metal-organic compounds
Di-μ-cyanido-tetracyanido(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)[N-(quinolin-8-yl)quinoline-2-carboxamidato]diiron(III)nickel(II) 2.07-hydrate
aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: xiaopingshen@163.com
The 2Ni(C19H12N3O)2(CN)6(C16H36N4)]·2.07H2O, contains one [Fe(qcq)(CN)3]− anion, half a [Ni(teta)]2+ cation and two partially occupied interstitial water molecules [qcq− is the N-(quinolin-8-yl)quinoline-2-carboxamidate anion and teta is 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane]. In the complex molecule, two [Fe(qcq)(CN)3]− anions additionally coordinate the central [Ni(teta)]2+ cation through cyanide groups in a trans mode, resulting in a trinuclear structure with the Ni2+ cation lying on an inversion centre. The two interstitial water molecules are partially occupied, with occupancy factors of 0.528 (10) and 0.506 (9). O—H⋯O and O—H⋯N hydrogen bonding involving the two lattice water molecules and the carbonyl function and a teta N atom in an adjacent cluster leads to the formation of layers extending parallel to (010).
of the title complex, [FeRelated literature
For the synthesis and background to low-dimensional systems based on modified hexacyanidometalates, see: Liu et al. (2010); Kim et al. (2009); Curtis et al. (1964). For related structures, see: Li et al. (2012); Panja et al. (2012).
Experimental
Crystal data
|
|
Data collection: CrystalClear (Rigaku, 2008); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
https://doi.org/10.1107/S1600536813010234/zl2544sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813010234/zl2544Isup2.hkl
The complex was obtained as black block crystals by slow diffusion of a methanol solution (5 ml) of PPh4[Fe(qcq)(CN)3] (0.10 mmol) (Kim et al., 2009) and a water/DMF (v:v = 7:8) solution (15 ml) of [Ni(teta)](ClO4)2 (0.10 mmol) (Curtis et al., 1964) through a H-shaped tube at room temperature for about two weeks. The resulting crystals were collected, washed with H2O and CH3OH, respectively, and dried in air. Anal. found: C, 57.70; H, 5.23; N, 18.04; Fe, 8.92; Ni, 4.87%. Calcd for C60H64.14Fe2N16NiO4.07: C, 57.95; H, 5.19; N, 18.02; Fe, 8.98; Ni, 4.72%.
All non-H atoms were refined with anisotropic thermal parameters. The C– and N-bound H atoms were placed in idealized positions and included in the
in a riding mode (C—H = 0.95 Å, N—H = 0.88 Å) with Uiso for H assigned as 1.2 or 1.5 times Ueq of the attached atoms. The oxygen atoms (O1W, O2W) of interstitial water molecules are refined with partial occupancy factors of 0.528 (10) for the water molecule of O1W and 0.506 (9) for that of O2W, respectively. The water H-atoms were located from difference maps and were refined with a O—H and H···H distance restraints of 0.82 (2) Å) and 1.36 (2) Å and with Uiso for H assigned as 1.5 times Ueq of the attached atoms. The H atom H2WA was further restrained to be 2.10 (2) Å from O1 to rationalize the hydrogen bonds interactions.Modified hexacyanometalates, [Fe(qcq)(CN)3]- (qcq- = 8-(2-quinoline-2-carboxamido)quinoline anion) have been shown to be effective building blocks that can be used instead of hexacyanometalates for the design of low dimensional assemblies (Liu et al., 2010). The capping ligand qcq- (Li et al., 2012) allows to limit
or polymerization effects by partially blocking the coordination sites around hexacyanometalates, and promotes the formation of low-dimensional structures. More importantly, it plays a crucial role in reducing the molecular symmetry, enhancing the anisotropy, and tuning the electronic, steric demand and solubility properties of derived complexes (Panja et al., 2012). However, to the best of our knowledge, low dimensional compounds based on [Fe(qcq)(CN)3]- as a ligand have been rarely explored and only a few related complexes have been reported so far. Therefore, the investigation of related low dimensional assemblies based on [Fe(qcq)(CN)3]- is of significance. Considering that the macrocyclic cation of [Ni(teta)]2+ (teta = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane) can behave as a good our synthesis strategy is to employ [Fe(qcq)(CN)3]- and [Ni(teta)]2+ as precursors to construct low dimensional assemblies. Herein, the of a new trinuclear complex, [{Ni(teta)}{Fe(qcq)(CN)3}2].2H2O is presented.The molecular structure of the title complex is shown in Fig. 1. Within the neutral trinuclear clusters, two [Fe(qcq)(CN)3]- anions coordinate to the central [Ni(teta)]2+ cation in a trans-mode, resulting in a nearly linear and centrosymmetric structure, where the Ni atom lies on an inversion centre. For the moieties of [Fe(qcq)(CN)3]-, the central Fe ion is coordinated by three C atoms from cyanide groups (Fe—C(cyanide) bond lengths: 1.951 (4)–1.965 (4) Å) and three N atoms from qcq- (Fe—N(qcq) bond lengths: (1.970 (4)–2.146 (3) Å), affording a distorted octahedral coordination for the metal centre. The Fe—N (amide) bond length (1.970 (4) Å) is shorter than those for the Fe—N (aromatic rings) (2.045 (4)–2.146 (3) Å), which can be attributed to the strong σ-donor effect of the deprotonated amide. The bond angles of Fe1—C1—N1 and Fe1—C2—N3 remain almost linear (172.6 (3)–179.1 (4)°), while the Fe1—C3—N2 one deviates significantly from linearity (150.7 (5) °). The bond angle of Ni—N—C(cyanide) also deviates from linearity (161.1 (3)°), which is comparable to values observed in many other cyano-bridged bimetallic assemblies (Kim et al., 2009). For the structural unit of [Ni(teta)]2+, the equatorial sites of the central Ni ion are occupied by four nitrogen atoms from the macrocyclic ligand of teta (Ni—Nmacro bond lengths: 2.077 (3)–2.092 (3) Å), while the axial positions are occupied by Ncyanide from [Fe(qcq)(CN)3]- (Ni—Ncyanide bond lengths: 2.116 (3) Å). The intramolecular Fe···Ni distance is 5.101 (3) Å. For the intermolecular interactions, the interstitial water molecules are positioned between the clusters and linked to the nitrogen atom of teta and the oxygen atom of adjacent clusters via hydrogen bonds, further extending the dimensionality of the structure to a supramolecular network, as shown in Fig. 2.
For the synthesis and background to low-dimensional systems based on modified hexacyanometalates, see: Liu et al. (2010); Kim et al. (2009); Curtis et al. (1964). For related structures, see: Li et al. (2012); Panja et al. (2012). Scheme should show .2.07H2O
Data collection: CrystalClear (Rigaku, 2008); cell
CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Fe2Ni(C19H12N3O)2(CN)6(C16H36N4)]·2.07H2O | F(000) = 1297.4 |
Mr = 1244.89 | Dx = 1.384 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3735 reflections |
a = 9.4145 (13) Å | θ = 2.1–23.4° |
b = 15.7309 (17) Å | µ = 0.85 mm−1 |
c = 20.590 (2) Å | T = 291 K |
β = 101.781 (3)° | Block, black |
V = 2985.1 (6) Å3 | 0.28 × 0.24 × 0.22 mm |
Z = 2 |
Rigaku Saturn 724 CCD diffractometer | 5722 independent reflections |
Radiation source: fine-focus sealed tube | 4078 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
φ and ω scans | θmax = 26.0°, θmin = 3.3° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −11→11 |
Tmin = 0.796, Tmax = 0.835 | k = 0→19 |
12764 measured reflections | l = 0→25 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.156 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.97 | w = 1/[σ2(Fo2) + (0.095P)2] where P = (Fo2 + 2Fc2)/3 |
5722 reflections | (Δ/σ)max < 0.001 |
402 parameters | Δρmax = 0.42 e Å−3 |
7 restraints | Δρmin = −0.42 e Å−3 |
[Fe2Ni(C19H12N3O)2(CN)6(C16H36N4)]·2.07H2O | V = 2985.1 (6) Å3 |
Mr = 1244.89 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.4145 (13) Å | µ = 0.85 mm−1 |
b = 15.7309 (17) Å | T = 291 K |
c = 20.590 (2) Å | 0.28 × 0.24 × 0.22 mm |
β = 101.781 (3)° |
Rigaku Saturn 724 CCD diffractometer | 5722 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 4078 reflections with I > 2σ(I) |
Tmin = 0.796, Tmax = 0.835 | Rint = 0.022 |
12764 measured reflections |
R[F2 > 2σ(F2)] = 0.057 | 7 restraints |
wR(F2) = 0.156 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.97 | Δρmax = 0.42 e Å−3 |
5722 reflections | Δρmin = −0.42 e Å−3 |
402 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. the restraints that were used for the refinement of the water H atoms are: DFIX 2.1 H2WA O1 DFIX 1.36 H1WA H1WB H2WA H2WB DFIX 0.82 O1W H1WA O1W H1WB O2W H2WA O2W H2WB |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.6080 (3) | 0.3867 (2) | 0.85132 (16) | 0.0385 (8) | |
C2 | 0.4738 (3) | 0.1784 (2) | 0.92238 (15) | 0.0381 (8) | |
C3 | 0.6764 (4) | 0.2943 (3) | 0.9657 (2) | 0.0603 (12) | |
C4 | 0.4671 (4) | 0.3845 (2) | 1.00163 (18) | 0.0439 (8) | |
H4 | 0.5580 | 0.3678 | 1.0250 | 0.053* | |
C5 | 0.3788 (4) | 0.4394 (3) | 1.03091 (17) | 0.0475 (10) | |
H5 | 0.4135 | 0.4595 | 1.0737 | 0.057* | |
C6 | 0.2454 (4) | 0.4634 (3) | 0.99820 (18) | 0.0535 (10) | |
H6 | 0.1895 | 0.4999 | 1.0182 | 0.064* | |
C7 | 0.1919 (4) | 0.4330 (3) | 0.93380 (19) | 0.0507 (10) | |
C8 | 0.0562 (4) | 0.4568 (3) | 0.89958 (18) | 0.0479 (9) | |
H8 | −0.0011 | 0.4932 | 0.9188 | 0.057* | |
C9 | 0.0051 (4) | 0.4247 (3) | 0.83428 (19) | 0.0556 (11) | |
H9 | −0.0875 | 0.4387 | 0.8113 | 0.067* | |
C10 | 0.0903 (4) | 0.3742 (3) | 0.80565 (18) | 0.0480 (9) | |
H10 | 0.0570 | 0.3549 | 0.7626 | 0.058* | |
C11 | 0.2293 (4) | 0.3504 (3) | 0.84038 (18) | 0.0492 (9) | |
C12 | 0.2803 (3) | 0.3806 (3) | 0.90398 (17) | 0.0431 (8) | |
C13 | 0.3175 (4) | 0.2439 (3) | 0.76782 (19) | 0.0531 (10) | |
C14 | 0.4306 (4) | 0.2005 (3) | 0.76050 (17) | 0.0470 (9) | |
C15 | 0.4349 (4) | 0.1491 (3) | 0.70543 (19) | 0.0535 (10) | |
H15 | 0.3499 | 0.1343 | 0.6759 | 0.064* | |
C16 | 0.5658 (4) | 0.1213 (3) | 0.6960 (2) | 0.0601 (11) | |
H16 | 0.5689 | 0.0894 | 0.6583 | 0.072* | |
C17 | 0.6919 (4) | 0.1378 (3) | 0.73891 (19) | 0.0549 (10) | |
C18 | 0.8243 (4) | 0.1087 (3) | 0.7271 (2) | 0.0565 (11) | |
H18 | 0.8272 | 0.0769 | 0.6893 | 0.068* | |
C19 | 0.9535 (4) | 0.1276 (3) | 0.7727 (2) | 0.0536 (10) | |
H19 | 1.0420 | 0.1080 | 0.7652 | 0.064* | |
C20 | 0.9488 (4) | 0.1744 (3) | 0.8271 (2) | 0.0539 (10) | |
H20 | 1.0342 | 0.1857 | 0.8576 | 0.065* | |
C21 | 0.8156 (4) | 0.2063 (3) | 0.8384 (2) | 0.0534 (10) | |
H21 | 0.8136 | 0.2406 | 0.8750 | 0.064* | |
C22 | 0.6895 (4) | 0.1863 (3) | 0.79498 (18) | 0.0462 (9) | |
C23 | 0.3339 (3) | −0.0867 (2) | 0.86776 (16) | 0.0393 (8) | |
C24 | 0.4859 (4) | −0.1054 (3) | 0.85829 (17) | 0.0447 (9) | |
H24A | 0.5204 | −0.1545 | 0.8855 | 0.054* | |
H24B | 0.4782 | −0.1227 | 0.8125 | 0.054* | |
C25 | 0.6028 (4) | −0.0390 (2) | 0.87275 (16) | 0.0393 (8) | |
H25 | 0.5618 | 0.0160 | 0.8561 | 0.047* | |
C26 | 0.7755 (4) | 0.0258 (3) | 0.96768 (17) | 0.0453 (9) | |
H26A | 0.7525 | 0.0793 | 0.9444 | 0.054* | |
H26B | 0.8632 | 0.0035 | 0.9562 | 0.054* | |
C27 | 0.1984 (4) | −0.0414 (3) | 0.95781 (16) | 0.0449 (9) | |
H27A | 0.1243 | −0.0845 | 0.9453 | 0.054* | |
H27B | 0.1649 | 0.0106 | 0.9342 | 0.054* | |
C28 | 0.2337 (4) | −0.1648 (3) | 0.84162 (17) | 0.0476 (9) | |
H28A | 0.1373 | −0.1542 | 0.8483 | 0.071* | |
H28B | 0.2716 | −0.2150 | 0.8655 | 0.071* | |
H28C | 0.2312 | −0.1728 | 0.7952 | 0.071* | |
C29 | 0.2665 (4) | −0.0076 (3) | 0.82503 (19) | 0.0472 (9) | |
H29A | 0.2796 | 0.0425 | 0.8522 | 0.071* | |
H29B | 0.1648 | −0.0171 | 0.8085 | 0.071* | |
H29C | 0.3142 | −0.0003 | 0.7884 | 0.071* | |
C30 | 0.7320 (4) | −0.0618 (3) | 0.83749 (18) | 0.0462 (9) | |
H30A | 0.7018 | −0.1060 | 0.8054 | 0.069* | |
H30B | 0.8137 | −0.0811 | 0.8700 | 0.069* | |
H30C | 0.7589 | −0.0123 | 0.8156 | 0.069* | |
Ni1 | 0.5000 | 0.0000 | 1.0000 | 0.0353 (2) | |
Fe1 | 0.52931 (5) | 0.28363 (4) | 0.88333 (2) | 0.04223 (18) | |
N1 | 0.6534 (3) | 0.4476 (2) | 0.83299 (14) | 0.0454 (7) | |
N2 | 0.7764 (3) | 0.2701 (3) | 1.00090 (15) | 0.0622 (10) | |
N3 | 0.4567 (3) | 0.1146 (2) | 0.94597 (14) | 0.0420 (7) | |
N4 | 0.4158 (3) | 0.3561 (2) | 0.93779 (15) | 0.0461 (8) | |
N5 | 0.3195 (3) | 0.2951 (2) | 0.81931 (14) | 0.0445 (7) | |
N6 | 0.5568 (3) | 0.2176 (2) | 0.80568 (15) | 0.0478 (8) | |
N7 | 0.3381 (3) | −0.0703 (2) | 0.93949 (14) | 0.0412 (7) | |
H7 | 0.3509 | −0.1232 | 0.9576 | 0.049* | |
N8 | 0.6599 (3) | −0.0325 (2) | 0.94730 (12) | 0.0363 (6) | |
H8A | 0.6936 | −0.0848 | 0.9616 | 0.044* | |
O1 | 0.2120 (3) | 0.2298 (2) | 0.72506 (14) | 0.0600 (8) | |
O1W | 0.2133 (5) | 0.2873 (4) | 0.5217 (3) | 0.066 (2) | 0.528 (10) |
H1WA | 0.142 (7) | 0.280 (7) | 0.540 (4) | 0.100* | 0.528 (10) |
H1WB | 0.186 (9) | 0.273 (8) | 0.4823 (19) | 0.100* | 0.528 (10) |
O2W | 0.0492 (5) | 0.2088 (4) | 0.5914 (2) | 0.059 (2) | 0.506 (9) |
H2WA | 0.089 (9) | 0.196 (3) | 0.6296 (15) | 0.088* | 0.506 (9) |
H2WB | 0.051 (11) | 0.177 (4) | 0.562 (2) | 0.088* | 0.506 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0440 (16) | 0.032 (2) | 0.0422 (18) | 0.0046 (15) | 0.0141 (14) | 0.0035 (16) |
C2 | 0.0486 (17) | 0.040 (2) | 0.0293 (16) | 0.0066 (15) | 0.0166 (13) | 0.0102 (15) |
C3 | 0.0380 (17) | 0.065 (3) | 0.071 (3) | −0.0173 (17) | −0.0054 (17) | 0.033 (2) |
C4 | 0.0407 (15) | 0.039 (2) | 0.053 (2) | 0.0031 (16) | 0.0106 (14) | 0.0069 (17) |
C5 | 0.0520 (18) | 0.053 (3) | 0.0423 (18) | −0.0232 (17) | 0.0210 (15) | −0.0186 (18) |
C6 | 0.064 (2) | 0.053 (3) | 0.050 (2) | 0.013 (2) | 0.0258 (18) | 0.015 (2) |
C7 | 0.0521 (19) | 0.041 (2) | 0.063 (2) | 0.0119 (17) | 0.0223 (17) | 0.0165 (19) |
C8 | 0.0507 (18) | 0.049 (3) | 0.049 (2) | 0.0148 (17) | 0.0218 (16) | 0.0165 (19) |
C9 | 0.0426 (17) | 0.070 (3) | 0.057 (2) | 0.0203 (18) | 0.0152 (16) | 0.028 (2) |
C10 | 0.0452 (17) | 0.051 (3) | 0.0476 (19) | −0.0102 (17) | 0.0088 (15) | −0.0018 (18) |
C11 | 0.0509 (18) | 0.047 (3) | 0.053 (2) | 0.0161 (17) | 0.0185 (16) | 0.0152 (19) |
C12 | 0.0443 (17) | 0.043 (2) | 0.0457 (19) | 0.0084 (16) | 0.0187 (15) | 0.0112 (17) |
C13 | 0.066 (2) | 0.047 (3) | 0.043 (2) | −0.0011 (19) | 0.0043 (18) | −0.0028 (19) |
C14 | 0.0513 (18) | 0.052 (3) | 0.0377 (18) | −0.0157 (17) | 0.0102 (14) | −0.0001 (17) |
C15 | 0.0537 (19) | 0.054 (3) | 0.054 (2) | −0.0229 (18) | 0.0128 (16) | −0.017 (2) |
C16 | 0.054 (2) | 0.060 (3) | 0.069 (3) | −0.002 (2) | 0.0193 (19) | −0.004 (2) |
C17 | 0.058 (2) | 0.057 (3) | 0.056 (2) | −0.0156 (19) | 0.0268 (18) | −0.015 (2) |
C18 | 0.062 (2) | 0.059 (3) | 0.056 (2) | −0.009 (2) | 0.0284 (19) | −0.018 (2) |
C19 | 0.0438 (18) | 0.055 (3) | 0.065 (2) | 0.0123 (17) | 0.0201 (17) | 0.018 (2) |
C20 | 0.0451 (17) | 0.055 (3) | 0.065 (2) | 0.0106 (17) | 0.0180 (17) | 0.023 (2) |
C21 | 0.0485 (18) | 0.046 (3) | 0.072 (3) | 0.0142 (17) | 0.0268 (18) | 0.021 (2) |
C22 | 0.0518 (19) | 0.043 (2) | 0.050 (2) | −0.0107 (17) | 0.0247 (16) | −0.0084 (18) |
C23 | 0.0411 (15) | 0.035 (2) | 0.0445 (18) | 0.0026 (14) | 0.0162 (14) | 0.0054 (16) |
C24 | 0.0525 (18) | 0.044 (2) | 0.0407 (18) | 0.0126 (17) | 0.0179 (15) | −0.0069 (17) |
C25 | 0.0500 (17) | 0.036 (2) | 0.0348 (16) | 0.0095 (15) | 0.0165 (14) | 0.0013 (16) |
C26 | 0.0458 (17) | 0.044 (2) | 0.050 (2) | 0.0035 (16) | 0.0183 (15) | −0.0004 (18) |
C27 | 0.0433 (16) | 0.050 (3) | 0.0411 (18) | 0.0061 (16) | 0.0088 (14) | 0.0074 (18) |
C28 | 0.0572 (19) | 0.040 (2) | 0.0416 (19) | −0.0095 (17) | 0.0016 (15) | −0.0048 (17) |
C29 | 0.0477 (19) | 0.045 (3) | 0.046 (2) | −0.0012 (15) | 0.0013 (16) | 0.0163 (17) |
C30 | 0.0503 (17) | 0.043 (2) | 0.049 (2) | 0.0150 (16) | 0.0192 (15) | 0.0126 (18) |
Ni1 | 0.0407 (3) | 0.0359 (4) | 0.0322 (3) | 0.0059 (2) | 0.0141 (3) | 0.0083 (3) |
Fe1 | 0.0481 (3) | 0.0385 (4) | 0.0415 (3) | −0.0006 (2) | 0.0123 (2) | 0.0128 (2) |
N1 | 0.0450 (14) | 0.053 (2) | 0.0410 (15) | −0.0037 (14) | 0.0156 (12) | 0.0039 (15) |
N2 | 0.0565 (18) | 0.075 (3) | 0.0459 (18) | −0.0148 (18) | −0.0120 (15) | 0.0167 (18) |
N3 | 0.0428 (14) | 0.037 (2) | 0.0476 (17) | 0.0098 (13) | 0.0120 (12) | 0.0068 (15) |
N4 | 0.0432 (13) | 0.049 (2) | 0.0480 (17) | −0.0025 (14) | 0.0137 (13) | 0.0156 (16) |
N5 | 0.0503 (15) | 0.043 (2) | 0.0461 (16) | −0.0048 (14) | 0.0225 (13) | 0.0056 (14) |
N6 | 0.0488 (15) | 0.045 (2) | 0.0516 (17) | −0.0068 (14) | 0.0159 (13) | 0.0114 (15) |
N7 | 0.0451 (14) | 0.0350 (18) | 0.0457 (16) | 0.0004 (12) | 0.0143 (12) | 0.0065 (14) |
N8 | 0.0425 (13) | 0.0369 (18) | 0.0326 (13) | 0.0078 (12) | 0.0145 (11) | 0.0066 (13) |
O1 | 0.0569 (15) | 0.062 (2) | 0.0602 (16) | −0.0231 (14) | 0.0095 (13) | 0.0007 (15) |
O1W | 0.052 (3) | 0.072 (5) | 0.074 (4) | −0.013 (3) | 0.009 (3) | −0.005 (3) |
O2W | 0.054 (3) | 0.073 (5) | 0.039 (3) | −0.021 (3) | −0.017 (2) | −0.009 (3) |
C1—N1 | 1.144 (5) | C22—N6 | 1.401 (5) |
C1—Fe1 | 1.952 (4) | C23—N7 | 1.492 (4) |
C2—N3 | 1.140 (5) | C23—C24 | 1.513 (4) |
C2—Fe1 | 1.958 (4) | C23—C28 | 1.576 (5) |
C3—N2 | 1.131 (5) | C23—C29 | 1.579 (5) |
C3—Fe1 | 1.965 (4) | C24—C25 | 1.503 (5) |
C4—N4 | 1.378 (5) | C24—H24A | 0.9700 |
C4—C5 | 1.416 (5) | C24—H24B | 0.9700 |
C4—H4 | 0.9300 | C25—N8 | 1.523 (4) |
C5—C6 | 1.353 (5) | C25—C30 | 1.580 (4) |
C5—H5 | 0.9300 | C25—H25 | 0.9800 |
C6—C7 | 1.403 (6) | C26—N8 | 1.420 (5) |
C6—H6 | 0.9300 | C26—C27i | 1.523 (5) |
C7—C8 | 1.378 (5) | C26—H26A | 0.9700 |
C7—C12 | 1.399 (5) | C26—H26B | 0.9700 |
C8—C9 | 1.424 (6) | C27—N7 | 1.511 (4) |
C8—H8 | 0.9300 | C27—C26i | 1.523 (5) |
C9—C10 | 1.347 (6) | C27—H27A | 0.9700 |
C9—H9 | 0.9300 | C27—H27B | 0.9700 |
C10—C11 | 1.408 (5) | C28—H28A | 0.9600 |
C10—H10 | 0.9300 | C28—H28B | 0.9600 |
C11—N5 | 1.349 (5) | C28—H28C | 0.9600 |
C11—C12 | 1.384 (5) | C29—H29A | 0.9600 |
C12—N4 | 1.378 (4) | C29—H29B | 0.9600 |
C13—O1 | 1.206 (5) | C29—H29C | 0.9600 |
C13—C14 | 1.300 (6) | C30—H30A | 0.9600 |
C13—N5 | 1.328 (5) | C30—H30B | 0.9600 |
C14—N6 | 1.378 (5) | C30—H30C | 0.9600 |
C14—C15 | 1.400 (5) | Ni1—N7i | 2.079 (3) |
C15—C16 | 1.359 (5) | Ni1—N7 | 2.079 (3) |
C15—H15 | 0.9300 | Ni1—N8i | 2.091 (2) |
C16—C17 | 1.352 (6) | Ni1—N8 | 2.091 (2) |
C16—H16 | 0.9300 | Ni1—N3i | 2.114 (3) |
C17—C22 | 1.388 (5) | Ni1—N3 | 2.114 (3) |
C17—C18 | 1.395 (5) | Fe1—N6 | 1.967 (3) |
C18—C19 | 1.409 (5) | Fe1—N4 | 2.047 (3) |
C18—H18 | 0.9300 | Fe1—N5 | 2.147 (3) |
C19—C20 | 1.349 (6) | N7—H7 | 0.9100 |
C19—H19 | 0.9300 | N8—H8A | 0.9100 |
C20—C21 | 1.414 (5) | O1W—H1WA | 0.85 (2) |
C20—H20 | 0.9300 | O1W—H1WB | 0.83 (2) |
C21—C22 | 1.369 (5) | O2W—H2WA | 0.82 (2) |
C21—H21 | 0.9300 | O2W—H2WB | 0.79 (2) |
N1—C1—Fe1 | 179.3 (3) | N8—C26—H26B | 109.5 |
N3—C2—Fe1 | 172.6 (3) | C27i—C26—H26B | 109.5 |
N2—C3—Fe1 | 150.8 (5) | H26A—C26—H26B | 108.0 |
N4—C4—C5 | 118.8 (3) | N7—C27—C26i | 109.3 (3) |
N4—C4—H4 | 120.6 | N7—C27—H27A | 109.8 |
C5—C4—H4 | 120.6 | C26i—C27—H27A | 109.8 |
C6—C5—C4 | 121.6 (3) | N7—C27—H27B | 109.8 |
C6—C5—H5 | 119.2 | C26i—C27—H27B | 109.8 |
C4—C5—H5 | 119.2 | H27A—C27—H27B | 108.3 |
C5—C6—C7 | 119.5 (4) | C23—C28—H28A | 109.5 |
C5—C6—H6 | 120.2 | C23—C28—H28B | 109.5 |
C7—C6—H6 | 120.2 | H28A—C28—H28B | 109.5 |
C8—C7—C12 | 120.5 (4) | C23—C28—H28C | 109.5 |
C8—C7—C6 | 120.4 (4) | H28A—C28—H28C | 109.5 |
C12—C7—C6 | 119.0 (3) | H28B—C28—H28C | 109.5 |
C7—C8—C9 | 119.1 (4) | C23—C29—H29A | 109.5 |
C7—C8—H8 | 120.5 | C23—C29—H29B | 109.5 |
C9—C8—H8 | 120.5 | H29A—C29—H29B | 109.5 |
C10—C9—C8 | 120.3 (3) | C23—C29—H29C | 109.5 |
C10—C9—H9 | 119.8 | H29A—C29—H29C | 109.5 |
C8—C9—H9 | 119.8 | H29B—C29—H29C | 109.5 |
C9—C10—C11 | 120.6 (4) | C25—C30—H30A | 109.5 |
C9—C10—H10 | 119.7 | C25—C30—H30B | 109.5 |
C11—C10—H10 | 119.7 | H30A—C30—H30B | 109.5 |
N5—C11—C12 | 114.0 (3) | C25—C30—H30C | 109.5 |
N5—C11—C10 | 126.1 (4) | H30A—C30—H30C | 109.5 |
C12—C11—C10 | 119.8 (3) | H30B—C30—H30C | 109.5 |
N4—C12—C11 | 119.3 (3) | N7i—Ni1—N7 | 180.0 |
N4—C12—C7 | 121.0 (3) | N7i—Ni1—N8i | 94.38 (11) |
C11—C12—C7 | 119.7 (3) | N7—Ni1—N8i | 85.62 (11) |
O1—C13—C14 | 113.0 (4) | N7i—Ni1—N8 | 85.62 (11) |
O1—C13—N5 | 124.7 (4) | N7—Ni1—N8 | 94.38 (11) |
C14—C13—N5 | 122.2 (4) | N8i—Ni1—N8 | 179.998 (1) |
C13—C14—N6 | 115.6 (4) | N7i—Ni1—N3i | 95.69 (12) |
C13—C14—C15 | 123.8 (4) | N7—Ni1—N3i | 84.31 (12) |
N6—C14—C15 | 119.8 (3) | N8i—Ni1—N3i | 90.98 (11) |
C16—C15—C14 | 118.6 (4) | N8—Ni1—N3i | 89.02 (11) |
C16—C15—H15 | 120.7 | N7i—Ni1—N3 | 84.31 (12) |
C14—C15—H15 | 120.7 | N7—Ni1—N3 | 95.69 (12) |
C17—C16—C15 | 123.1 (4) | N8i—Ni1—N3 | 89.02 (11) |
C17—C16—H16 | 118.4 | N8—Ni1—N3 | 90.98 (11) |
C15—C16—H16 | 118.4 | N3i—Ni1—N3 | 179.999 (1) |
C16—C17—C22 | 119.2 (4) | C1—Fe1—C2 | 173.01 (14) |
C16—C17—C18 | 121.3 (4) | C1—Fe1—C3 | 88.36 (15) |
C22—C17—C18 | 119.5 (4) | C2—Fe1—C3 | 85.30 (15) |
C17—C18—C19 | 119.7 (4) | C1—Fe1—N6 | 92.41 (13) |
C17—C18—H18 | 120.2 | C2—Fe1—N6 | 88.74 (13) |
C19—C18—H18 | 120.2 | C3—Fe1—N6 | 124.04 (17) |
C20—C19—C18 | 119.9 (3) | C1—Fe1—N4 | 89.92 (13) |
C20—C19—H19 | 120.0 | C2—Fe1—N4 | 91.90 (13) |
C18—C19—H19 | 120.0 | C3—Fe1—N4 | 80.47 (16) |
C19—C20—C21 | 120.8 (4) | N6—Fe1—N4 | 155.42 (12) |
C19—C20—H20 | 119.6 | C1—Fe1—N5 | 95.05 (13) |
C21—C20—H20 | 119.6 | C2—Fe1—N5 | 91.93 (13) |
C22—C21—C20 | 119.4 (4) | C3—Fe1—N5 | 157.02 (16) |
C22—C21—H21 | 120.3 | N6—Fe1—N5 | 78.60 (12) |
C20—C21—H21 | 120.3 | N4—Fe1—N5 | 76.82 (12) |
C21—C22—C17 | 120.7 (3) | C2—N3—Ni1 | 161.0 (3) |
C21—C22—N6 | 119.9 (3) | C12—N4—C4 | 119.9 (3) |
C17—C22—N6 | 119.4 (3) | C12—N4—Fe1 | 114.3 (2) |
N7—C23—C24 | 109.1 (3) | C4—N4—Fe1 | 125.6 (2) |
N7—C23—C28 | 111.5 (3) | C13—N5—C11 | 137.8 (3) |
C24—C23—C28 | 108.6 (3) | C13—N5—Fe1 | 107.5 (2) |
N7—C23—C29 | 110.0 (3) | C11—N5—Fe1 | 114.7 (2) |
C24—C23—C29 | 111.4 (3) | C14—N6—C22 | 119.9 (3) |
C28—C23—C29 | 106.2 (3) | C14—N6—Fe1 | 114.4 (2) |
C25—C24—C23 | 120.8 (3) | C22—N6—Fe1 | 125.6 (2) |
C25—C24—H24A | 107.1 | C23—N7—C27 | 116.8 (2) |
C23—C24—H24A | 107.1 | C23—N7—Ni1 | 123.6 (2) |
C25—C24—H24B | 107.1 | C27—N7—Ni1 | 105.0 (2) |
C23—C24—H24B | 107.1 | C23—N7—H7 | 102.8 |
H24A—C24—H24B | 106.8 | C27—N7—H7 | 102.8 |
C24—C25—N8 | 109.9 (3) | Ni1—N7—H7 | 102.8 |
C24—C25—C30 | 110.6 (3) | C26—N8—C25 | 115.7 (3) |
N8—C25—C30 | 109.4 (3) | C26—N8—Ni1 | 106.2 (2) |
C24—C25—H25 | 109.0 | C25—N8—Ni1 | 113.33 (18) |
N8—C25—H25 | 109.0 | C26—N8—H8A | 107.1 |
C30—C25—H25 | 109.0 | C25—N8—H8A | 107.1 |
N8—C26—C27i | 110.9 (3) | Ni1—N8—H8A | 107.1 |
N8—C26—H26A | 109.5 | H1WA—O1W—H1WB | 106 (3) |
C27i—C26—H26A | 109.5 | H2WA—O2W—H2WB | 120 (4) |
N4—C4—C5—C6 | 1.1 (6) | N5—Fe1—N4—C4 | 176.8 (3) |
C4—C5—C6—C7 | 0.4 (6) | O1—C13—N5—C11 | −7.4 (8) |
C5—C6—C7—C8 | −179.9 (4) | C14—C13—N5—C11 | 175.9 (4) |
C5—C6—C7—C12 | −2.2 (6) | O1—C13—N5—Fe1 | 173.8 (4) |
C12—C7—C8—C9 | 2.3 (6) | C14—C13—N5—Fe1 | −3.0 (5) |
C6—C7—C8—C9 | 180.0 (4) | C12—C11—N5—C13 | 172.3 (4) |
C7—C8—C9—C10 | −2.2 (6) | C10—C11—N5—C13 | −3.6 (7) |
C8—C9—C10—C11 | 1.7 (6) | C12—C11—N5—Fe1 | −8.9 (4) |
C9—C10—C11—N5 | 174.3 (4) | C10—C11—N5—Fe1 | 175.2 (3) |
C9—C10—C11—C12 | −1.4 (6) | C1—Fe1—N5—C13 | 99.2 (3) |
N5—C11—C12—N4 | 3.1 (5) | C2—Fe1—N5—C13 | −80.6 (3) |
C10—C11—C12—N4 | 179.2 (3) | C3—Fe1—N5—C13 | −163.1 (4) |
N5—C11—C12—C7 | −174.7 (4) | N6—Fe1—N5—C13 | 7.8 (3) |
C10—C11—C12—C7 | 1.5 (6) | N4—Fe1—N5—C13 | −172.1 (3) |
C8—C7—C12—N4 | −179.7 (3) | C1—Fe1—N5—C11 | −80.0 (3) |
C6—C7—C12—N4 | 2.6 (6) | C2—Fe1—N5—C11 | 100.3 (3) |
C8—C7—C12—C11 | −2.0 (6) | C3—Fe1—N5—C11 | 17.8 (5) |
C6—C7—C12—C11 | −179.7 (4) | N6—Fe1—N5—C11 | −171.4 (3) |
O1—C13—C14—N6 | 176.3 (3) | N4—Fe1—N5—C11 | 8.8 (3) |
N5—C13—C14—N6 | −6.6 (6) | C13—C14—N6—C22 | −168.2 (4) |
O1—C13—C14—C15 | 6.0 (6) | C15—C14—N6—C22 | 2.5 (5) |
N5—C13—C14—C15 | −176.9 (4) | C13—C14—N6—Fe1 | 13.6 (5) |
C13—C14—C15—C16 | 166.2 (4) | C15—C14—N6—Fe1 | −175.7 (3) |
N6—C14—C15—C16 | −3.7 (6) | C21—C22—N6—C14 | 177.3 (4) |
C14—C15—C16—C17 | 3.0 (7) | C17—C22—N6—C14 | −0.4 (6) |
C15—C16—C17—C22 | −0.9 (7) | C21—C22—N6—Fe1 | −4.8 (5) |
C15—C16—C17—C18 | −179.4 (4) | C17—C22—N6—Fe1 | 177.6 (3) |
C16—C17—C18—C19 | 179.6 (4) | C1—Fe1—N6—C14 | −106.1 (3) |
C22—C17—C18—C19 | 1.1 (7) | C2—Fe1—N6—C14 | 80.8 (3) |
C17—C18—C19—C20 | −0.6 (7) | C3—Fe1—N6—C14 | 164.3 (3) |
C18—C19—C20—C21 | −1.4 (6) | N4—Fe1—N6—C14 | −11.0 (5) |
C19—C20—C21—C22 | 2.9 (6) | N5—Fe1—N6—C14 | −11.4 (3) |
C20—C21—C22—C17 | −2.4 (6) | C1—Fe1—N6—C22 | 75.9 (3) |
C20—C21—C22—N6 | −180.0 (3) | C2—Fe1—N6—C22 | −97.2 (3) |
C16—C17—C22—C21 | −178.1 (4) | C3—Fe1—N6—C22 | −13.7 (4) |
C18—C17—C22—C21 | 0.5 (6) | N4—Fe1—N6—C22 | 171.0 (3) |
C16—C17—C22—N6 | −0.5 (6) | N5—Fe1—N6—C22 | 170.6 (3) |
C18—C17—C22—N6 | 178.1 (4) | C24—C23—N7—C27 | 173.9 (3) |
N7—C23—C24—C25 | −64.1 (4) | C28—C23—N7—C27 | −66.2 (4) |
C28—C23—C24—C25 | 174.2 (3) | C29—C23—N7—C27 | 51.4 (4) |
C29—C23—C24—C25 | 57.5 (4) | C24—C23—N7—Ni1 | 40.7 (4) |
C23—C24—C25—N8 | 78.0 (4) | C28—C23—N7—Ni1 | 160.7 (2) |
C23—C24—C25—C30 | −161.2 (3) | C29—C23—N7—Ni1 | −81.7 (3) |
N2—C3—Fe1—C1 | −113.9 (7) | C26i—C27—N7—C23 | −178.6 (3) |
N2—C3—Fe1—C2 | 63.2 (7) | C26i—C27—N7—Ni1 | −37.6 (3) |
N2—C3—Fe1—N6 | −22.1 (7) | N8i—Ni1—N7—C23 | 150.3 (3) |
N2—C3—Fe1—N4 | 156.0 (7) | N8—Ni1—N7—C23 | −29.7 (3) |
N2—C3—Fe1—N5 | 147.1 (6) | N3i—Ni1—N7—C23 | −118.2 (3) |
N7i—Ni1—N3—C2 | 33.8 (8) | N3—Ni1—N7—C23 | 61.8 (3) |
N7—Ni1—N3—C2 | −146.2 (8) | N8i—Ni1—N7—C27 | 12.8 (2) |
N8i—Ni1—N3—C2 | 128.3 (9) | N8—Ni1—N7—C27 | −167.2 (2) |
N8—Ni1—N3—C2 | −51.7 (9) | N3i—Ni1—N7—C27 | 104.2 (2) |
C11—C12—N4—C4 | −178.9 (3) | N3—Ni1—N7—C27 | −75.8 (2) |
C7—C12—N4—C4 | −1.1 (5) | C27i—C26—N8—C25 | 167.7 (3) |
C11—C12—N4—Fe1 | 4.6 (4) | C27i—C26—N8—Ni1 | 41.1 (3) |
C7—C12—N4—Fe1 | −177.7 (3) | C24—C25—N8—C26 | 177.5 (3) |
C5—C4—N4—C12 | −0.7 (5) | C30—C25—N8—C26 | 55.9 (4) |
C5—C4—N4—Fe1 | 175.4 (3) | C24—C25—N8—Ni1 | −59.6 (3) |
C1—Fe1—N4—C12 | 88.3 (3) | C30—C25—N8—Ni1 | 178.8 (2) |
C2—Fe1—N4—C12 | −98.4 (3) | N7i—Ni1—N8—C26 | −15.4 (2) |
C3—Fe1—N4—C12 | 176.7 (3) | N7—Ni1—N8—C26 | 164.6 (2) |
N6—Fe1—N4—C12 | −7.3 (5) | N3i—Ni1—N8—C26 | −111.1 (2) |
N5—Fe1—N4—C12 | −6.9 (2) | N3—Ni1—N8—C26 | 68.9 (2) |
C1—Fe1—N4—C4 | −88.0 (3) | N7i—Ni1—N8—C25 | −143.4 (2) |
C2—Fe1—N4—C4 | 85.3 (3) | N7—Ni1—N8—C25 | 36.6 (2) |
C3—Fe1—N4—C4 | 0.4 (3) | N3i—Ni1—N8—C25 | 120.8 (2) |
N6—Fe1—N4—C4 | 176.4 (3) | N3—Ni1—N8—C25 | −59.2 (2) |
Symmetry code: (i) −x+1, −y, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2W—H2WA···O1 | 0.82 (2) | 2.14 (2) | 2.882 (5) | 151 (5) |
O1W—H1WA···O2W | 0.85 (2) | 1.87 (7) | 2.623 (8) | 147 (11) |
N8—H8A···O1Wii | 0.91 | 2.19 | 3.091 (7) | 169 |
Symmetry code: (ii) −x+1, y−1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | [Fe2Ni(C19H12N3O)2(CN)6(C16H36N4)]·2.07H2O |
Mr | 1244.89 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 291 |
a, b, c (Å) | 9.4145 (13), 15.7309 (17), 20.590 (2) |
β (°) | 101.781 (3) |
V (Å3) | 2985.1 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.85 |
Crystal size (mm) | 0.28 × 0.24 × 0.22 |
Data collection | |
Diffractometer | Rigaku Saturn 724 CCD |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.796, 0.835 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12764, 5722, 4078 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.057, 0.156, 0.97 |
No. of reflections | 5722 |
No. of parameters | 402 |
No. of restraints | 7 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.42, −0.42 |
Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O2W—H2WA···O1 | 0.82 (2) | 2.136 (19) | 2.882 (5) | 151 (5) |
O1W—H1WA···O2W | 0.85 (2) | 1.87 (7) | 2.623 (8) | 147 (11) |
N8—H8A···O1Wi | 0.91 | 2.19 | 3.091 (7) | 169.4 |
Symmetry code: (i) −x+1, y−1/2, −z+3/2. |
Acknowledgements
The authors thank the National Natural Science Foundation of China (No. 51072071) for financial support.
References
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Curtis, N. F. (1964). J. Chem. Soc. pp. 2644–2650. CrossRef Web of Science Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Coporation, Tokyo, Japan. Google Scholar
Kim, J., Kwak, H. Y., Yoon, J. H., Ryu, D. W., Yoo, I. Y., Yang, N., Cho, B. K., Park, J. G., Lee, H. & Hong, C. S. (2009). Inorg. Chem. 48, 2956–2966. Web of Science CSD CrossRef PubMed CAS Google Scholar
Li, Y., Zhou, H. & Shen, X. (2012). Acta Cryst. E68, o1688. CSD CrossRef IUCr Journals Google Scholar
Liu, T., Zhang, Y. J., Kanegawa, S. & Sato, O. (2010). Angew. Chem. Int. Ed. 49, 8645–8648. Web of Science CSD CrossRef CAS Google Scholar
Panja, A., Guionneau, P., Jeon, I., Holmes, S. M., Clérac, R. & Mathonière, C. (2012). Inorg. Chem. 51, 12350–12359. Web of Science CSD CrossRef CAS PubMed Google Scholar
Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Modified hexacyanometalates, [Fe(qcq)(CN)3]- (qcq- = 8-(2-quinoline-2-carboxamido)quinoline anion) have been shown to be effective building blocks that can be used instead of hexacyanometalates for the design of low dimensional assemblies (Liu et al., 2010). The capping ligand qcq- (Li et al., 2012) allows to limit oligomerization or polymerization effects by partially blocking the coordination sites around hexacyanometalates, and promotes the formation of low-dimensional structures. More importantly, it plays a crucial role in reducing the molecular symmetry, enhancing the anisotropy, and tuning the electronic, steric demand and solubility properties of derived complexes (Panja et al., 2012). However, to the best of our knowledge, low dimensional compounds based on [Fe(qcq)(CN)3]- as a ligand have been rarely explored and only a few related complexes have been reported so far. Therefore, the investigation of related low dimensional assemblies based on [Fe(qcq)(CN)3]- is of significance. Considering that the macrocyclic cation of [Ni(teta)]2+ (teta = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane) can behave as a good electron acceptor, our synthesis strategy is to employ [Fe(qcq)(CN)3]- and [Ni(teta)]2+ as precursors to construct low dimensional assemblies. Herein, the crystal structure of a new trinuclear complex, [{Ni(teta)}{Fe(qcq)(CN)3}2].2H2O is presented.
The molecular structure of the title complex is shown in Fig. 1. Within the neutral trinuclear clusters, two [Fe(qcq)(CN)3]- anions coordinate to the central [Ni(teta)]2+ cation in a trans-mode, resulting in a nearly linear and centrosymmetric structure, where the Ni atom lies on an inversion centre. For the moieties of [Fe(qcq)(CN)3]-, the central Fe ion is coordinated by three C atoms from cyanide groups (Fe—C(cyanide) bond lengths: 1.951 (4)–1.965 (4) Å) and three N atoms from qcq- (Fe—N(qcq) bond lengths: (1.970 (4)–2.146 (3) Å), affording a distorted octahedral coordination for the metal centre. The Fe—N (amide) bond length (1.970 (4) Å) is shorter than those for the Fe—N (aromatic rings) (2.045 (4)–2.146 (3) Å), which can be attributed to the strong σ-donor effect of the deprotonated amide. The bond angles of Fe1—C1—N1 and Fe1—C2—N3 remain almost linear (172.6 (3)–179.1 (4)°), while the Fe1—C3—N2 one deviates significantly from linearity (150.7 (5) °). The bond angle of Ni—N—C(cyanide) also deviates from linearity (161.1 (3)°), which is comparable to values observed in many other cyano-bridged bimetallic assemblies (Kim et al., 2009). For the structural unit of [Ni(teta)]2+, the equatorial sites of the central Ni ion are occupied by four nitrogen atoms from the macrocyclic ligand of teta (Ni—Nmacro bond lengths: 2.077 (3)–2.092 (3) Å), while the axial positions are occupied by Ncyanide from [Fe(qcq)(CN)3]- (Ni—Ncyanide bond lengths: 2.116 (3) Å). The intramolecular Fe···Ni distance is 5.101 (3) Å. For the intermolecular interactions, the interstitial water molecules are positioned between the clusters and linked to the nitrogen atom of teta and the oxygen atom of adjacent clusters via hydrogen bonds, further extending the dimensionality of the structure to a supramolecular network, as shown in Fig. 2.