organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 3-amino-5-bromo-1-benzo­furan-2-carboxyl­ate

aDepartment of Chemistry, Kuvempu University, Jnana Sahyadri, Shankaraghatta 577 451, India, bDepartment of Biotechnology, PES Institute of Technology, BSK III Stg, Bangalore 560 085, India, and cDepartment of Chemistry, SSMRV College, 4th T Block, Jayanagar, Bangalore 560 041, India
*Correspondence e-mail: girija.shivakumar@rediffmail.com

(Received 1 April 2013; accepted 14 April 2013; online 20 April 2013)

The title compound, C11H10BrNO3, is close to planar with the benzo­furan unit and the ester group subtending a dihedral angle of 5.25 (2)°. The mol­ecular structure features an intra­molecular N—H⋯O inter­action. In the crystal, N—H⋯O hydrogen bonds involving carboxyl O-atom acceptors generate a chain extending along [201].

Related literature

For the biological activity of benzo­furan derivatives, see: Oter et al. (2007[Oter, O., Ertekin, K., Kirilmis, C., Koca, M. & Ahmedzade, M. (2007). Sens. Actuators B, 122, 450-456.]); Habermann et al. (1999[Habermann, J., Ley, S. V., Scicinski, J. J., Scott, J. S., Smits, R. & Thomas, A. W. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 2425-2427.]). For a similar structure, see: Karunakar et al. (2013[Karunakar, P., Krishnamurthy, V., Girija, C. R., Krishna, V., Vaidya, V. P. & Yamuna, A. J. (2013). Acta Cryst. E69, o342.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10BrNO3

  • Mr = 284.11

  • Monoclinic, P 21 /c

  • a = 5.775 (5) Å

  • b = 25.550 (2) Å

  • c = 7.640 (1) Å

  • β = 98.292 (1)°

  • V = 1115.5 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.68 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.591, Tmax = 0.732

  • 10542 measured reflections

  • 1957 independent reflections

  • 1658 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.076

  • S = 1.08

  • 1957 reflections

  • 154 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.82 (2) 2.17 (2) 2.977 (4) 171 (3)
N1—H1B⋯O3 0.82 (2) 2.31 (3) 2.835 (4) 123 (3)
Symmetry code: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Substituted benzofurans find their applications in different fields such as fluorescent sensors (Oter et al., 2007), antioxidants, brightening agents and as drugs and agricultural chemicals (Habermann et al., 1999). In the title compound, C11H10BrNO3, the ester group is close to coplanar with the benzofuran plane [dihedral angle = 5.25 (2)°] which compares with 7.84 (2)° in the previously reported analogous compound ethyl 5-bromo-3-ethoxycarbonylamino-1-benzofuran-2-carboxylate (Karunakar et al., 2013). The structure is stabilized by an intramolecular amine N1—H1B···O3 interaction (Table 1) while an intermolecular N1—HA···O2i hydrogen-bond to a carboxyl O-atom acceptor generates a one-dimensional chain structure extending along [201] (Fig. 2).

Related literature top

For the biological activity of benzofuran derivatives, see: Oter et al. (2007); Habermann et al. (1999). For a similar structure, see: Karunakar et al. (2013).

Experimental top

The mixture of 5-bromo-2-hydroxybenzonitrile (1.98 g, 0.01 mol), ethyl chloroacetate (1 ml, 0.01 mol) and potassium carbonate (2.76 g, 0.02 mol) in 5 ml of DMF was refluxed for 90 min. The potassium carbonate was removed by filtration and crushed ice was added to the filtrate, with constant stirring. The solid separated was filtered, dried and recrystallized from ethanol. Yeild: 87% (0.247 g); m.p. 154–156 °C.

Refinement top

All carbon-bound hydrogen atoms were placed in calculated positions with C—H distances of 0.93 - 0.97 Å and refined as riding with Uiso(H) =xUeq(C), where x = 1.5 for methyl H-atoms and x = 1.2 for all other H-atoms. The N-bound H atom positions were determined from a difference electron density map and refined freely.

Structure description top

Substituted benzofurans find their applications in different fields such as fluorescent sensors (Oter et al., 2007), antioxidants, brightening agents and as drugs and agricultural chemicals (Habermann et al., 1999). In the title compound, C11H10BrNO3, the ester group is close to coplanar with the benzofuran plane [dihedral angle = 5.25 (2)°] which compares with 7.84 (2)° in the previously reported analogous compound ethyl 5-bromo-3-ethoxycarbonylamino-1-benzofuran-2-carboxylate (Karunakar et al., 2013). The structure is stabilized by an intramolecular amine N1—H1B···O3 interaction (Table 1) while an intermolecular N1—HA···O2i hydrogen-bond to a carboxyl O-atom acceptor generates a one-dimensional chain structure extending along [201] (Fig. 2).

For the biological activity of benzofuran derivatives, see: Oter et al. (2007); Habermann et al. (1999). For a similar structure, see: Karunakar et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom numbering scheme for the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing in the unit cell viewed down a. Hydrogen bonds are drawn as dashed lines. For symmetry code (i), see Table 1.
Ethyl 3-amino-5-bromo-1-benzofuran-2-carboxylate top
Crystal data top
C11H10BrNO3F(000) = 568
Mr = 284.11Dx = 1.692 Mg m3
Monoclinic, P21/cMelting point = 427–429 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 5.775 (5) ÅCell parameters from 4034 reflections
b = 25.550 (2) Åθ = 3.1–25.0°
c = 7.640 (1) ŵ = 3.68 mm1
β = 98.292 (1)°T = 293 K
V = 1115.5 (10) Å3Block, yellow
Z = 40.20 × 0.15 × 0.10 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1957 independent reflections
Radiation source: fine-focus sealed tube1658 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and φ scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 66
Tmin = 0.591, Tmax = 0.732k = 3030
10542 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0258P)2 + 1.2998P]
where P = (Fo2 + 2Fc2)/3
1957 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.42 e Å3
1 restraintΔρmin = 0.34 e Å3
Crystal data top
C11H10BrNO3V = 1115.5 (10) Å3
Mr = 284.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.775 (5) ŵ = 3.68 mm1
b = 25.550 (2) ÅT = 293 K
c = 7.640 (1) Å0.20 × 0.15 × 0.10 mm
β = 98.292 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1957 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1658 reflections with I > 2σ(I)
Tmin = 0.591, Tmax = 0.732Rint = 0.025
10542 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.42 e Å3
1957 reflectionsΔρmin = 0.34 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7527 (5)0.13047 (11)0.2409 (4)0.0367 (6)
H10.90270.13510.30180.044*
C20.6640 (5)0.08164 (12)0.1981 (4)0.0400 (7)
C30.4395 (5)0.07344 (12)0.1094 (4)0.0449 (8)
H30.38590.03950.08550.054*
C40.2971 (5)0.11501 (13)0.0572 (4)0.0457 (8)
H40.14640.11020.00230.055*
C50.3869 (5)0.16441 (12)0.0968 (4)0.0373 (7)
C60.6077 (5)0.17270 (11)0.1889 (4)0.0339 (6)
C70.6341 (5)0.22874 (11)0.2061 (4)0.0345 (6)
C80.4298 (5)0.24944 (12)0.1214 (4)0.0385 (7)
C90.3548 (5)0.30198 (12)0.0857 (4)0.0402 (7)
C100.4688 (6)0.39058 (12)0.1228 (4)0.0464 (8)
H10A0.33860.40180.18100.056*
H10B0.42920.39670.00320.056*
C110.6871 (6)0.41993 (14)0.1950 (5)0.0613 (10)
H11A0.71880.41520.32080.092*
H11B0.66570.45650.16860.092*
H11C0.81630.40690.14160.092*
N10.8245 (5)0.25350 (11)0.2871 (4)0.0472 (7)
O10.2739 (3)0.21006 (8)0.0521 (3)0.0446 (5)
O20.1709 (4)0.31544 (9)0.0025 (3)0.0579 (6)
O30.5187 (4)0.33597 (8)0.1573 (3)0.0463 (5)
Br10.85639 (7)0.022292 (13)0.26302 (6)0.06241 (16)
H1A0.930 (5)0.2374 (11)0.347 (4)0.045 (9)*
H1B0.821 (6)0.2852 (9)0.299 (5)0.058 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0319 (14)0.0367 (16)0.0390 (16)0.0032 (13)0.0029 (12)0.0002 (13)
C20.0411 (17)0.0360 (16)0.0422 (18)0.0023 (13)0.0036 (13)0.0003 (13)
C30.0427 (17)0.0379 (17)0.0527 (19)0.0096 (14)0.0020 (14)0.0093 (15)
C40.0344 (16)0.0486 (19)0.0508 (19)0.0091 (14)0.0053 (14)0.0077 (15)
C50.0314 (15)0.0382 (16)0.0406 (16)0.0011 (13)0.0005 (12)0.0001 (13)
C60.0321 (15)0.0359 (16)0.0322 (15)0.0034 (12)0.0002 (12)0.0002 (12)
C70.0295 (15)0.0373 (16)0.0347 (16)0.0027 (12)0.0024 (12)0.0003 (12)
C80.0309 (15)0.0376 (16)0.0434 (17)0.0012 (13)0.0067 (13)0.0009 (13)
C90.0313 (16)0.0427 (17)0.0438 (17)0.0016 (13)0.0036 (13)0.0037 (14)
C100.0490 (19)0.0368 (17)0.0522 (19)0.0022 (14)0.0034 (15)0.0026 (15)
C110.061 (2)0.050 (2)0.072 (3)0.0128 (17)0.0062 (19)0.0075 (18)
N10.0345 (14)0.0365 (16)0.0635 (19)0.0002 (13)0.0171 (13)0.0010 (14)
O10.0316 (11)0.0415 (12)0.0556 (13)0.0025 (9)0.0107 (9)0.0014 (10)
O20.0409 (13)0.0439 (13)0.0798 (17)0.0019 (10)0.0221 (12)0.0092 (12)
O30.0402 (12)0.0369 (12)0.0568 (13)0.0004 (9)0.0097 (10)0.0023 (10)
Br10.0607 (2)0.0360 (2)0.0857 (3)0.00615 (17)0.00581 (18)0.00165 (18)
Geometric parameters (Å, º) top
C1—C21.370 (4)C8—O11.402 (3)
C1—C61.388 (4)C8—C91.425 (4)
C1—H10.9300C9—O21.207 (3)
C2—C31.389 (4)C9—O31.342 (3)
C2—Br11.903 (3)C10—O31.441 (4)
C3—C41.367 (4)C10—C111.501 (5)
C3—H30.9300C10—H10A0.9700
C4—C51.381 (4)C10—H10B0.9700
C4—H40.9300C11—H11A0.9600
C5—O11.356 (3)C11—H11B0.9600
C5—C61.381 (4)C11—H11C0.9600
C6—C71.444 (4)N1—H1A0.82 (2)
C7—N11.340 (4)N1—H1B0.82 (2)
C7—C81.368 (4)
C2—C1—C6116.7 (3)C7—C8—C9132.3 (3)
C2—C1—H1121.6O1—C8—C9116.3 (2)
C6—C1—H1121.6O2—C9—O3123.1 (3)
C1—C2—C3123.0 (3)O2—C9—C8126.1 (3)
C1—C2—Br1118.6 (2)O3—C9—C8110.8 (2)
C3—C2—Br1118.4 (2)O3—C10—C11106.3 (3)
C4—C3—C2120.3 (3)O3—C10—H10A110.5
C4—C3—H3119.8C11—C10—H10A110.5
C2—C3—H3119.8O3—C10—H10B110.5
C3—C4—C5117.1 (3)C11—C10—H10B110.5
C3—C4—H4121.5H10A—C10—H10B108.7
C5—C4—H4121.5C10—C11—H11A109.5
O1—C5—C6111.8 (2)C10—C11—H11B109.5
O1—C5—C4125.4 (3)H11A—C11—H11B109.5
C6—C5—C4122.8 (3)C10—C11—H11C109.5
C5—C6—C1120.1 (3)H11A—C11—H11C109.5
C5—C6—C7106.0 (2)H11B—C11—H11C109.5
C1—C6—C7133.9 (3)C7—N1—H1A121 (2)
N1—C7—C8129.1 (3)C7—N1—H1B119 (3)
N1—C7—C6125.4 (3)H1A—N1—H1B118 (3)
C8—C7—C6105.5 (2)C5—O1—C8105.2 (2)
C7—C8—O1111.4 (3)C9—O3—C10116.2 (2)
C6—C1—C2—C30.9 (5)C1—C6—C7—C8177.9 (3)
C6—C1—C2—Br1179.1 (2)N1—C7—C8—O1179.3 (3)
C1—C2—C3—C41.3 (5)C6—C7—C8—O10.4 (3)
Br1—C2—C3—C4178.7 (2)N1—C7—C8—C92.5 (6)
C2—C3—C4—C50.0 (5)C6—C7—C8—C9176.4 (3)
C3—C4—C5—O1178.4 (3)C7—C8—C9—O2176.9 (3)
C3—C4—C5—C61.7 (5)O1—C8—C9—O20.2 (5)
O1—C5—C6—C1177.9 (3)C7—C8—C9—O32.8 (5)
C4—C5—C6—C12.1 (5)O1—C8—C9—O3179.5 (2)
O1—C5—C6—C71.1 (3)C6—C5—O1—C80.8 (3)
C4—C5—C6—C7178.9 (3)C4—C5—O1—C8179.2 (3)
C2—C1—C6—C50.7 (4)C7—C8—O1—C50.3 (3)
C2—C1—C6—C7179.4 (3)C9—C8—O1—C5177.6 (3)
C5—C6—C7—N1179.8 (3)O2—C9—O3—C102.8 (4)
C1—C6—C7—N11.1 (5)C8—C9—O3—C10176.9 (3)
C5—C6—C7—C80.8 (3)C11—C10—O3—C9172.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.82 (2)2.17 (2)2.977 (4)171 (3)
N1—H1B···O30.82 (2)2.31 (3)2.835 (4)123 (3)
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H10BrNO3
Mr284.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)5.775 (5), 25.550 (2), 7.640 (1)
β (°) 98.292 (1)
V3)1115.5 (10)
Z4
Radiation typeMo Kα
µ (mm1)3.68
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.591, 0.732
No. of measured, independent and
observed [I > 2σ(I)] reflections
10542, 1957, 1658
Rint0.025
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.076, 1.08
No. of reflections1957
No. of parameters154
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.34

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.82 (2)2.17 (2)2.977 (4)171 (3)
N1—H1B···O30.82 (2)2.31 (3)2.835 (4)123 (3)
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Sophisticated Analytical Instrument Facility (SAIF), Indian Institute of Technology (IIT), Chennai, India, for the data collection. They also thank Dr K. M. Mahadevan, Department of Chemistry, and Dr V. Krishna, Department of Biotechnology of Kuvempu University, Jnana Sahyadri, Shankaraghatta, for their support.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHabermann, J., Ley, S. V., Scicinski, J. J., Scott, J. S., Smits, R. & Thomas, A. W. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 2425–2427.  Web of Science CrossRef Google Scholar
First citationKarunakar, P., Krishnamurthy, V., Girija, C. R., Krishna, V., Vaidya, V. P. & Yamuna, A. J. (2013). Acta Cryst. E69, o342.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOter, O., Ertekin, K., Kirilmis, C., Koca, M. & Ahmedzade, M. (2007). Sens. Actuators B, 122, 450–456.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds