2293 (4)0.3504 (3)0.84038 (18)0.0492 (9)
C120.2803 (3)0.3806 (3)0.90398 (17)0.0431 (8)
C130.3175 (4)0.2439 (3)0.76782 (19)0.0531 (10)
C140.4306 (4)0.2005 (3)0.76050 (17)0.0470 (9)
C150.4349 (4)0.1491 (3)0.70543 (19)0.0535 (10)
H150.34990.13430.67590.064*
C160.5658 (4)0.1213 (3)0.6960 (2)0.0601 (11)
H160.56890.08940.65830.072*
C170.6919 (4)0.1378 (3)0.73891 (19)0.0549 (10)
C180.8243 (4)0.1087 (3)0.7271 (2)0.0565 (11)
H180.82720.07690.68930.068*
C190.9535 (4)0.1276 (3)0.7727 (2)0.0536 (10)
H191.04200.10800.76520.064*
C200.9488 (4)0.1744 (3)0.8271 (2)0.0539 (10)
H201.03420.18570.85760.065*
C210.8156 (4)0.2063 (3)0.8384 (2)0.0534 (10)
H210.81360.24060.87500.064*
C220.6895 (4)0.1863 (3)0.79498 (18)0.0462 (9)
C230.3339 (3)0.0867 (2)0.86776 (16)0.0393 (8)
C240.4859 (4)0.1054 (3)0.85829 (17)0.0447 (9)
H24A0.52040.15450.88550.054*
H24B0.47820.12270.81250.054*
C250.6028 (4)0.0390 (2)0.87275 (16)0.0393 (8)
H250.56180.01600.85610.047*
C260.7755 (4)0.0258 (3)0.96768 (17)0.0453 (9)
H26A0.75250.07930.94440.054*
H26B0.86320.00350.95620.054*
C270.1984 (4)0.0414 (3)0.95781 (16)0.0449 (9)
H27A0.12430.08450.94530.054*
H27B0.16490.01060.93420.054*
C280.2337 (4)0.1648 (3)0.84162 (17)0.0476 (9)
H28A0.13730.15420.84830.071*
H28B0.27160.21500.86550.071*
H28C0.23120.17280.79520.071*
C290.2665 (4)0.0076 (3)0.82503 (19)0.0472 (9)
H29A0.27960.04250.85220.071*
H29B0.16480.01710.80850.071*
H29C0.31420.00030.78840.071*
C300.7320 (4)0.0618 (3)0.83749 (18)0.0462 (9)
H30A0.70180.10600.80540.069*
H30B0.81370.08110.87000.069*
H30C0.75890.01230.81560.069*
Ni10.50000.00001.00000.0353 (2)
Fe10.52931 (5)0.28363 (4)0.88333 (2)0.04223 (18)
N10.6534 (3)0.4476 (2)0.83299 (14)0.0454 (7)
N20.7764 (3)0.2701 (3)1.00090 (15)0.0622 (10)
N30.4567 (3)0.1146 (2)0.94597 (14)0.0420 (7)
N40.4158 (3)0.3561 (2)0.93779 (15)0.0461 (8)
N50.3195 (3)0.2951 (2)0.81931 (14)0.0445 (7)
N60.5568 (3)0.2176 (2)0.80568 (15)0.0478 (8)
N70.3381 (3)0.0703 (2)0.93949 (14)0.0412 (7)
H70.35090.12320.95760.049*
N80.6599 (3)0.0325 (2)0.94730 (12)0.0363 (6)
H8A0.69360.08480.96160.044*
O10.2120 (3)0.2298 (2)0.72506 (14)0.0600 (8)
O1W0.2133 (5)0.2873 (4)0.5217 (3)0.066 (2)0.528 (10)
H1WA0.142 (7)0.280 (7)0.540 (4)0.100*0.528 (10)
H1WB0.186 (9)0.273 (8)0.4823 (19)0.100*0.528 (10)
O2W0.0492 (5)0.2088 (4)0.5914 (2)0.059 (2)0.506 (9)
H2WA0.089 (9)0.196 (3)0.6296 (15)0.088*0.506 (9)
H2WB0.051 (11)0.177 (4)0.562 (2)0.088*0.506 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0440 (16)0.032 (2)0.0422 (18)0.0046 (15)0.0141 (14)0.0035 (16)
C20.0486 (17)0.040 (2)0.0293 (16)0.0066 (15)0.0166 (13)0.0102 (15)
C30.0380 (17)0.065 (3)0.071 (3)0.0173 (17)0.0054 (17)0.033 (2)
C40.0407 (15)0.039 (2)0.053 (2)0.0031 (16)0.0106 (14)0.0069 (17)
C50.0520 (18)0.053 (3)0.0423 (18)0.0232 (17)0.0210 (15)0.0186 (18)
C60.064 (2)0.053 (3)0.050 (2)0.013 (2)0.0258 (18)0.015 (2)
C70.0521 (19)0.041 (2)0.063 (2)0.0119 (17)0.0223 (17)0.0165 (19)
C80.0507 (18)0.049 (3)0.049 (2)0.0148 (17)0.0218 (16)0.0165 (19)
C90.0426 (17)0.070 (3)0.057 (2)0.0203 (18)0.0152 (16)0.028 (2)
C100.0452 (17)0.051 (3)0.0476 (19)0.0102 (17)0.0088 (15)0.0018 (18)
C110.0509 (18)0.047 (3)0.053 (2)0.0161 (17)0.0185 (16)0.0152 (19)
C120.0443 (17)0.043 (2)0.0457 (19)0.0084 (16)0.0187 (15)0.0112 (17)
C130.066 (2)0.047 (3)0.043 (2)0.0011 (19)0.0043 (18)0.0028 (19)
C140.0513 (18)0.052 (3)0.0377 (18)0.0157 (17)0.0102 (14)0.0001 (17)
C150.0537 (19)0.054 (3)0.054 (2)0.0229 (18)0.0128 (16)0.017 (2)
C160.054 (2)0.060 (3)0.069 (3)0.002 (2)0.0193 (19)0.004 (2)
C170.058 (2)0.057 (3)0.056 (2)0.0156 (19)0.0268 (18)0.015 (2)
C180.062 (2)0.059 (3)0.056 (2)0.009 (2)0.0284 (19)0.018 (2)
C190.0438 (18)0.055 (3)0.065 (2)0.0123 (17)0.0201 (17)0.018 (2)
C200.0451 (17)0.055 (3)0.065 (2)0.0106 (17)0.0180 (17)0.023 (2)
C210.0485 (18)0.046 (3)0.072 (3)0.0142 (17)0.0268 (18)0.021 (2)
C220.0518 (19)0.043 (2)0.050 (2)0.0107 (17)0.0247 (16)0.0084 (18)
C230.0411 (15)0.035 (2)0.0445 (18)0.0026 (14)0.0162 (14)0.0054 (16)
C240.0525 (18)0.044 (2)0.0407 (18)0.0126 (17)0.0179 (15)0.0069 (17)
C250.0500 (17)0.036 (2)0.0348 (16)0.0095 (15)0.0165 (14)0.0013 (16)
C260.0458 (17)0.044 (2)0.050 (2)0.0035 (16)0.0183 (15)0.0004 (18)
C270.0433 (16)0.050 (3)0.0411 (18)0.0061 (16)0.0088 (14)0.0074 (18)
C280.0572 (19)0.040 (2)0.0416 (19)0.0095 (17)0.0016 (15)0.0048 (17)
C290.0477 (19)0.045 (3)0.046 (2)0.0012 (15)0.0013 (16)0.0163 (17)
C300.0503 (17)0.043 (2)0.049 (2)0.0150 (16)0.0192 (15)0.0126 (18)
Ni10.0407 (3)0.0359 (4)0.0322 (3)0.0059 (2)0.0141 (3)0.0083 (3)
Fe10.0481 (3)0.0385 (4)0.0415 (3)0.0006 (2)0.0123 (2)0.0128 (2)
N10.0450 (14)0.053 (2)0.0410 (15)0.0037 (14)0.0156 (12)0.0039 (15)
N20.0565 (18)0.075 (3)0.0459 (18)0.0148 (18)0.0120 (15)0.0167 (18)
N30.0428 (14)0.037 (2)0.0476 (17)0.0098 (13)0.0120 (12)0.0068 (15)
N40.0432 (13)0.049 (2)0.0480 (17)0.0025 (14)0.0137 (13)0.0156 (16)
N50.0503 (15)0.043 (2)0.0461 (16)0.0048 (14)0.0225 (13)0.0056 (14)
N60.0488 (15)0.045 (2)0.0516 (17)0.0068 (14)0.0159 (13)0.0114 (15)
N70.0451 (14)0.0350 (18)0.0457 (16)0.0004 (12)0.0143 (12)0.0065 (14)
N80.0425 (13)0.0369 (18)0.0326 (13)0.0078 (12)0.0145 (11)0.0066 (13)
O10.0569 (15)0.062 (2)0.0602 (16)0.0231 (14)0.0095 (13)0.0007 (15)
O1W0.052 (3)0.072 (5)0.074 (4)0.013 (3)0.009 (3)0.005 (3)
O2W0.054 (3)0.073 (5)0.039 (3)0.021 (3)0.017 (2)0.009 (3)
Geometric parameters (Å, º) top
C1—N11.144 (5)C22—N61.401 (5)
C1—Fe11.952 (4)C23—N71.492 (4)
C2—N31.140 (5)C23—C241.513 (4)
C2—Fe11.958 (4)C23—C281.576 (5)
C3—N21.131 (5)C23—C291.579 (5)
C3—Fe11.965 (4)C24—C251.503 (5)
C4—N41.378 (5)C24—H24A0.9700
C4—C51.416 (5)C24—H24B0.9700
C4—H40.9300C25—N81.523 (4)
C5—C61.353 (5)C25—C301.580 (4)
C5—H50.9300C25—H250.9800
C6—C71.403 (6)C26—N81.420 (5)
C6—H60.9300C26—C27i1.523 (5)
C7—C81.378 (5)C26—H26A0.9700
C7—C121.399 (5)C26—H26B0.9700
C8—C91.424 (6)C27—N71.511 (4)
C8—H80.9300C27—C26i1.523 (5)
C9—C101.347 (6)C27—H27A0.9700
C9—H90.9300C27—H27B0.9700
C10—C111.408 (5)C28—H28A0.9600
C10—H100.9300C28—H28B0.9600
C11—N51.349 (5)C28—H28C0.9600
C11—C121.384 (5)C29—H29A0.9600
C12—N41.378 (4)C29—H29B0.9600
C13—O11.206 (5)C29—H29C0.9600
C13—C141.300 (6)C30—H30A0.9600
C13—N51.328 (5)C30—H30B0.9600
C14—N61.378 (5)C30—H30C0.9600
C14—C151.400 (5)Ni1—N7i2.079 (3)
C15—C161.359 (5)Ni1—N72.079 (3)
C15—H150.9300Ni1—N8i2.091 (2)
C16—C171.352 (6)Ni1—N82.091 (2)
C16—H160.9300Ni1—N3i2.114 (3)
C17—C221.388 (5)Ni1—N32.114 (3)
C17—C181.395 (5)Fe1—N61.967 (3)
C18—C191.409 (5)Fe1—N42.047 (3)
C18—H180.9300Fe1—N52.147 (3)
C19—C201.349 (6)N7—H70.9100
C19—H190.9300N8—H8A0.9100
C20—C211.414 (5)O1W—H1WA0.85 (2)
C20—H200.9300O1W—H1WB0.83 (2)
C21—C221.369 (5)O2W—H2WA0.82 (2)
C21—H210.9300O2W—H2WB0.79 (2)
N1—C1—Fe1179.3 (3)N8—C26—H26B109.5
N3—C2—Fe1172.6 (3)C27i—C26—H26B109.5
N2—C3—Fe1150.8 (5)H26A—C26—H26B108.0
N4—C4—C5118.8 (3)N7—C27—C26i109.3 (3)
N4—C4—H4120.6N7—C27—H27A109.8
C5—C4—H4120.6C26i—C27—H27A109.8
C6—C5—C4121.6 (3)N7—C27—H27B109.8
C6—C5—H5119.2C26i—C27—H27B109.8
C4—C5—H5119.2H27A—C27—H27B108.3
C5—C6—C7119.5 (4)C23—C28—H28A109.5
C5—C6—H6120.2C23—C28—H28B109.5
C7—C6—H6120.2H28A—C28—H28B109.5
C8—C7—C12120.5 (4)C23—C28—H28C109.5
C8—C7—C6120.4 (4)H28A—C28—H28C109.5
C12—C7—C6119.0 (3)H28B—C28—H28C109.5
C7—C8—C9119.1 (4)C23—C29—H29A109.5
C7—C8—H8120.5C23—C29—H29B109.5
C9—C8—H8120.5H29A—C29—H29B109.5
C10—C9—C8120.3 (3)C23—C29—H29C109.5
C10—C9—H9119.8H29A—C29—H29C109.5
C8—C9—H9119.8H29B—C29—H29C109.5
C9—C10—C11120.6 (4)C25—C30—H30A109.5
C9—C10—H10119.7C25—C30—H30B109.5
C11—C10—H10119.7H30A—C30—H30B109.5
N5—C11—C12114.0 (3)C25—C30—H30C109.5
N5—C11—C10126.1 (4)H30A—C30—H30C109.5
C12—C11—C10119.8 (3)H30B—C30—H30C109.5
N4—C12—C11119.3 (3)N7i—Ni1—N7180.0
N4—C12—C7121.0 (3)N7i—Ni1—N8i94.38 (11)
C11—C12—C7119.7 (3)N7—Ni1—N8i85.62 (11)
O1—C13—C14113.0 (4)N7i—Ni1—N885.62 (11)
O1—C13—N5124.7 (4)N7—Ni1—N894.38 (11)
C14—C13—N5122.2 (4)N8i—Ni1—N8179.998 (1)
C13—C14—N6115.6 (4)N7i—Ni1—N3i95.69 (12)
C13—C14—C15123.8 (4)N7—Ni1—N3i84.31 (12)
N6—C14—C15119.8 (3)N8i—Ni1—N3i90.98 (11)
C16—C15—C14118.6 (4)N8—Ni1—N3i89.02 (11)
C16—C15—H15120.7N7i—Ni1—N384.31 (12)
C14—C15—H15120.7N7—Ni1—N395.69 (12)
C17—C16—C15123.1 (4)N8i—Ni1—N389.02 (11)
C17—C16—H16118.4N8—Ni1—N390.98 (11)
C15—C16—H16118.4N3i—Ni1—N3179.999 (1)
C16—C17—C22119.2 (4)C1—Fe1—C2173.01 (14)
C16—C17—C18121.3 (4)C1—Fe1—C388.36 (15)
C22—C17—C18119.5 (4)C2—Fe1—C385.30 (15)
C17—C18—C19119.7 (4)C1—Fe1—N692.41 (13)
C17—C18—H18120.2C2—Fe1—N688.74 (13)
C19—C18—H18120.2C3—Fe1—N6124.04 (17)
C20—C19—C18119.9 (3)C1—Fe1—N489.92 (13)
C20—C19—H19120.0C2—Fe1—N491.90 (13)
C18—C19—H19120.0C3—Fe1—N480.47 (16)
C19—C20—C21120.8 (4)N6—Fe1—N4155.42 (12)
C19—C20—H20119.6C1—Fe1—N595.05 (13)
C21—C20—H20119.6C2—Fe1—N591.93 (13)
C22—C21—C20119.4 (4)C3—Fe1—N5157.02 (16)
C22—C21—H21120.3N6—Fe1—N578.60 (12)
C20—C21—H21120.3N4—Fe1—N576.82 (12)
C21—C22—C17120.7 (3)C2—N3—Ni1161.0 (3)
C21—C22—N6119.9 (3)C12—N4—C4119.9 (3)
C17—C22—N6119.4 (3)C12—N4—Fe1114.3 (2)
N7—C23—C24109.1 (3)C4—N4—Fe1125.6 (2)
N7—C23—C28111.5 (3)C13—N5—C11137.8 (3)
C24—C23—C28108.6 (3)C13—N5—Fe1107.5 (2)
N7—C23—C29110.0 (3)C11—N5—Fe1114.7 (2)
C24—C23—C29111.4 (3)C14—N6—C22119.9 (3)
C28—C23—C29106.2 (3)C14—N6—Fe1114.4 (2)
C25—C24—C23120.8 (3)C22—N6—Fe1125.6 (2)
C25—C24—H24A107.1C23—N7—C27116.8 (2)
C23—C24—H24A107.1C23—N7—Ni1123.6 (2)
C25—C24—H24B107.1C27—N7—Ni1105.0 (2)
C23—C24—H24B107.1C23—N7—H7102.8
H24A—C24—H24B106.8C27—N7—H7102.8
C24—C25—N8109.9 (3)Ni1—N7—H7102.8
C24—C25—C30110.6 (3)C26—N8—C25115.7 (3)
N8—C25—C30109.4 (3)C26—N8—Ni1106.2 (2)
C24—C25—H25109.0C25—N8—Ni1113.33 (18)
N8—C25—H25109.0C26—N8—H8A107.1
C30—C25—H25109.0C25—N8—H8A107.1
N8—C26—C27i110.9 (3)Ni1—N8—H8A107.1
N8—C26—H26A109.5H1WA—O1W—H1WB106 (3)
C27i—C26—H26A109.5H2WA—O2W—H2WB120 (4)
N4—C4—C5—C61.1 (6)N5—Fe1—N4—C4176.8 (3)
C4—C5—C6—C70.4 (6)O1—C13—N5—C117.4 (8)
C5—C6—C7—C8179.9 (4)C14—C13—N5—C11175.9 (4)
C5—C6—C7—C122.2 (6)O1—C13—N5—Fe1173.8 (4)
C12—C7—C8—C92.3 (6)C14—C13—N5—Fe13.0 (5)
C6—C7—C8—C9180.0 (4)C12—C11—N5—C13172.3 (4)
C7—C8—C9—C102.2 (6)C10—C11—N5—C133.6 (7)
C8—C9—C10—C111.7 (6)C12—C11—N5—Fe18.9 (4)
C9—C10—C11—N5174.3 (4)C10—C11—N5—Fe1175.2 (3)
C9—C10—C11—C121.4 (6)C1—Fe1—N5—C1399.2 (3)
N5—C11—C12—N43.1 (5)C2—Fe1—N5—C1380.6 (3)
C10—C11—C12—N4179.2 (3)C3—Fe1—N5—C13163.1 (4)
N5—C11—C12—C7174.7 (4)N6—Fe1—N5—C137.8 (3)
C10—C11—C12—C71.5 (6)N4—Fe1—N5—C13172.1 (3)
C8—C7—C12—N4179.7 (3)C1—Fe1—N5—C1180.0 (3)
C6—C7—C12—N42.6 (6)C2—Fe1—N5—C11100.3 (3)
C8—C7—C12—C112.0 (6)C3—Fe1—N5—C1117.8 (5)
C6—C7—C12—C11179.7 (4)N6—Fe1—N5—C11171.4 (3)
O1—C13—C14—N6176.3 (3)N4—Fe1—N5—C118.8 (3)
N5—C13—C14—N66.6 (6)C13—C14—N6—C22168.2 (4)
O1—C13—C14—C156.0 (6)C15—C14—N6—C222.5 (5)
N5—C13—C14—C15176.9 (4)C13—C14—N6—Fe113.6 (5)
C13—C14—C15—C16166.2 (4)C15—C14—N6—Fe1175.7 (3)
N6—C14—C15—C163.7 (6)C21—C22—N6—C14177.3 (4)
C14—C15—C16—C173.0 (7)C17—C22—N6—C140.4 (6)
C15—C16—C17—C220.9 (7)C21—C22—N6—Fe14.8 (5)
C15—C16—C17—C18179.4 (4)C17—C22—N6—Fe1177.6 (3)
C16—C17—C18—C19179.6 (4)C1—Fe1—N6—C14106.1 (3)
C22—C17—C18—C191.1 (7)C2—Fe1—N6—C1480.8 (3)
C17—C18—C19—C200.6 (7)C3—Fe1—N6—C14164.3 (3)
C18—C19—C20—C211.4 (6)N4—Fe1—N6—C1411.0 (5)
C19—C20—C21—C222.9 (6)N5—Fe1—N6—C1411.4 (3)
C20—C21—C22—C172.4 (6)C1—Fe1—N6—C2275.9 (3)
C20—C21—C22—N6180.0 (3)C2—Fe1—N6—C2297.2 (3)
C16—C17—C22—C21178.1 (4)C3—Fe1—N6—C2213.7 (4)
C18—C17—C22—C210.5 (6)N4—Fe1—N6—C22171.0 (3)
C16—C17—C22—N60.5 (6)N5—Fe1—N6—C22170.6 (3)
C18—C17—C22—N6178.1 (4)C24—C23—N7—C27173.9 (3)
N7—C23—C24—C2564.1 (4)C28—C23—N7—C2766.2 (4)
C28—C23—C24—C25174.2 (3)C29—C23—N7—C2751.4 (4)
C29—C23—C24—C2557.5 (4)C24—C23—N7—Ni140.7 (4)
C23—C24—C25—N878.0 (4)C28—C23—N7—Ni1160.7 (2)
C23—C24—C25—C30161.2 (3)C29—C23—N7—Ni181.7 (3)
N2—C3—Fe1—C1113.9 (7)C26i—C27—N7—C23178.6 (3)
N2—C3—Fe1—C263.2 (7)C26i—C27—N7—Ni137.6 (3)
N2—C3—Fe1—N622.1 (7)N8i—Ni1—N7—C23150.3 (3)
N2—C3—Fe1—N4156.0 (7)N8—Ni1—N7—C2329.7 (3)
N2—C3—Fe1—N5147.1 (6)N3i—Ni1—N7—C23118.2 (3)
N7i—Ni1—N3—C233.8 (8)N3—Ni1—N7—C2361.8 (3)
N7—Ni1—N3—C2146.2 (8)N8i—Ni1—N7—C2712.8 (2)
N8i—Ni1—N3—C2128.3 (9)N8—Ni1—N7—C27167.2 (2)
N8—Ni1—N3—C251.7 (9)N3i—Ni1—N7—C27104.2 (2)
C11—C12—N4—C4178.9 (3)N3—Ni1—N7—C2775.8 (2)
C7—C12—N4—C41.1 (5)C27i—C26—N8—C25167.7 (3)
C11—C12—N4—Fe14.6 (4)C27i—C26—N8—Ni141.1 (3)
C7—C12—N4—Fe1177.7 (3)C24—C25—N8—C26177.5 (3)
C5—C4—N4—C120.7 (5)C30—C25—N8—C2655.9 (4)
C5—C4—N4—Fe1175.4 (3)C24—C25—N8—Ni159.6 (3)
C1—Fe1—N4—C1288.3 (3)C30—C25—N8—Ni1178.8 (2)
C2—Fe1—N4—C1298.4 (3)N7i—Ni1—N8—C2615.4 (2)
C3—Fe1—N4—C12176.7 (3)N7—Ni1—N8—C26164.6 (2)
N6—Fe1—N4—C127.3 (5)N3i—Ni1—N8—C26111.1 (2)
N5—Fe1—N4—C126.9 (2)N3—Ni1—N8—C2668.9 (2)
C1—Fe1—N4—C488.0 (3)N7i—Ni1—N8—C25143.4 (2)
C2—Fe1—N4—C485.3 (3)N7—Ni1—N8—C2536.6 (2)
C3—Fe1—N4—C40.4 (3)N3i—Ni1—N8—C25120.8 (2)
N6—Fe1—N4—C4176.4 (3)N3—Ni1—N8—C2559.2 (2)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2WA···O10.82 (2)2.14 (2)2.882 (5)151 (5)
O1W—H1WA···O2W0.85 (2)1.87 (7)2.623 (8)147 (11)
N8—H8A···O1Wii0.912.193.091 (7)169
Symmetry code: (ii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Fe2Ni(C19H12N3O)2(CN)6(C16H36N4)]·2.07H2O
Mr1244.89
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)9.4145 (13), 15.7309 (17), 20.590 (2)
β (°) 101.781 (3)
V3)2985.1 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.28 × 0.24 × 0.22
Data collection
DiffractometerRigaku Saturn 724 CCD
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.796, 0.835
No. of measured, independent and
observed [I > 2σ(I)] reflections
12764, 5722, 4078
Rint0.022
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.156, 0.97
No. of reflections5722
No. of parameters402
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.42

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2WA···O10.82 (2)2.136 (19)2.882 (5)151 (5)
O1W—H1WA···O2W0.85 (2)1.87 (7)2.623 (8)147 (11)
N8—H8A···O1Wi0.912.193.091 (7)169.4
Symmetry code: (i) x+1, y1/2, z+3/2.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (No. 51072071) for financial support.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCurtis, N. F. (1964). J. Chem. Soc. pp. 2644–2650.  CrossRef Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Coporation, Tokyo, Japan.  Google Scholar
First citationKim, J., Kwak, H. Y., Yoon, J. H., Ryu, D. W., Yoo, I. Y., Yang, N., Cho, B. K., Park, J. G., Lee, H. & Hong, C. S. (2009). Inorg. Chem. 48, 2956–2966.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, Y., Zhou, H. & Shen, X. (2012). Acta Cryst. E68, o1688.  CSD CrossRef IUCr Journals Google Scholar
First citationLiu, T., Zhang, Y. J., Kanegawa, S. & Sato, O. (2010). Angew. Chem. Int. Ed. 49, 8645–8648.  Web of Science CSD CrossRef CAS Google Scholar
First citationPanja, A., Guionneau, P., Jeon, I., Holmes, S. M., Clérac, R. & Mathonière, C. (2012). Inorg. Chem. 51, 12350–12359.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds