organic compounds
2,2′-(Carbonothioyldisulfanediyl)bis(2-methylpropanoic acid)
aDepartamento de Química, Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, bPrograma de Ingenieria Agroindustrial, Universidad San Buenaventura, AA 7154, Santiago de Cali, Colombia, cCase Western Reserve University, Department of Macromolecular Science and Engineering, 2100 Adelbert Road, Kent Hale Smith Bldg., Cleveland, Ohio 44106, USA, and dInstituto de Física de São Carlos, IFSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil
*Correspondence e-mail: rodimo26@yahoo.es
The molecular structure of the title compound, C9H14O4S3, exhibits intramolecular C—H⋯S hydrogen bonds. In the crystal, pairs of O—H⋯O hydrogen bonds lead to the formation of centrosymmetric dimers, which are in turn connected by weak C—H⋯O interactions. The combination of these interactions generates edge-fused R22(8) and R22(20) rings running along [211].
Related literature
For pharmaceutical properties of trithiocarbonates, see: Dehmel et al. (2007). For trithiocarbonates as intermediates in organic synthesis, see: Metzner (1996). For the control of polymerization reactions of trithiocarbonates, see: Harrisson & Wooley (2005); Bilalis et al. (2006); Millard et al. (2006). For with RAFT reactions, see: Moad et al. (2005). For related structures, see: El-khateeb & Roller (2007). For hydrogen bonding, see: Nardelli (1995). For graph-set motifs, see: Etter (1990). For the synthesis, see: Lai et al. (2002).
Experimental
Crystal data
|
Data collection: COLLECT (Nonius, 2000); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
https://doi.org/10.1107/S1600536813010179/zq2200sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813010179/zq2200Isup2.hkl
The compound (I) was synthesized according to a procedure reported in the literature (Lai et al., 2002). Carbon disulfide (27.4 g, 0.361 mol), chloroform (107.5 g, 0.904 mol), acetone (52.3 g, 0.934 mol), and tetrabutylammonium hydrogen sulfate (2.41 g, 7.11 mmol) were mixed with 120 ml of mineral spirits in a 1 L round bottom flask under nitrogen. Sodium hydroxide (50%) was added dropwise over 90 min to maintain the temperature below 25°. The reaction was stirred overnight. 900 ml of water was added followed by 120 ml of concentrated HCl to acidify the aqueous layer. The mixture was filtered and rinsed with water. It was obtained a yellow cristalline solid which was purified with acetone. Mp. 447 (1) K. 2,2'-(thiocarbonylbis(sulfanediyl))bis(2-methylpropanoic acid), 1H-NMR (DMSO-d6, TMS): 1.58(s, 12H), 12.89(s, 2H). 13C-NMR(MeOD4): 25.74, 57.23, 176.23, 220.53. F T—IR (KBr): 3200–2800 (–COOH), 1711 (C=O), 1062 (–C=S), cm-1.
All H-atoms were placed in calculated positions [O—H = 0.82 Å and C—H = 0.96 Å for methyl group] and refined using a riding model approximation with Uiso(H) constrained to 1.5 (O—H and methyl) times Ueq of the respective parent atom.
The title compound, C9H14O4S3, belongs to a series of organic trithiocarbonates that have received special attention due to their applications as pharmaceuticals (Dehmel et al., 2007) or as intermediates in organic synthesis (Metzner et al., 1996). Trithiocarbonates can be used to control the behavior of polymerization reactions (Harrisson & Wooley, 2005; Bilalis et al., 2006; Millard et al., 2006) or they are also used in
with RAFT (reversible addition-fragmentation chain transfer) reactions (Moad et al., 2005). A perspective view of the title compound (I), showing the atomic numbering scheme, is given in Fig. 1. The central trithio moiety in (I) is close to symmetric behavior. This behavior is different in an analogous structure (El-khateeb & Roller, 2007), where C1—S2 and C1—S3 bond lengths take values of 1.7733 (16) and 1.7232 (16) Å, respectively. This difference in the bond lengths is probably linked to the different ligand groups to which the trithio central group is connected. The title system shows intramolecular C—H···S interactions. The molecules of (I) are linked by O—H···O hydrogen bonds in their carboxyl terminals, forming centrosymmetric dimers. The O1 and O3 atoms at (x,y,z) act as hydrogen bond donors to O4 and O2 atoms of the carboxyl groups at (-x,-y + 1,-z). These dimers are connected to each other, through the weak C6—H6···O4, allowing them to grow along [211] (see Table 1, Nardelli, 1995). The C6 atom at (x,y,z) acts as hydrogen bond donor to O4 of the carboxy group at (x + 1,-y + 3/2,+z + 1/2). These intermolecular contacts are explained in terms of the shown in Fig. 2. The combination of these interactions generate edge-fused R22(8) and R22(20) rings (Etter, 1990).For pharmaceutical properties of trithiocarbonates, see: Dehmel et al. (2007). For trithiocarbonates as intermediates in organic synthesis, see: Metzner et al. (1996). For the control of polymerization reactions of trithiocarbonates, see: Harrisson & Wooley (2005); Bilalis et al. (2006); Millard et al. (2006). For
with RAFT reactions, see: Moad et al. (2005). For related structures, see: El-khateeb & Roller (2007). For hydrogen bonding, see: Nardelli (1995). For graph-set motifs, see: Etter (1990). For the synthesis, see: Lai et al. (2002).Data collection: COLLECT (Nonius, 2000); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. An ORTEP-3 (Farrugia, 2012) plot of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. | |
Fig. 2. Part of the crystal structure of the title compound, showing the formation of chains of molecules running along [211]. Symmetry code: (i) -x,-y + 1,-z. (ii) x + 1,-y + 3/2,+z + 1/2. |
C9H14O4S3 | F(000) = 592 |
Mr = 282.41 | Dx = 1.404 Mg m−3 |
Monoclinic, P21/c | Melting point < 447(1) K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 10.4044 (2) Å | Cell parameters from 4448 reflections |
b = 10.4947 (2) Å | θ = 2.9–26.4° |
c = 13.7744 (3) Å | µ = 0.55 mm−1 |
β = 117.363 (1)° | T = 295 K |
V = 1335.76 (5) Å3 | Block, colourless |
Z = 4 | 0.34 × 0.29 × 0.23 mm |
Nonius KappaCCD diffractometer | 2273 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.022 |
Graphite monochromator | θmax = 26.7°, θmin = 2.9° |
CCD rotation images, thick slices scans | h = −13→13 |
5423 measured reflections | k = −12→13 |
2825 independent reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.084 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.040P)2 + 0.2778P] where P = (Fo2 + 2Fc2)/3 |
2825 reflections | (Δ/σ)max < 0.001 |
151 parameters | Δρmax = 0.24 e Å−3 |
1 restraint | Δρmin = −0.24 e Å−3 |
C9H14O4S3 | V = 1335.76 (5) Å3 |
Mr = 282.41 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.4044 (2) Å | µ = 0.55 mm−1 |
b = 10.4947 (2) Å | T = 295 K |
c = 13.7744 (3) Å | 0.34 × 0.29 × 0.23 mm |
β = 117.363 (1)° |
Nonius KappaCCD diffractometer | 2273 reflections with I > 2σ(I) |
5423 measured reflections | Rint = 0.022 |
2825 independent reflections |
R[F2 > 2σ(F2)] = 0.031 | 1 restraint |
wR(F2) = 0.084 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.24 e Å−3 |
2825 reflections | Δρmin = −0.24 e Å−3 |
151 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.10424 (5) | 0.69853 (5) | 0.04522 (4) | 0.05515 (16) | |
S2 | 0.12916 (4) | 0.78396 (4) | 0.26245 (3) | 0.04274 (14) | |
S3 | 0.37515 (4) | 0.67719 (5) | 0.26019 (3) | 0.04675 (14) | |
O1 | 0.33615 (14) | 0.42986 (12) | 0.13674 (9) | 0.0503 (3) | |
H1 | 0.3078 | 0.3696 | 0.0941 | 0.075* | |
O2 | 0.34295 (12) | 0.52637 (11) | −0.00505 (9) | 0.0455 (3) | |
O3 | −0.14354 (12) | 0.62947 (11) | 0.14151 (9) | 0.0445 (3) | |
H3 | −0.2066 | 0.5824 | 0.0979 | 0.067* | |
O4 | −0.23775 (13) | 0.76463 (12) | 0.00151 (9) | 0.0483 (3) | |
C1 | 0.19482 (17) | 0.71974 (15) | 0.17693 (13) | 0.0381 (4) | |
C2 | 0.45203 (17) | 0.63284 (17) | 0.16830 (13) | 0.0419 (4) | |
C3 | −0.05423 (17) | 0.84249 (15) | 0.17297 (12) | 0.0366 (3) | |
C4 | 0.36796 (16) | 0.52512 (16) | 0.09110 (13) | 0.0383 (4) | |
C5 | 0.4659 (2) | 0.74751 (19) | 0.10631 (17) | 0.0558 (5) | |
H5A | 0.3714 | 0.7811 | 0.0598 | 0.084* | |
H5B | 0.5115 | 0.7220 | 0.0627 | 0.084* | |
H5C | 0.5234 | 0.8118 | 0.1574 | 0.084* | |
C6 | 0.60223 (18) | 0.5785 (2) | 0.24740 (15) | 0.0561 (5) | |
H6A | 0.6495 | 0.5481 | 0.2063 | 0.084* | |
H6B | 0.5906 | 0.5095 | 0.2884 | 0.084* | |
H6C | 0.6598 | 0.6443 | 0.2966 | 0.084* | |
C7 | −0.15123 (16) | 0.74014 (15) | 0.09617 (13) | 0.0361 (3) | |
C8 | −0.0491 (2) | 0.96101 (17) | 0.11115 (16) | 0.0554 (5) | |
H8A | −0.1453 | 0.9939 | 0.0695 | 0.083* | |
H8B | −0.0093 | 0.9394 | 0.0627 | 0.083* | |
H8C | 0.0105 | 1.0244 | 0.1622 | 0.083* | |
C9 | −0.11435 (18) | 0.87531 (18) | 0.25362 (14) | 0.0477 (4) | |
H9A | −0.1148 | 0.8001 | 0.2931 | 0.072* | |
H9B | −0.2113 | 0.9072 | 0.2138 | 0.072* | |
H9C | −0.0544 | 0.9390 | 0.3041 | 0.072* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0460 (3) | 0.0823 (4) | 0.0357 (2) | 0.0060 (2) | 0.0175 (2) | −0.0126 (2) |
S2 | 0.0379 (2) | 0.0577 (3) | 0.0339 (2) | −0.00402 (18) | 0.01772 (18) | −0.01094 (18) |
S3 | 0.0382 (2) | 0.0629 (3) | 0.0380 (2) | −0.00095 (19) | 0.01655 (19) | −0.0126 (2) |
O1 | 0.0637 (8) | 0.0455 (7) | 0.0407 (6) | −0.0137 (6) | 0.0231 (6) | −0.0044 (5) |
O2 | 0.0509 (7) | 0.0515 (7) | 0.0396 (6) | −0.0110 (6) | 0.0254 (5) | −0.0085 (5) |
O3 | 0.0501 (7) | 0.0375 (7) | 0.0386 (6) | −0.0082 (5) | 0.0140 (5) | 0.0010 (5) |
O4 | 0.0501 (7) | 0.0431 (7) | 0.0375 (7) | 0.0021 (5) | 0.0079 (6) | 0.0026 (5) |
C1 | 0.0384 (8) | 0.0397 (9) | 0.0386 (7) | −0.0071 (7) | 0.0197 (7) | −0.0083 (7) |
C2 | 0.0368 (8) | 0.0488 (10) | 0.0438 (9) | −0.0072 (7) | 0.0217 (7) | −0.0121 (8) |
C3 | 0.0413 (8) | 0.0358 (9) | 0.0351 (8) | −0.0033 (7) | 0.0195 (7) | −0.0046 (6) |
C4 | 0.0327 (8) | 0.0432 (9) | 0.0411 (9) | −0.0018 (7) | 0.0186 (7) | −0.0047 (7) |
C5 | 0.0592 (12) | 0.0519 (11) | 0.0653 (12) | −0.0185 (9) | 0.0363 (10) | −0.0126 (9) |
C6 | 0.0375 (9) | 0.0708 (13) | 0.0572 (11) | −0.0017 (9) | 0.0192 (8) | −0.0141 (10) |
C7 | 0.0369 (8) | 0.0361 (9) | 0.0369 (9) | 0.0004 (7) | 0.0183 (7) | −0.0014 (7) |
C8 | 0.0770 (13) | 0.0376 (10) | 0.0559 (11) | −0.0077 (9) | 0.0342 (10) | −0.0017 (8) |
C9 | 0.0470 (10) | 0.0541 (11) | 0.0478 (10) | −0.0012 (8) | 0.0268 (8) | −0.0115 (8) |
S1—C1 | 1.6301 (16) | C3—C8 | 1.522 (2) |
S2—C1 | 1.7460 (16) | C3—C9 | 1.544 (2) |
S2—C3 | 1.8372 (16) | C5—H5A | 0.9600 |
S3—C1 | 1.7484 (17) | C5—H5B | 0.9600 |
S3—C2 | 1.8410 (16) | C5—H5C | 0.9600 |
O1—C4 | 1.302 (2) | C6—H6A | 0.9600 |
O1—H1 | 0.8200 | C6—H6B | 0.9600 |
O2—C4 | 1.2268 (18) | C6—H6C | 0.9600 |
O3—C7 | 1.3037 (19) | C8—H8A | 0.9600 |
O3—H3 | 0.8200 | C8—H8B | 0.9600 |
O4—C7 | 1.2238 (18) | C8—H8C | 0.9600 |
C2—C5 | 1.520 (3) | C9—H9A | 0.9600 |
C2—C4 | 1.523 (2) | C9—H9B | 0.9600 |
C2—C6 | 1.546 (2) | C9—H9C | 0.9600 |
C3—C7 | 1.520 (2) | ||
C1—S2—C3 | 106.51 (7) | C2—C5—H5C | 109.5 |
C1—S3—C2 | 106.73 (7) | H5A—C5—H5C | 109.5 |
C4—O1—H1 | 109.5 | H5B—C5—H5C | 109.5 |
C7—O3—H3 | 109.5 | C2—C6—H6A | 109.5 |
S1—C1—S2 | 126.75 (10) | C2—C6—H6B | 109.5 |
S1—C1—S3 | 126.32 (9) | H6A—C6—H6B | 109.5 |
S2—C1—S3 | 106.90 (9) | C2—C6—H6C | 109.5 |
C5—C2—C4 | 111.58 (14) | H6A—C6—H6C | 109.5 |
C5—C2—C6 | 111.21 (15) | H6B—C6—H6C | 109.5 |
C4—C2—C6 | 106.77 (14) | O4—C7—O3 | 123.42 (15) |
C5—C2—S3 | 111.67 (12) | O4—C7—C3 | 121.41 (15) |
C4—C2—S3 | 112.10 (11) | O3—C7—C3 | 114.91 (13) |
C6—C2—S3 | 103.10 (11) | C3—C8—H8A | 109.5 |
C7—C3—C8 | 111.77 (14) | C3—C8—H8B | 109.5 |
C7—C3—C9 | 107.43 (13) | H8A—C8—H8B | 109.5 |
C8—C3—C9 | 110.50 (14) | C3—C8—H8C | 109.5 |
C7—C3—S2 | 112.54 (11) | H8A—C8—H8C | 109.5 |
C8—C3—S2 | 110.85 (12) | H8B—C8—H8C | 109.5 |
C9—C3—S2 | 103.37 (11) | C3—C9—H9A | 109.5 |
O2—C4—O1 | 123.69 (15) | C3—C9—H9B | 109.5 |
O2—C4—C2 | 120.97 (15) | H9A—C9—H9B | 109.5 |
O1—C4—C2 | 115.13 (13) | C3—C9—H9C | 109.5 |
C2—C5—H5A | 109.5 | H9A—C9—H9C | 109.5 |
C2—C5—H5B | 109.5 | H9B—C9—H9C | 109.5 |
H5A—C5—H5B | 109.5 | ||
S1—S1—C1—S2 | 0.00 (2) | C1—S2—C3—C9 | 170.36 (11) |
S1—S1—C1—S3 | 0.00 (5) | C5—C2—C4—O2 | 13.2 (2) |
C3—S2—C1—S1 | −7.38 (14) | C6—C2—C4—O2 | −108.50 (17) |
C3—S2—C1—S1 | −7.38 (14) | S3—C2—C4—O2 | 139.30 (13) |
C3—S2—C1—S3 | 174.63 (8) | C5—C2—C4—O1 | −171.90 (14) |
C2—S3—C1—S1 | 10.52 (14) | C6—C2—C4—O1 | 66.40 (17) |
C2—S3—C1—S1 | 10.52 (14) | S3—C2—C4—O1 | −45.80 (17) |
C2—S3—C1—S2 | −171.47 (8) | C8—C3—C7—O4 | −15.6 (2) |
C1—S3—C2—C5 | 68.46 (14) | C9—C3—C7—O4 | 105.74 (17) |
C1—S3—C2—C4 | −57.59 (14) | S2—C3—C7—O4 | −141.14 (13) |
C1—S3—C2—C6 | −172.07 (12) | C8—C3—C7—O3 | 170.06 (14) |
C1—S2—C3—C7 | 54.77 (13) | C9—C3—C7—O3 | −68.56 (18) |
C1—S2—C3—C8 | −71.23 (13) | S2—C3—C7—O3 | 44.56 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8B···S1 | 0.96 | 2.85 | 3.506 (2) | 127 |
C5—H5A···S1 | 0.96 | 2.83 | 3.4955 (19) | 127 |
O1—H1···O4i | 0.82 | 1.84 | 2.6549 (17) | 178 |
O3—H3···O2i | 0.82 | 1.81 | 2.6321 (15) | 178 |
C6—H6C···O4ii | 0.96 | 2.69 | 3.518 (2) | 144 |
Symmetry codes: (i) −x, −y+1, −z; (ii) x+1, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C9H14O4S3 |
Mr | 282.41 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 10.4044 (2), 10.4947 (2), 13.7744 (3) |
β (°) | 117.363 (1) |
V (Å3) | 1335.76 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.55 |
Crystal size (mm) | 0.34 × 0.29 × 0.23 |
Data collection | |
Diffractometer | Nonius KappaCCD |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5423, 2825, 2273 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.633 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.084, 1.05 |
No. of reflections | 2825 |
No. of parameters | 151 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.24 |
Computer programs: COLLECT (Nonius, 2000), SCALEPACK (Otwinowski & Minor, 1997), DENZO (Otwinowski & Minor, 1997) and SCALEPACK, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 2012).
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8B···S1 | 0.96 | 2.85 | 3.506 (2) | 126.6 |
C5—H5A···S1 | 0.96 | 2.83 | 3.4955 (19) | 127.3 |
O1—H1···O4i | 0.82 | 1.84 | 2.6549 (17) | 177.9 |
O3—H3···O2i | 0.82 | 1.81 | 2.6321 (15) | 177.9 |
C6—H6C···O4ii | 0.96 | 2.69 | 3.518 (2) | 144.4 |
Symmetry codes: (i) −x, −y+1, −z; (ii) x+1, −y+3/2, z+1/2. |
Acknowledgements
RMF thanks the Universidad del Valle, Colombia, and CG thanks the Universidad San Buenaventura, Cali, Colombia, for partial financial support.
References
Bilalis, P., Pitsikalis, M. & Hadjichristidis, N. (2006). J. Polym. Sci. Part A Polym. Chem. 44, 659–665. Web of Science CrossRef CAS Google Scholar
Dehmel, F., Ciossek, T., Maier, T., Weinbrenner, S., Schmidt, B., Zoche, M. & Beckers, T. (2007). Bioorg. Med. Chem. Lett. 17, 4746–4752. Web of Science CrossRef PubMed CAS Google Scholar
El-khateeb, M. & Roller, A. (2007). Polyhedron, 26, 3920–3924. CAS Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Harrisson, S. & Wooley, K. L. (2005). Chem. Commun. pp. 3259–3261. Web of Science CrossRef Google Scholar
Lai, J. T., Filla, D. & Shea, R. (2002). Macromolecules, 35, 6754–6756. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Metzner, P. (1996). Pure & Appl. Chem. 68, 863–868. CrossRef CAS Web of Science Google Scholar
Millard, P. E., Barner, L., Stenzel, M. H., Davis, T. P., Barner-Kowollik, C. & Muller, A. H. E. (2006). Macromol. Rapid Commun. 27, 821–828. Web of Science CrossRef CAS Google Scholar
Moad, G., Chong, Y. K., Postma, A., Rizzardo, E. & Thang, S. H. (2005). Polymer, 46, 8458–8468. Web of Science CrossRef CAS Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound, C9H14O4S3, belongs to a series of organic trithiocarbonates that have received special attention due to their applications as pharmaceuticals (Dehmel et al., 2007) or as intermediates in organic synthesis (Metzner et al., 1996). Trithiocarbonates can be used to control the behavior of polymerization reactions (Harrisson & Wooley, 2005; Bilalis et al., 2006; Millard et al., 2006) or they are also used in radical polymerization with RAFT (reversible addition-fragmentation chain transfer) reactions (Moad et al., 2005). A perspective view of the title compound (I), showing the atomic numbering scheme, is given in Fig. 1. The central trithio moiety in (I) is close to symmetric behavior. This behavior is different in an analogous structure (El-khateeb & Roller, 2007), where C1—S2 and C1—S3 bond lengths take values of 1.7733 (16) and 1.7232 (16) Å, respectively. This difference in the bond lengths is probably linked to the different ligand groups to which the trithio central group is connected. The title system shows intramolecular C—H···S interactions. The molecules of (I) are linked by O—H···O hydrogen bonds in their carboxyl terminals, forming centrosymmetric dimers. The O1 and O3 atoms at (x,y,z) act as hydrogen bond donors to O4 and O2 atoms of the carboxyl groups at (-x,-y + 1,-z). These dimers are connected to each other, through the weak C6—H6···O4, allowing them to grow along [211] (see Table 1, Nardelli, 1995). The C6 atom at (x,y,z) acts as hydrogen bond donor to O4 of the carboxy group at (x + 1,-y + 3/2,+z + 1/2). These intermolecular contacts are explained in terms of the substructure shown in Fig. 2. The combination of these interactions generate edge-fused R22(8) and R22(20) rings (Etter, 1990).