organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Phen­­oxy­ethyl benzoate

aDepartment of Chemistry, Hashemite University, Zarqa 13115, Jordan, bDepartment of Chemistry, AN-Najah National University, Nablus, Palestinian Territories, cDepartment of Chemistry, The University of Jordan, Amman 11942, Jordan, and dDepartment of Basic Science, Allied Medical Science College, Applied Science Private University, PO Box 166, Amman 11931, Jordan
*Correspondence e-mail: manoaimi@hu.edu.jo

(Received 9 April 2013; accepted 22 April 2013; online 27 April 2013)

In the title compound, C15H14O3, the dihedral angle between the benzene rings is 75.85 (7)°. In the crystal, centrosymmetrically related mol­ecules are weakly associated through pairs of inter­actions between a benzene ring and an O atom of the ester group [ring centroid⋯O = 3.952 (7) Å], and through pairs of inter­actions between the other benzene ring and an O atom of the phen­oxy group [ring centroid⋯O = 3.912 (7) Å], giving chains extending along [110].

Related literature

For background information and related structures, see: Gandhi et al. (1995[Gandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). Tetrahedron, 51, 13301-13308.]); Huang et al. (1996[Huang, W., Pian, J., Chen, B., Pei, W. & Ye, X. (1996). Tetrahedron, 52, 10131-10136.]); Litera et al. (2006[Litera, J. K., Loya, A. D. & Klan, P. (2006). J. Org. Chem. 71, 713-723.]); Ruzicka et al. (2002[Ruzicka, R., Zabadal, M. & Klan, P. (2002). Synth. Commun. 32, 2581-2590.]); Sheehan & Umezaw (1973[Sheehan, J. C. & Umezaw, K. (1973). J. Org. Chem. 58, 3771-3773.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14O3

  • Mr = 242.26

  • Monoclinic, P 21 /c

  • a = 9.4675 (10) Å

  • b = 10.1411 (10) Å

  • c = 13.7792 (12) Å

  • β = 103.895 (10)°

  • V = 1284.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.32 × 0.26 × 0.18 mm

Data collection
  • Oxford Diffraction Xcalibur Eos CCD-detector diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.995, Tmax = 0.997

  • 5089 measured reflections

  • 2269 independent reflections

  • 1479 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.130

  • S = 1.02

  • 2269 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.11 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Phenoxyethyl benzoate has applications in the synthesis of e.g. oxazoles, imidazoles and benzoxazepines (Huang et al., 1996; Gandhi et al., 1995). Esters are also useful as photo-removable protecting groups for carboxylic acids in organic synthesis and biochemistry (Ruzicka et al., 2002; Litera et al., 2006; Sheehan & Umezaw, 1973). Keeping this in view, the title compound, C15H14O3, was synthesized and its crystal structure is repored herein.

In the title compound (Fig. 1), the dihedral angle between the benzene rings is 75.85 (7)°. In the crystal, two centrosymmetrically related molecules are weakly associated through a pair of intermolecular interactions between a benzene ring [C1–C6] and an oxygen of the phenoxy group (O1A) [ring centroid(Cg)···O1A separation, 3.912 (7) Å] [for symmetry code (A): -x, -y + 1, -z]. In addition, the molecules are weakly associated through a similar pair of intermolecular interactions between the second benzene ring [C10–C15] and a carboxyl oxygen of the ester group (O2B) [ring centroid (Cg)···O2B separation, 3.952 (7) Å] [for symmetry code (B): -x + 1, -y, -z] (Fig. 2). The result is a chain structure extending across [110].

Related literature top

For background information and related structures, see: Gandhi et al. (1995); Huang et al. (1996); Litera et al. (2006); Ruzicka et al. (2002); Sheehan & Umezaw (1973).

Experimental top

Benzoic acid (10.0 g, 0.08 mol) was mixed directly without solvent with 2-phenoxyethanol (11.0 g, 0.08 mol) and refluxed for 3 hours. The reaction was left at room temperature for 24 hours. The product was collected as crystals in 52% yield. The crystals were purified by washing several times with cold ethanol.

Refinement top

Hydrogen atoms were positioned geometrically with C—H = 0.93 Å (aromatic) or 0.98 Å (methylene) and allowed to ride in the refinement, with Uiso(H) = 1.2Ueq(C).

Structure description top

Phenoxyethyl benzoate has applications in the synthesis of e.g. oxazoles, imidazoles and benzoxazepines (Huang et al., 1996; Gandhi et al., 1995). Esters are also useful as photo-removable protecting groups for carboxylic acids in organic synthesis and biochemistry (Ruzicka et al., 2002; Litera et al., 2006; Sheehan & Umezaw, 1973). Keeping this in view, the title compound, C15H14O3, was synthesized and its crystal structure is repored herein.

In the title compound (Fig. 1), the dihedral angle between the benzene rings is 75.85 (7)°. In the crystal, two centrosymmetrically related molecules are weakly associated through a pair of intermolecular interactions between a benzene ring [C1–C6] and an oxygen of the phenoxy group (O1A) [ring centroid(Cg)···O1A separation, 3.912 (7) Å] [for symmetry code (A): -x, -y + 1, -z]. In addition, the molecules are weakly associated through a similar pair of intermolecular interactions between the second benzene ring [C10–C15] and a carboxyl oxygen of the ester group (O2B) [ring centroid (Cg)···O2B separation, 3.952 (7) Å] [for symmetry code (B): -x + 1, -y, -z] (Fig. 2). The result is a chain structure extending across [110].

For background information and related structures, see: Gandhi et al. (1995); Huang et al. (1996); Litera et al. (2006); Ruzicka et al. (2002); Sheehan & Umezaw (1973).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom numbering scheme for the title compound. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The chain structure showing the ring centroid···O associations [for symmetry code (A): -x, -y + 1, -z]; (B): -x + 1, -y, -z].
2-Phenoxyethyl benzoate top
Crystal data top
C15H14O3F(000) = 512
Mr = 242.26Dx = 1.253 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1664 reflections
a = 9.4675 (10) Åθ = 3.0–29.3°
b = 10.1411 (10) ŵ = 0.09 mm1
c = 13.7792 (12) ÅT = 293 K
β = 103.895 (10)°Wedge, colourless
V = 1284.2 (2) Å30.32 × 0.26 × 0.18 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos CCD-detector
diffractometer
2269 independent reflections
Radiation source: Enhance (Mo) X-ray Source1479 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 16.0534 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = 1110
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2011)
k = 912
Tmin = 0.995, Tmax = 0.997l = 1216
5089 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0531P)2 + 0.042P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2269 reflectionsΔρmax = 0.11 e Å3
164 parametersΔρmin = 0.11 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.035 (3)
Crystal data top
C15H14O3V = 1284.2 (2) Å3
Mr = 242.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4675 (10) ŵ = 0.09 mm1
b = 10.1411 (10) ÅT = 293 K
c = 13.7792 (12) Å0.32 × 0.26 × 0.18 mm
β = 103.895 (10)°
Data collection top
Oxford Diffraction Xcalibur Eos CCD-detector
diffractometer
2269 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2011)
1479 reflections with I > 2σ(I)
Tmin = 0.995, Tmax = 0.997Rint = 0.029
5089 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.02Δρmax = 0.11 e Å3
2269 reflectionsΔρmin = 0.11 e Å3
164 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.21934 (14)0.06786 (14)0.04977 (8)0.0697 (5)
O10.10626 (13)0.31548 (14)0.04881 (9)0.0693 (4)
C10.0173 (2)0.39845 (19)0.11534 (12)0.0573 (5)
C100.37587 (19)0.11334 (19)0.06159 (13)0.0589 (5)
C90.3215 (2)0.0031 (2)0.11219 (14)0.0644 (5)
C70.0433 (2)0.2408 (2)0.01671 (14)0.0703 (6)
H7A0.01990.17340.02060.084*
H7B0.01480.29770.04840.084*
C80.1615 (2)0.1781 (2)0.09424 (14)0.0786 (6)
H8A0.23790.24170.11960.094*
H8B0.12320.14790.14970.094*
O30.36163 (17)0.02131 (18)0.19998 (10)0.0968 (6)
C20.1322 (2)0.4027 (2)0.13240 (14)0.0683 (6)
H2A0.18040.34770.09700.082*
C50.0077 (3)0.5679 (2)0.23750 (14)0.0793 (7)
H5A0.05540.62350.27280.095*
C60.0870 (2)0.4820 (2)0.16825 (14)0.0709 (6)
H6A0.18790.48000.15690.085*
C110.4723 (2)0.2012 (2)0.11906 (17)0.0810 (7)
H11A0.50060.19050.18810.097*
C150.3333 (2)0.1315 (2)0.04026 (15)0.0737 (6)
H15A0.26690.07390.07940.088*
C30.2097 (2)0.4898 (2)0.20273 (16)0.0809 (7)
H3A0.31070.49230.21470.097*
C40.1402 (3)0.5723 (2)0.25494 (15)0.0808 (7)
H4A0.19340.63070.30180.097*
C130.4865 (3)0.3199 (3)0.0267 (2)0.1029 (8)
H13A0.52570.38860.05640.123*
C140.3890 (3)0.2350 (2)0.08458 (18)0.0943 (7)
H14A0.36030.24710.15340.113*
C120.5261 (3)0.3035 (3)0.0747 (2)0.1039 (9)
H12A0.59040.36280.11380.125*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0937 (10)0.0559 (9)0.0580 (7)0.0144 (8)0.0151 (7)0.0017 (7)
O10.0707 (8)0.0666 (9)0.0747 (8)0.0111 (7)0.0255 (7)0.0141 (7)
C10.0673 (12)0.0505 (12)0.0551 (10)0.0079 (10)0.0163 (9)0.0068 (9)
C100.0561 (11)0.0540 (12)0.0664 (12)0.0040 (10)0.0146 (9)0.0108 (10)
C90.0665 (12)0.0659 (14)0.0601 (11)0.0028 (11)0.0139 (9)0.0091 (11)
C70.0862 (14)0.0593 (14)0.0730 (12)0.0087 (12)0.0342 (10)0.0017 (11)
C80.1139 (17)0.0638 (14)0.0627 (11)0.0174 (13)0.0303 (12)0.0018 (11)
O30.1082 (12)0.1176 (15)0.0581 (8)0.0162 (10)0.0073 (8)0.0040 (9)
C20.0685 (13)0.0602 (14)0.0758 (12)0.0002 (11)0.0164 (10)0.0068 (11)
C50.1058 (18)0.0711 (16)0.0663 (12)0.0138 (14)0.0312 (12)0.0101 (12)
C60.0747 (13)0.0719 (15)0.0716 (12)0.0103 (12)0.0284 (10)0.0065 (12)
C110.0631 (13)0.0809 (17)0.0913 (15)0.0054 (12)0.0036 (11)0.0145 (14)
C150.0933 (15)0.0593 (14)0.0717 (13)0.0159 (12)0.0262 (11)0.0103 (11)
C30.0709 (13)0.0768 (17)0.0855 (14)0.0073 (13)0.0003 (12)0.0152 (14)
C40.1031 (18)0.0686 (16)0.0614 (12)0.0196 (14)0.0018 (12)0.0062 (11)
C130.107 (2)0.0694 (17)0.148 (2)0.0217 (16)0.0600 (19)0.0079 (19)
C140.126 (2)0.0727 (17)0.0922 (15)0.0136 (16)0.0415 (14)0.0034 (14)
C120.0790 (16)0.089 (2)0.139 (2)0.0257 (15)0.0167 (16)0.0231 (19)
Geometric parameters (Å, º) top
O2—C91.339 (2)C5—C41.364 (3)
O2—C81.445 (2)C5—C61.374 (3)
O1—C11.373 (2)C5—H5A0.9300
O1—C71.415 (2)C6—H6A0.9300
C1—C21.379 (2)C11—C121.364 (3)
C1—C61.384 (3)C11—H11A0.9300
C10—C151.376 (2)C15—C141.381 (3)
C10—C111.381 (3)C15—H15A0.9300
C10—C91.474 (3)C3—C41.370 (3)
C9—O31.203 (2)C3—H3A0.9300
C7—C81.491 (3)C4—H4A0.9300
C7—H7A0.9700C13—C121.367 (3)
C7—H7B0.9700C13—C141.369 (3)
C8—H8A0.9700C13—H13A0.9300
C8—H8B0.9700C14—H14A0.9300
C2—C31.384 (3)C12—H12A0.9300
C2—H2A0.9300
C9—O2—C8115.63 (14)C4—C5—H5A119.7
C1—O1—C7117.97 (14)C6—C5—H5A119.7
O1—C1—C2124.94 (18)C5—C6—C1120.2 (2)
O1—C1—C6115.68 (17)C5—C6—H6A119.9
C2—C1—C6119.39 (18)C1—C6—H6A119.9
C15—C10—C11119.3 (2)C12—C11—C10120.0 (2)
C15—C10—C9122.27 (17)C12—C11—H11A120.0
C11—C10—C9118.41 (18)C10—C11—H11A120.0
O3—C9—O2122.7 (2)C10—C15—C14120.2 (2)
O3—C9—C10124.74 (18)C10—C15—H15A119.9
O2—C9—C10112.59 (16)C14—C15—H15A119.9
O1—C7—C8109.06 (16)C4—C3—C2121.1 (2)
O1—C7—H7A109.9C4—C3—H3A119.5
C8—C7—H7A109.9C2—C3—H3A119.5
O1—C7—H7B109.9C5—C4—C3119.3 (2)
C8—C7—H7B109.9C5—C4—H4A120.3
H7A—C7—H7B108.3C3—C4—H4A120.3
O2—C8—C7108.78 (15)C12—C13—C14120.0 (3)
O2—C8—H8A109.9C12—C13—H13A120.0
C7—C8—H8A109.9C14—C13—H13A120.0
O2—C8—H8B109.9C13—C14—C15119.7 (2)
C7—C8—H8B109.9C13—C14—H14A120.1
H8A—C8—H8B108.3C15—C14—H14A120.1
C1—C2—C3119.3 (2)C11—C12—C13120.7 (2)
C1—C2—H2A120.3C11—C12—H12A119.7
C3—C2—H2A120.3C13—C12—H12A119.7
C4—C5—C6120.7 (2)
C7—O1—C1—C28.7 (3)O1—C1—C6—C5179.26 (17)
C7—O1—C1—C6171.67 (16)C2—C1—C6—C50.3 (3)
C8—O2—C9—O31.1 (3)C15—C10—C11—C121.0 (3)
C8—O2—C9—C10179.74 (16)C9—C10—C11—C12179.3 (2)
C15—C10—C9—O3175.5 (2)C11—C10—C15—C141.3 (3)
C11—C10—C9—O34.7 (3)C9—C10—C15—C14178.9 (2)
C15—C10—C9—O25.3 (3)C1—C2—C3—C40.5 (3)
C11—C10—C9—O2174.41 (17)C6—C5—C4—C30.2 (3)
C1—O1—C7—C8169.37 (15)C2—C3—C4—C50.3 (3)
C9—O2—C8—C7176.41 (17)C12—C13—C14—C151.3 (4)
O1—C7—C8—O275.6 (2)C10—C15—C14—C130.2 (4)
O1—C1—C2—C3179.05 (17)C10—C11—C12—C130.5 (4)
C6—C1—C2—C30.5 (3)C14—C13—C12—C111.7 (4)
C4—C5—C6—C10.2 (3)

Experimental details

Crystal data
Chemical formulaC15H14O3
Mr242.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.4675 (10), 10.1411 (10), 13.7792 (12)
β (°) 103.895 (10)
V3)1284.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.26 × 0.18
Data collection
DiffractometerOxford Diffraction Xcalibur Eos CCD-detector
Absorption correctionAnalytical
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.995, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
5089, 2269, 1479
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.130, 1.02
No. of reflections2269
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.11

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

 

Acknowledgements

The project was supported by AN-Najah National University and the Hashemite University (Jordan). The X-ray structural work was performed at Hamdi Mango Center for Scientific Research at The University of Jordan, Amman 11942, Jordan.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationGandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). Tetrahedron, 51, 13301–13308.  CrossRef CAS Web of Science Google Scholar
First citationHuang, W., Pian, J., Chen, B., Pei, W. & Ye, X. (1996). Tetrahedron, 52, 10131–10136.  CrossRef CAS Web of Science Google Scholar
First citationLitera, J. K., Loya, A. D. & Klan, P. (2006). J. Org. Chem. 71, 713–723.  Web of Science PubMed Google Scholar
First citationRuzicka, R., Zabadal, M. & Klan, P. (2002). Synth. Commun. 32, 2581–2590.  Web of Science CrossRef CAS Google Scholar
First citationSheehan, J. C. & Umezaw, K. (1973). J. Org. Chem. 58, 3771–3773.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds