organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Dimeth­­oxy-6-[(E)-2-(4-meth­­oxy­phenyl)ethen­yl]benzaldehyde

aSchool of Medical Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
*Correspondence e-mail: ruanbf@hfut.edu.cn

(Received 14 March 2013; accepted 22 March 2013; online 5 April 2013)

There are two conformationally similar mol­ecules in the asymmetric unit of he title compound, C18H18O4, in which the dihedral angles between the benzene rings are 23.54 (12) and 31.11 (12)°. In the crystal, C—H⋯π inter­actions (minimum H⋯ring centroid distance = 2.66 Å) link the mol­ecules into a layered structure extending down a.

Related literature

The title compound is a derivative of the natural product resveratrol (trans-3,4,5-trihy­droxy­stilbene). For background to resveratrol, see: Jang et al. (1997[Jang, M., Cai, L., Udeani, G. O., Slowing, K. V., Thomas, C. F., Beecher, C. W. W., Fong, H. H. S., Farnworth, R. N., Kinghorn, A. D., Metha, R. G., Moon, R. C. & Pezzuto, J. M. (1997). Science, 275, 218-220.]); Orsini et al. (1997[Orsini, F., Pelizzoni, F., Verotta, L. & Aburjai, T. (1997). J. Nat. Prod. 60, 1082-1087.]); Pettit et al. (2002[Pettit, G. R., Grealish, M. P., Jung, M. K., Hamel, E., Pettit, R. K., Chapuis, J. C. & Schmidt, J. M. (2002). J. Med. Chem. 45, 2534-2542.]). For standard bond lengths and angles, see: Boumendjel et al. (2008[Boumendjel, A., Boccard, J., Carrupt, P. A., Nicolle, E., Blanc, M., Geze, A., Choisnard, L., Wouessidjewe, D., Matera, E. L. & Dumontet, C. (2008). J. Med. Chem. 51, 2307-2310.]). For the synthesis of the title compound, see: Huang et al. (2007[Huang, X. F., Ruan, B. F., Wang, X. T., Xu, C., Ge, H. M., Zhu, H. L. & Tan, R. X. (2007). Eur. J. Med. Chem. 42, 263-267.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18O4

  • Mr = 298.32

  • Triclinic, [P \overline 1]

  • a = 9.292 (5) Å

  • b = 9.448 (5) Å

  • c = 17.547 (5) Å

  • α = 84.097 (5)°

  • β = 84.040 (5)°

  • γ = 83.315 (5)°

  • V = 1515.3 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.982

  • 10535 measured reflections

  • 5272 independent reflections

  • 3060 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.168

  • S = 0.79

  • 5272 reflections

  • 404 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg4 are the centroids of the C12–C17 and C30–C35 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯Cg4i 0.93 2.88 3.597 (3) 135
C17—H14⋯Cg4ii 0.93 2.76 3.471 (3) 134
C32—H14⋯Cg2 0.93 2.82 3.530 (3) 135
C15—H14⋯Cg2iii 0.93 2.66 3.371 (3) 134
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) x+1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Resveratrol (trans-3,4,,5-trihydroxystilbene), a naturally occurring phytoalexin present in medicinal plants, grape skin, peanuts and red wine, has attracted a great deal of attention because it has been suggested as a possible cancer chemopreventive agent on the basis of its inhibitory effects on tumor initiation, promotion, and progression (Jang et al., 1997; Orsini et al., 1997; Pettit et al., 2002). In order to discover novel antitumor agents with high efficiency, a broad spectrum and safety, several series of derivatives of resveratrol were prepared in our laboratory. As an important intermediate, the title compound 2,4-dimethoxy-6-[(E)-2-(4-methoxyphenyl)ethenyl]benzaldehyde, was synthesized by the reaction of resveratrol using the Vilslmeier reaction and herein we report the crystal structure.

The title compound, C18 H18 O4, crystallizes in the triclinic space group P-1 with two independent molecules in the asymmetric unit (Fig. 1). All bond lengths are within normal ranges (Boumendjel et al., 2008). The C10—C11 and C28—C29 bond lengths [1.319 (3) and 1.323 (3) Å] are consistent with the expected value for a C—C double bond and similarly, the C7—O1 and C25—O5 bond lengths [1.196 (3) and 1.210 (3) Å] are consistent with the expected value for a carbonyl C—O double bond. The dihedral angle between the two phenyl rings in each are 23.54 (12)° [C1–C6 (ring 1) and C12–C17) (ring 2)] and 31.11 (12)° [C19–C24 (ring 3) and C30–C35 (ring 4)]. As such, the structural differences between the two molecules in the title compound are only marginal.

In the crystal, the two molecules associate through C—H···pi stacking interactions [C14—H14···Cg(4)i; C17—H···Cg(4)ii; C32—H···Cg(2)iii; C35—H···Cg(2)iv: H···Cg = 2.88, 2.76, 2.82, 2.66 Å respectively] [for symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y, -z + 1; (iii) x, y, z; (iv) x + 1, y, z]. Intermolecular methoxy C26—H···O8v interactions [3.041 (4) Å] across an inversion centre generate a sheet structure (Fig. 2) [for symmetry code (v): -x + 2, -y, -z + 1]. Present also in the structure are intramolecular C—H···O interactions between the aldehyde and ethylenic donors and methoxy O-atom acceptors (Table 1).

Related literature top

The title compound is a derivative of the natural product resveratrol (trans-3,4,5-trihydroxystilbene). For background to resveratrol, see: Jang et al. (1997); Orsini et al. (1997); Pettit et al. (2002). For standard bond lengths and angles, see: Boumendjel et al. (2008). For the synthesis of the title compound, see: Huang et al. (2007).

Experimental top

Title compound was synthesized according to the reported method (Huang et al., 2007). Crystals suitable for X-ray structure analysis were obtained by slow evaporation of a solution of the title compound in a petroleum ether/ dichloromethane mixture (1:1, v/v) at room temperature.

Refinement top

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl groups).

Structure description top

Resveratrol (trans-3,4,,5-trihydroxystilbene), a naturally occurring phytoalexin present in medicinal plants, grape skin, peanuts and red wine, has attracted a great deal of attention because it has been suggested as a possible cancer chemopreventive agent on the basis of its inhibitory effects on tumor initiation, promotion, and progression (Jang et al., 1997; Orsini et al., 1997; Pettit et al., 2002). In order to discover novel antitumor agents with high efficiency, a broad spectrum and safety, several series of derivatives of resveratrol were prepared in our laboratory. As an important intermediate, the title compound 2,4-dimethoxy-6-[(E)-2-(4-methoxyphenyl)ethenyl]benzaldehyde, was synthesized by the reaction of resveratrol using the Vilslmeier reaction and herein we report the crystal structure.

The title compound, C18 H18 O4, crystallizes in the triclinic space group P-1 with two independent molecules in the asymmetric unit (Fig. 1). All bond lengths are within normal ranges (Boumendjel et al., 2008). The C10—C11 and C28—C29 bond lengths [1.319 (3) and 1.323 (3) Å] are consistent with the expected value for a C—C double bond and similarly, the C7—O1 and C25—O5 bond lengths [1.196 (3) and 1.210 (3) Å] are consistent with the expected value for a carbonyl C—O double bond. The dihedral angle between the two phenyl rings in each are 23.54 (12)° [C1–C6 (ring 1) and C12–C17) (ring 2)] and 31.11 (12)° [C19–C24 (ring 3) and C30–C35 (ring 4)]. As such, the structural differences between the two molecules in the title compound are only marginal.

In the crystal, the two molecules associate through C—H···pi stacking interactions [C14—H14···Cg(4)i; C17—H···Cg(4)ii; C32—H···Cg(2)iii; C35—H···Cg(2)iv: H···Cg = 2.88, 2.76, 2.82, 2.66 Å respectively] [for symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y, -z + 1; (iii) x, y, z; (iv) x + 1, y, z]. Intermolecular methoxy C26—H···O8v interactions [3.041 (4) Å] across an inversion centre generate a sheet structure (Fig. 2) [for symmetry code (v): -x + 2, -y, -z + 1]. Present also in the structure are intramolecular C—H···O interactions between the aldehyde and ethylenic donors and methoxy O-atom acceptors (Table 1).

The title compound is a derivative of the natural product resveratrol (trans-3,4,5-trihydroxystilbene). For background to resveratrol, see: Jang et al. (1997); Orsini et al. (1997); Pettit et al. (2002). For standard bond lengths and angles, see: Boumendjel et al. (2008). For the synthesis of the title compound, see: Huang et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom numbering scheme for the two independent molecules of the title compound in the asymmetric unit, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The layered structure of title compound formed through C—H···pi stacking interactions. Non-interactive H-atoms are omitted.
2,4-Dimethoxy-6-[(E)-2-(4-methoxyphenyl)ethenyl]benzaldehyde top
Crystal data top
C18H18O4Z = 4
Mr = 298.32F(000) = 632
Triclinic, P1Dx = 1.308 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 9.292 (5) ÅCell parameters from 1909 reflections
b = 9.448 (5) Åθ = 2.2–26.7°
c = 17.547 (5) ŵ = 0.09 mm1
α = 84.097 (5)°T = 298 K
β = 84.040 (5)°Block, colourless
γ = 83.315 (5)°0.30 × 0.20 × 0.20 mm
V = 1515.3 (12) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
5272 independent reflections
Radiation source: fine-focus sealed tube3060 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
φ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1110
Tmin = 0.973, Tmax = 0.982k = 1111
10535 measured reflectionsl = 2019
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.168 w = 1/[σ2(Fo2) + (0.1P)2 + 0.699P]
where P = (Fo2 + 2Fc2)/3
S = 0.79(Δ/σ)max < 0.001
5272 reflectionsΔρmax = 0.15 e Å3
404 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (2)
Crystal data top
C18H18O4γ = 83.315 (5)°
Mr = 298.32V = 1515.3 (12) Å3
Triclinic, P1Z = 4
a = 9.292 (5) ÅMo Kα radiation
b = 9.448 (5) ŵ = 0.09 mm1
c = 17.547 (5) ÅT = 298 K
α = 84.097 (5)°0.30 × 0.20 × 0.20 mm
β = 84.040 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5272 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3060 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.982Rint = 0.039
10535 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 0.79Δρmax = 0.15 e Å3
5272 reflectionsΔρmin = 0.18 e Å3
404 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.14160 (19)0.29091 (17)0.65390 (9)0.0490 (5)
O80.6445 (2)0.3074 (2)0.65049 (10)0.0584 (5)
O20.6991 (2)0.0498 (2)0.13171 (10)0.0641 (6)
O61.2124 (2)0.0612 (2)0.13477 (10)0.0663 (6)
C120.3000 (2)0.2119 (2)0.42976 (13)0.0377 (6)
C150.1936 (2)0.2736 (2)0.57966 (13)0.0368 (6)
O50.9275 (2)0.3222 (2)0.00997 (10)0.0698 (6)
O10.4129 (2)0.3330 (2)0.00836 (10)0.0674 (6)
C330.6939 (3)0.2778 (2)0.57720 (13)0.0393 (6)
C290.8934 (3)0.1922 (2)0.35458 (13)0.0413 (6)
H290.98860.14860.35360.050*
C130.2388 (2)0.3479 (2)0.44573 (13)0.0400 (6)
H130.23320.42000.40550.048*
C110.3571 (3)0.1739 (3)0.35295 (14)0.0444 (6)
H110.40070.08070.34970.053*
C300.8207 (3)0.2192 (2)0.43039 (13)0.0367 (6)
C350.8980 (3)0.1892 (2)0.49504 (13)0.0404 (6)
H350.99420.14900.48920.048*
C310.6761 (3)0.2748 (2)0.44293 (13)0.0394 (6)
H310.62010.29220.40130.047*
C160.2576 (3)0.1382 (2)0.56550 (13)0.0401 (6)
H160.26590.06700.60600.048*
C40.5278 (3)0.1016 (3)0.20863 (14)0.0463 (6)
H40.55540.05050.25390.056*
C190.9651 (3)0.2384 (3)0.07433 (14)0.0491 (7)
C240.8850 (3)0.2751 (3)0.14382 (14)0.0436 (6)
C30.5943 (3)0.0623 (3)0.13922 (15)0.0471 (6)
O70.7066 (2)0.4560 (2)0.19247 (11)0.0734 (6)
C320.6124 (3)0.3051 (2)0.51476 (13)0.0410 (6)
H320.51560.34350.52110.049*
C340.8365 (3)0.2172 (3)0.56693 (14)0.0443 (6)
H340.89080.19540.60900.053*
C230.9194 (3)0.1940 (2)0.21264 (13)0.0421 (6)
C201.0740 (3)0.1273 (3)0.07344 (15)0.0522 (7)
H201.12620.10470.02730.063*
C10.4531 (3)0.2517 (3)0.07286 (14)0.0473 (6)
C50.4200 (3)0.2160 (3)0.21234 (13)0.0430 (6)
C20.5590 (3)0.1378 (3)0.07091 (14)0.0516 (7)
H20.60620.11180.02430.062*
C280.8397 (3)0.2227 (2)0.28713 (14)0.0444 (6)
H280.74430.26540.28690.053*
C211.1053 (3)0.0493 (3)0.14175 (15)0.0481 (6)
C140.1858 (3)0.3803 (2)0.51919 (13)0.0395 (6)
H140.14530.47260.52800.047*
C60.3793 (3)0.2931 (3)0.14320 (14)0.0441 (6)
O30.1938 (3)0.4673 (3)0.19099 (12)0.0913 (8)
C170.3091 (3)0.1078 (2)0.49209 (13)0.0396 (6)
H170.35090.01570.48370.047*
C221.0291 (3)0.0813 (3)0.21013 (14)0.0475 (6)
H221.05130.02670.25540.057*
C100.3540 (3)0.2567 (3)0.28771 (14)0.0492 (7)
H100.30600.34840.28960.059*
C270.7704 (3)0.3951 (3)0.13975 (16)0.0545 (7)
H270.74370.42820.09090.065*
C180.0775 (3)0.4283 (3)0.67268 (16)0.0655 (9)
H18A0.14830.49570.66140.098*
H18B0.04440.42410.72650.098*
H18C0.00350.45810.64290.098*
C90.2627 (3)0.4111 (3)0.13893 (17)0.0593 (8)
H90.23960.44670.08980.071*
C251.0115 (4)0.2970 (3)0.06044 (15)0.0743 (9)
H25A1.11140.30840.05570.111*
H25B0.97580.36420.10080.111*
H25C1.00420.20140.07250.111*
C80.7351 (4)0.1367 (3)0.19987 (16)0.0722 (9)
H8A0.76970.07910.23460.108*
H8B0.80970.21180.18680.108*
H8C0.65020.17790.22410.108*
C360.5076 (3)0.3858 (3)0.66358 (16)0.0632 (8)
H36A0.50300.47240.62970.095*
H36B0.49330.40910.71600.095*
H36C0.43290.32950.65400.095*
C261.2461 (4)0.1482 (3)0.20355 (16)0.0727 (9)
H26A1.27620.08990.23940.109*
H26B1.32320.22150.19140.109*
H26C1.16130.19170.22600.109*
C70.4947 (4)0.3057 (3)0.06241 (15)0.0728 (9)
H7A0.59530.31590.05860.109*
H7B0.45890.37280.10280.109*
H7C0.48550.21010.07380.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0641 (12)0.0468 (10)0.0339 (10)0.0028 (9)0.0014 (9)0.0061 (8)
O80.0587 (12)0.0752 (13)0.0359 (11)0.0159 (10)0.0024 (9)0.0079 (9)
O20.0753 (14)0.0640 (12)0.0428 (11)0.0229 (11)0.0027 (10)0.0008 (9)
O60.0766 (14)0.0687 (13)0.0430 (11)0.0281 (11)0.0005 (10)0.0008 (9)
C120.0364 (13)0.0377 (13)0.0383 (14)0.0038 (10)0.0014 (11)0.0023 (10)
C150.0364 (13)0.0404 (13)0.0336 (14)0.0026 (11)0.0040 (11)0.0048 (10)
O50.0817 (14)0.0805 (14)0.0353 (11)0.0236 (11)0.0019 (10)0.0076 (10)
O10.0782 (14)0.0788 (14)0.0348 (11)0.0208 (11)0.0007 (10)0.0044 (9)
C330.0438 (15)0.0380 (13)0.0347 (14)0.0009 (11)0.0027 (11)0.0016 (10)
C290.0428 (14)0.0406 (13)0.0391 (15)0.0001 (11)0.0019 (12)0.0034 (11)
C130.0452 (15)0.0379 (13)0.0353 (14)0.0010 (11)0.0065 (11)0.0039 (11)
C110.0488 (15)0.0438 (14)0.0392 (15)0.0006 (12)0.0005 (12)0.0062 (12)
C300.0395 (14)0.0331 (12)0.0371 (14)0.0032 (10)0.0033 (11)0.0022 (10)
C350.0334 (13)0.0438 (14)0.0440 (15)0.0008 (11)0.0076 (11)0.0035 (11)
C310.0423 (15)0.0405 (13)0.0350 (14)0.0011 (11)0.0105 (11)0.0018 (10)
C160.0483 (15)0.0328 (12)0.0385 (14)0.0036 (11)0.0077 (12)0.0028 (10)
C40.0518 (16)0.0506 (15)0.0336 (14)0.0021 (13)0.0040 (12)0.0007 (11)
C190.0574 (17)0.0488 (15)0.0383 (15)0.0006 (13)0.0054 (13)0.0030 (12)
C240.0491 (15)0.0428 (14)0.0368 (15)0.0013 (12)0.0022 (12)0.0033 (11)
C30.0511 (16)0.0482 (15)0.0399 (15)0.0024 (13)0.0018 (12)0.0050 (12)
O70.0889 (16)0.0706 (13)0.0507 (13)0.0321 (12)0.0004 (11)0.0093 (10)
C320.0351 (14)0.0435 (14)0.0421 (15)0.0026 (11)0.0037 (11)0.0012 (11)
C340.0406 (15)0.0536 (15)0.0386 (15)0.0018 (12)0.0113 (12)0.0037 (12)
C230.0475 (15)0.0406 (13)0.0377 (14)0.0028 (12)0.0022 (12)0.0052 (11)
C200.0574 (17)0.0561 (16)0.0388 (16)0.0063 (14)0.0032 (13)0.0062 (13)
C10.0549 (16)0.0515 (15)0.0335 (14)0.0017 (13)0.0058 (12)0.0026 (12)
C50.0472 (15)0.0472 (14)0.0351 (14)0.0050 (12)0.0052 (12)0.0047 (11)
C20.0611 (18)0.0555 (16)0.0344 (15)0.0036 (14)0.0016 (13)0.0035 (12)
C280.0486 (15)0.0427 (14)0.0403 (15)0.0015 (12)0.0029 (12)0.0050 (11)
C210.0515 (16)0.0460 (15)0.0441 (16)0.0047 (12)0.0025 (13)0.0051 (12)
C140.0439 (14)0.0323 (12)0.0412 (15)0.0031 (11)0.0073 (11)0.0031 (11)
C60.0463 (15)0.0476 (15)0.0369 (15)0.0012 (12)0.0023 (12)0.0034 (11)
O30.1072 (18)0.0979 (17)0.0522 (14)0.0503 (15)0.0014 (13)0.0063 (12)
C170.0452 (14)0.0311 (12)0.0414 (15)0.0005 (10)0.0030 (11)0.0036 (10)
C220.0546 (16)0.0511 (15)0.0346 (15)0.0019 (13)0.0033 (12)0.0035 (12)
C100.0545 (16)0.0524 (15)0.0390 (15)0.0053 (13)0.0042 (12)0.0078 (12)
C270.0600 (18)0.0560 (17)0.0437 (16)0.0056 (14)0.0046 (14)0.0004 (13)
C180.088 (2)0.0557 (17)0.0473 (18)0.0156 (16)0.0027 (16)0.0153 (14)
C90.0634 (19)0.0636 (18)0.0450 (17)0.0100 (15)0.0002 (15)0.0005 (14)
C250.091 (2)0.086 (2)0.0361 (17)0.0159 (19)0.0019 (16)0.0065 (15)
C80.087 (2)0.0664 (19)0.0513 (19)0.0222 (17)0.0011 (16)0.0105 (15)
C360.0549 (18)0.076 (2)0.0524 (18)0.0074 (15)0.0112 (14)0.0083 (15)
C260.084 (2)0.070 (2)0.0526 (19)0.0292 (17)0.0030 (16)0.0004 (15)
C70.091 (2)0.080 (2)0.0374 (17)0.0167 (18)0.0009 (16)0.0060 (15)
Geometric parameters (Å, º) top
O4—C151.361 (3)C3—C21.380 (3)
O4—C181.420 (3)O7—C271.206 (3)
O8—C331.365 (3)C32—H320.9300
O8—C361.405 (3)C34—H340.9300
O2—C31.360 (3)C23—C221.386 (3)
O2—C81.426 (3)C23—C281.468 (3)
O6—C211.362 (3)C20—C211.380 (3)
O6—C261.430 (3)C20—H200.9300
C12—C131.387 (3)C1—C21.372 (3)
C12—C171.396 (3)C1—C61.417 (3)
C12—C111.461 (3)C5—C61.412 (3)
C15—C161.382 (3)C5—C101.468 (3)
C15—C141.388 (3)C2—H20.9300
O5—C191.363 (3)C28—H280.9300
O5—C251.418 (3)C21—C221.372 (3)
O1—C11.361 (3)C14—H140.9300
O1—C71.418 (3)C6—C91.463 (4)
C33—C321.382 (3)O3—C91.194 (3)
C33—C341.383 (3)C17—H170.9300
C29—C281.324 (3)C22—H220.9300
C29—C301.461 (3)C10—H100.9300
C29—H290.9300C27—H270.9300
C13—C141.383 (3)C18—H18A0.9600
C13—H130.9300C18—H18B0.9600
C11—C101.319 (3)C18—H18C0.9600
C11—H110.9300C9—H90.9300
C30—C311.389 (3)C25—H25A0.9600
C30—C351.392 (3)C25—H25B0.9600
C35—C341.368 (3)C25—H25C0.9600
C35—H350.9300C8—H8A0.9600
C31—C321.379 (3)C8—H8B0.9600
C31—H310.9300C8—H8C0.9600
C16—C171.374 (3)C36—H36A0.9600
C16—H160.9300C36—H36B0.9600
C4—C31.373 (3)C36—H36C0.9600
C4—C51.387 (3)C26—H26A0.9600
C4—H40.9300C26—H26B0.9600
C19—C201.371 (3)C26—H26C0.9600
C19—C241.414 (3)C7—H7A0.9600
C24—C231.407 (3)C7—H7B0.9600
C24—C271.464 (3)C7—H7C0.9600
C15—O4—C18118.68 (19)C1—C2—C3119.0 (2)
C33—O8—C36119.0 (2)C1—C2—H2120.5
C3—O2—C8117.7 (2)C3—C2—H2120.5
C21—O6—C26117.2 (2)C29—C28—C23124.8 (2)
C13—C12—C17116.8 (2)C29—C28—H28117.6
C13—C12—C11123.9 (2)C23—C28—H28117.6
C17—C12—C11119.2 (2)O6—C21—C22124.1 (2)
O4—C15—C16115.8 (2)O6—C21—C20114.9 (2)
O4—C15—C14124.9 (2)C22—C21—C20121.0 (2)
C16—C15—C14119.3 (2)C13—C14—C15119.3 (2)
C19—O5—C25117.6 (2)C13—C14—H14120.4
C1—O1—C7117.6 (2)C15—C14—H14120.4
O8—C33—C32124.7 (2)C5—C6—C1118.2 (2)
O8—C33—C34115.8 (2)C5—C6—C9124.4 (2)
C32—C33—C34119.5 (2)C1—C6—C9117.4 (2)
C28—C29—C30127.5 (2)C16—C17—C12121.5 (2)
C28—C29—H29116.2C16—C17—H17119.2
C30—C29—H29116.2C12—C17—H17119.2
C14—C13—C12122.5 (2)C21—C22—C23120.9 (2)
C14—C13—H13118.8C21—C22—H22119.6
C12—C13—H13118.8C23—C22—H22119.6
C10—C11—C12127.4 (2)C11—C10—C5125.5 (2)
C10—C11—H11116.3C11—C10—H10117.3
C12—C11—H11116.3C5—C10—H10117.3
C31—C30—C35116.5 (2)O7—C27—C24127.4 (3)
C31—C30—C29123.9 (2)O7—C27—H27116.3
C35—C30—C29119.6 (2)C24—C27—H27116.3
C34—C35—C30121.9 (2)O4—C18—H18A109.5
C34—C35—H35119.0O4—C18—H18B109.5
C30—C35—H35119.0H18A—C18—H18B109.5
C32—C31—C30122.4 (2)O4—C18—H18C109.5
C32—C31—H31118.8H18A—C18—H18C109.5
C30—C31—H31118.8H18B—C18—H18C109.5
C17—C16—C15120.6 (2)O3—C9—C6127.8 (3)
C17—C16—H16119.7O3—C9—H9116.1
C15—C16—H16119.7C6—C9—H9116.1
C3—C4—C5121.1 (2)O5—C25—H25A109.5
C3—C4—H4119.4O5—C25—H25B109.5
C5—C4—H4119.4H25A—C25—H25B109.5
O5—C19—C20123.4 (2)O5—C25—H25C109.5
O5—C19—C24115.3 (2)H25A—C25—H25C109.5
C20—C19—C24121.3 (2)H25B—C25—H25C109.5
C23—C24—C19118.3 (2)O2—C8—H8A109.5
C23—C24—C27123.8 (2)O2—C8—H8B109.5
C19—C24—C27117.9 (2)H8A—C8—H8B109.5
O2—C3—C4123.9 (2)O2—C8—H8C109.5
O2—C3—C2114.9 (2)H8A—C8—H8C109.5
C4—C3—C2121.1 (2)H8B—C8—H8C109.5
C31—C32—C33119.3 (2)O8—C36—H36A109.5
C31—C32—H32120.3O8—C36—H36B109.5
C33—C32—H32120.3H36A—C36—H36B109.5
C35—C34—C33120.2 (2)O8—C36—H36C109.5
C35—C34—H34119.9H36A—C36—H36C109.5
C33—C34—H34119.9H36B—C36—H36C109.5
C22—C23—C24119.3 (2)O6—C26—H26A109.5
C22—C23—C28118.8 (2)O6—C26—H26B109.5
C24—C23—C28121.9 (2)H26A—C26—H26B109.5
C19—C20—C21119.2 (2)O6—C26—H26C109.5
C19—C20—H20120.4H26A—C26—H26C109.5
C21—C20—H20120.4H26B—C26—H26C109.5
O1—C1—C2122.8 (2)O1—C7—H7A109.5
O1—C1—C6115.6 (2)O1—C7—H7B109.5
C2—C1—C6121.5 (2)H7A—C7—H7B109.5
C4—C5—C6119.0 (2)O1—C7—H7C109.5
C4—C5—C10119.5 (2)H7A—C7—H7C109.5
C6—C5—C10121.6 (2)H7B—C7—H7C109.5
C18—O4—C15—C16178.6 (2)C7—O1—C1—C6173.1 (2)
C18—O4—C15—C141.7 (3)C3—C4—C5—C60.2 (4)
C36—O8—C33—C327.7 (4)C3—C4—C5—C10178.5 (2)
C36—O8—C33—C34171.8 (2)O1—C1—C2—C3179.1 (2)
C17—C12—C13—C141.4 (3)C6—C1—C2—C30.2 (4)
C11—C12—C13—C14179.9 (2)O2—C3—C2—C1179.2 (2)
C13—C12—C11—C103.6 (4)C4—C3—C2—C11.5 (4)
C17—C12—C11—C10177.9 (2)C30—C29—C28—C23179.3 (2)
C28—C29—C30—C314.4 (4)C22—C23—C28—C2927.9 (4)
C28—C29—C30—C35175.4 (2)C24—C23—C28—C29153.8 (2)
C31—C30—C35—C342.1 (3)C26—O6—C21—C220.1 (4)
C29—C30—C35—C34177.7 (2)C26—O6—C21—C20178.1 (3)
C35—C30—C31—C322.7 (3)C19—C20—C21—O6178.3 (2)
C29—C30—C31—C32177.0 (2)C19—C20—C21—C220.1 (4)
O4—C15—C16—C17177.7 (2)C12—C13—C14—C150.0 (4)
C14—C15—C16—C172.0 (3)O4—C15—C14—C13178.0 (2)
C25—O5—C19—C203.6 (4)C16—C15—C14—C131.7 (3)
C25—O5—C19—C24175.3 (2)C4—C5—C6—C11.4 (4)
O5—C19—C24—C23179.3 (2)C10—C5—C6—C1176.9 (2)
C20—C19—C24—C230.3 (4)C4—C5—C6—C9176.9 (2)
O5—C19—C24—C271.1 (4)C10—C5—C6—C94.8 (4)
C20—C19—C24—C27179.9 (2)O1—C1—C6—C5177.7 (2)
C8—O2—C3—C44.0 (4)C2—C1—C6—C51.6 (4)
C8—O2—C3—C2176.8 (3)O1—C1—C6—C93.8 (4)
C5—C4—C3—O2179.1 (2)C2—C1—C6—C9176.8 (2)
C5—C4—C3—C21.7 (4)C15—C16—C17—C120.6 (4)
C30—C31—C32—C330.9 (3)C13—C12—C17—C161.0 (3)
O8—C33—C32—C31177.8 (2)C11—C12—C17—C16179.7 (2)
C34—C33—C32—C311.7 (3)O6—C21—C22—C23178.8 (2)
C30—C35—C34—C330.4 (4)C20—C21—C22—C230.7 (4)
O8—C33—C34—C35177.2 (2)C24—C23—C22—C210.8 (4)
C32—C33—C34—C352.3 (4)C28—C23—C22—C21179.1 (2)
C19—C24—C23—C220.3 (4)C12—C11—C10—C5176.5 (2)
C27—C24—C23—C22179.3 (2)C4—C5—C10—C1119.5 (4)
C19—C24—C23—C28178.6 (2)C6—C5—C10—C11162.3 (3)
C27—C24—C23—C281.0 (4)C23—C24—C27—O712.8 (5)
O5—C19—C20—C21179.3 (3)C19—C24—C27—O7167.6 (3)
C24—C19—C20—C210.4 (4)C5—C6—C9—O36.5 (5)
C7—O1—C1—C26.2 (4)C1—C6—C9—O3175.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of the C12–C17 and C30–C35 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9···O10.932.292.681 (4)105
C10—H10···O30.932.252.863 (4)123
C27—H27···O50.932.312.681 (4)103
C28—H28···O70.932.342.861 (3)115
C14—H14···Cg4i0.932.883.597 (3)135
C17—H14···Cg4ii0.932.763.471 (3)134
C32—H14···Cg20.932.823.530 (3)135
C15—H14···Cg2iii0.932.663.371 (3)134
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC18H18O4
Mr298.32
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.292 (5), 9.448 (5), 17.547 (5)
α, β, γ (°)84.097 (5), 84.040 (5), 83.315 (5)
V3)1515.3 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.973, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
10535, 5272, 3060
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.168, 0.79
No. of reflections5272
No. of parameters404
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.18

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of the C12–C17 and C30–C35 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C14—H14···Cg4i0.932.883.597 (3)135
C17—H14···Cg4ii0.932.763.471 (3)134
C32—H14···Cg20.932.823.530 (3)135
C15—H14···Cg2iii0.932.663.371 (3)134
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+1, y, z.
 

Acknowledgements

This work was supported by Anhui Provincial Natural Science Foundation (grant No. 1308085MB18).

References

First citationBoumendjel, A., Boccard, J., Carrupt, P. A., Nicolle, E., Blanc, M., Geze, A., Choisnard, L., Wouessidjewe, D., Matera, E. L. & Dumontet, C. (2008). J. Med. Chem. 51, 2307–2310.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, X. F., Ruan, B. F., Wang, X. T., Xu, C., Ge, H. M., Zhu, H. L. & Tan, R. X. (2007). Eur. J. Med. Chem. 42, 263–267.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJang, M., Cai, L., Udeani, G. O., Slowing, K. V., Thomas, C. F., Beecher, C. W. W., Fong, H. H. S., Farnworth, R. N., Kinghorn, A. D., Metha, R. G., Moon, R. C. & Pezzuto, J. M. (1997). Science, 275, 218–220.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOrsini, F., Pelizzoni, F., Verotta, L. & Aburjai, T. (1997). J. Nat. Prod. 60, 1082–1087.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPettit, G. R., Grealish, M. P., Jung, M. K., Hamel, E., Pettit, R. K., Chapuis, J. C. & Schmidt, J. M. (2002). J. Med. Chem. 45, 2534–2542.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds