organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 1′′-benzyl-1′-methyl-2′′-oxodi­spiro­[indeno­[1,2-b]quinoxaline-11,3′-pyrrolidine-2′,3′′-indoline]-4′-carboxyl­ate

aDepartment of Physics, S.M.K. Fomra Institute of Technology, Thaiyur, Chennai 603 103, India, bOrganic Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai 600 020, India, and cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: a_sp59@yahoo.in

(Received 26 March 2013; accepted 27 April 2013; online 4 May 2013)

In the title compound, C36H30N4O3, the quinoxaline–indene system is roughly planar, with a maximum deviation from the mean plane of 0.218 Å for the C atom shared with the central pyrrolidine ring. This latter ring forms dihedral angles of 84.54 (7) and 83.91 (8)° with the quinoxaline–indene system and the indole ring, respectively. The central pyrrolidine ring has an envelope conformation with the N atom as the flap, while the pyrrolidine and five-membered rings of the indole group adopt twisted conformation and envelope (with the C atom bearing the quinoxaline–indene system as the flap) conformations, respectively. In the crystal, mol­ecules are linked via weak C—H⋯N hydrogen bonds, forming a chain running along [100].

Related literature

For details of the synthesis, see: Azizian et al. (2005[Azizian, J., Mohammadizadeh, M. R., Karimi, N., Kazemizadeh, Z., Mohammadi, A. A. & Karimi, A. R. (2005). Heteroat. Chem. 16, 549-552.]). For uses of pyrrolidine and quinoxaline derivatives, see: Amal Raj et al. (2003[Amal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407-409.]); Zarranz et al. (2003[Zarranz, B., Jago, A., Aldana, I. & Monge, A. (2003). Bioorg. Med. Chem. 11, 2149-2156.]). For a related structure, see: Srinivasan et al. (2012[Srinivasan, T., Suhitha, S., Purushothaman, S., Raghunathan, R. & Velmurugan, D. (2012). Acta Cryst. E68, o2469.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C36H30N4O3

  • Mr = 566.64

  • Triclinic, [P \overline 1]

  • a = 11.1927 (2) Å

  • b = 11.4535 (3) Å

  • c = 12.1206 (3) Å

  • α = 87.637 (2)°

  • β = 86.048 (1)°

  • γ = 70.564 (2)°

  • V = 1461.50 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker APEXII CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.980

  • 21785 measured reflections

  • 5987 independent reflections

  • 4956 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.134

  • S = 1.04

  • 5987 reflections

  • 388 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C27—H27⋯N4i 0.93 2.60 3.446 (2) 152
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrrolidine derivatives are found to have anticonvulsant, antimicrobial and antifungal activities against various pathogens (Amal Raj et al., 2003). Quinoxaline derivatives may show antibacterial, antiviral and anticancer properties (Zarranz et al., 2003). As spiro pyrrolidine compounds are of interest due to their potential medicinal properties, we have undertaken the study of the three dimensional structure of the title compound C36H30N4O3, (I).

Fig 1 presents a molecular view of (I). The quinoxaline-indene system C1-C15/N1-N2), is essentially planar, with maximum deviation from the mean plane of 0.218Å for atom C15.

The central pyrrolidine ring (N4/C15-C16/C34-C35) forms dihedral angles of 84.54 (7) and 83.91 (8)° with the quinoxaline-indene and the (C16-C23/N3 indole groups, respectively. The central pyrrolidine ring is enveloped on N4 with puckering parameters q2 = 0.4000 (2) Å, ϕ = 359.20 (2)° (Cremer & Pople, 1975). The pyrrolidine in the indole group adopts a twisted conformation on C17-C16 with puckering parameters of q2 = 0.1265 (2) Å, ϕ = 51.90 (7)°, while the (C7-C9/C14-C15) five membered ring envelopes on C15 with puckering parameters q2 = 0.1135 (2) Å, ϕ = 322.40 (8)°.

In the crystal packing, molecules are linked via weak C-H···N intermolecular hydrogen bonds (Table 1) to form chains along [100], as shown in Fig.2.

Related literature top

For details of the synthesis, see: Azizian et al. (2005). For uses of pyrrolidine and quinoxaline derivatives, see: Amal Raj et al. (2003); Zarranz et al. (2003). For a related structure, see: Srinivasan et al. (2012). For ring conformations, see: Cremer & Pople (1975).

Experimental top

A mixture of benzyl Isatin(0.25 mmol), sarcosine(0.3 mmol), ethyl indeno[1,2-b]quinoxalin-11-ylideneacetate(0.25 mmol) in ethanol was refluxed for 60 min (Azizian et al., 2005). The progress of the reaction was followed by TLC. After completion, the solvent was removed under reduced pressure and the resulting crude product was subjected to column chromatography. The product was recrystallised from methanol. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in methanol at room temperature.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for all other H atoms. The positions of methyl hydrogens were optimized rotationally.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing viewed of the structure, projected down the c axis, showing the way in which the [100] chains are formed. Dashed lines represent the intermolecular C—H···N hydrogen bonds.
Ethyl 1''-benzyl-1'-methyl-2''-oxodispiro[indeno[1,2-b]quinoxaline-11,3'-pyrrolidine-2',3''-indoline]-4'-carboxylate top
Crystal data top
C36H30N4O3Z = 2
Mr = 566.64F(000) = 596
Triclinic, P1Dx = 1.288 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.1927 (2) ÅCell parameters from 5987 reflections
b = 11.4535 (3) Åθ = 1.7–26.4°
c = 12.1206 (3) ŵ = 0.08 mm1
α = 87.637 (2)°T = 293 K
β = 86.048 (1)°Block, colourless
γ = 70.564 (2)°0.35 × 0.30 × 0.25 mm
V = 1461.50 (6) Å3
Data collection top
Bruker APEXII CCD area detector
diffractometer
5987 independent reflections
Radiation source: fine-focus sealed tube4956 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and ϕ scansθmax = 26.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1313
Tmin = 0.971, Tmax = 0.980k = 1414
21785 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0673P)2 + 0.3957P]
where P = (Fo2 + 2Fc2)/3
5987 reflections(Δ/σ)max < 0.001
388 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C36H30N4O3γ = 70.564 (2)°
Mr = 566.64V = 1461.50 (6) Å3
Triclinic, P1Z = 2
a = 11.1927 (2) ÅMo Kα radiation
b = 11.4535 (3) ŵ = 0.08 mm1
c = 12.1206 (3) ÅT = 293 K
α = 87.637 (2)°0.35 × 0.30 × 0.25 mm
β = 86.048 (1)°
Data collection top
Bruker APEXII CCD area detector
diffractometer
5987 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4956 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.980Rint = 0.029
21785 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.04Δρmax = 0.36 e Å3
5987 reflectionsΔρmin = 0.28 e Å3
388 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.46495 (16)0.33734 (15)0.47540 (12)0.0467 (4)
C20.58578 (19)0.2802 (2)0.51621 (16)0.0655 (5)
H20.65040.22700.47170.079*
C30.6081 (2)0.3030 (2)0.62131 (18)0.0796 (6)
H30.68860.26620.64750.096*
C40.5112 (2)0.3814 (2)0.69003 (17)0.0813 (7)
H40.52760.39520.76170.098*
C50.3943 (2)0.4369 (2)0.65289 (15)0.0716 (6)
H50.33060.48820.69940.086*
C60.36772 (17)0.41794 (15)0.54397 (13)0.0505 (4)
C70.32937 (13)0.36757 (13)0.33956 (11)0.0355 (3)
C80.23311 (15)0.45322 (13)0.40719 (11)0.0401 (3)
C90.12264 (14)0.50836 (13)0.34192 (12)0.0416 (3)
C100.00864 (17)0.59934 (16)0.36960 (14)0.0573 (4)
H100.00930.63010.44090.069*
C110.07808 (18)0.64365 (17)0.28945 (16)0.0629 (5)
H110.15570.70390.30700.076*
C120.05019 (17)0.59895 (16)0.18324 (15)0.0549 (4)
H120.10840.63150.12950.066*
C130.06289 (15)0.50652 (14)0.15560 (13)0.0451 (3)
H130.08030.47670.08400.054*
C140.15026 (13)0.45856 (12)0.23576 (11)0.0373 (3)
C150.27707 (13)0.35239 (12)0.23015 (11)0.0345 (3)
C160.25846 (13)0.21964 (13)0.22938 (11)0.0362 (3)
C170.13440 (14)0.23436 (13)0.17136 (12)0.0396 (3)
C180.22998 (15)0.16963 (13)0.34140 (11)0.0398 (3)
C190.30797 (18)0.11634 (15)0.42594 (13)0.0519 (4)
H190.39390.10700.41900.062*
C200.2559 (2)0.07688 (18)0.52142 (15)0.0671 (5)
H200.30720.04150.57940.081*
C210.1297 (2)0.08966 (19)0.53107 (15)0.0697 (6)
H210.09640.06420.59650.084*
C220.0499 (2)0.13956 (17)0.44591 (15)0.0597 (5)
H220.03550.14650.45240.072*
C230.10286 (15)0.17842 (13)0.35109 (12)0.0430 (3)
C240.08781 (15)0.25705 (16)0.23371 (16)0.0538 (4)
H24A0.10760.31660.17270.065*
H24B0.13530.29800.29930.065*
C250.13298 (14)0.15082 (14)0.20920 (12)0.0429 (3)
C260.25876 (15)0.16256 (17)0.23242 (13)0.0505 (4)
H260.31320.23410.26560.061*
C270.30515 (17)0.0699 (2)0.20724 (15)0.0612 (5)
H270.39010.07900.22370.073*
C280.2258 (2)0.0355 (2)0.15803 (16)0.0653 (5)
H280.25690.09800.14090.078*
C290.1006 (2)0.04890 (18)0.13409 (17)0.0645 (5)
H290.04700.12040.10040.077*
C300.05354 (16)0.04371 (16)0.15982 (15)0.0551 (4)
H300.03170.03380.14390.066*
C310.2604 (3)0.7740 (2)0.0863 (2)0.0978 (8)
H31A0.22720.84680.04070.147*
H31B0.34030.77180.11230.147*
H31C0.20180.77590.14840.147*
C320.2783 (3)0.6663 (2)0.02305 (18)0.0802 (7)
H32A0.33640.66470.04050.096*
H32B0.19790.66820.00360.096*
C330.33704 (16)0.44973 (16)0.04707 (12)0.0481 (4)
C340.37562 (14)0.34434 (14)0.12994 (11)0.0402 (3)
H340.45440.34510.16010.048*
C350.40247 (16)0.21799 (15)0.08010 (13)0.0488 (4)
H35A0.34790.22270.02010.059*
H35B0.49030.18400.05260.059*
C360.37646 (19)0.02159 (16)0.14274 (16)0.0613 (5)
H36A0.45660.02180.10550.092*
H36B0.30940.02990.09460.092*
H36C0.36450.02390.20840.092*
N10.44398 (12)0.31244 (12)0.36901 (10)0.0431 (3)
N20.24881 (14)0.47965 (13)0.50795 (11)0.0516 (3)
N30.04620 (12)0.22332 (12)0.25098 (11)0.0445 (3)
N40.37489 (12)0.14388 (11)0.17259 (10)0.0438 (3)
O10.11649 (12)0.25347 (11)0.07356 (9)0.0526 (3)
O20.32960 (13)0.55571 (11)0.09209 (9)0.0587 (3)
O30.31436 (17)0.44125 (14)0.04700 (10)0.0807 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0535 (9)0.0549 (9)0.0381 (8)0.0249 (7)0.0133 (7)0.0024 (7)
C20.0579 (11)0.0865 (14)0.0518 (10)0.0209 (10)0.0190 (8)0.0026 (9)
C30.0773 (14)0.1032 (17)0.0632 (12)0.0309 (13)0.0386 (11)0.0092 (12)
C40.1098 (18)0.0864 (15)0.0518 (11)0.0305 (13)0.0403 (12)0.0051 (10)
C50.0979 (16)0.0701 (12)0.0437 (10)0.0186 (11)0.0255 (10)0.0102 (9)
C60.0674 (11)0.0508 (9)0.0373 (8)0.0222 (8)0.0147 (7)0.0029 (7)
C70.0425 (8)0.0384 (7)0.0302 (6)0.0190 (6)0.0046 (5)0.0007 (5)
C80.0500 (8)0.0402 (7)0.0325 (7)0.0174 (6)0.0038 (6)0.0039 (6)
C90.0474 (8)0.0398 (7)0.0374 (7)0.0137 (6)0.0045 (6)0.0018 (6)
C100.0597 (11)0.0547 (10)0.0469 (9)0.0041 (8)0.0011 (8)0.0097 (7)
C110.0549 (10)0.0562 (10)0.0630 (11)0.0021 (8)0.0072 (8)0.0030 (8)
C120.0526 (10)0.0512 (9)0.0565 (10)0.0093 (7)0.0183 (8)0.0064 (7)
C130.0514 (9)0.0459 (8)0.0395 (8)0.0168 (7)0.0114 (7)0.0018 (6)
C140.0423 (8)0.0365 (7)0.0356 (7)0.0159 (6)0.0051 (6)0.0000 (5)
C150.0395 (7)0.0383 (7)0.0287 (6)0.0162 (6)0.0047 (5)0.0007 (5)
C160.0428 (8)0.0379 (7)0.0303 (6)0.0160 (6)0.0054 (6)0.0017 (5)
C170.0481 (8)0.0393 (7)0.0363 (7)0.0196 (6)0.0082 (6)0.0029 (6)
C180.0526 (9)0.0355 (7)0.0348 (7)0.0188 (6)0.0050 (6)0.0007 (5)
C190.0680 (11)0.0472 (8)0.0447 (9)0.0231 (8)0.0167 (8)0.0081 (7)
C200.1049 (17)0.0611 (11)0.0441 (9)0.0379 (11)0.0202 (10)0.0159 (8)
C210.1144 (18)0.0666 (12)0.0388 (9)0.0469 (12)0.0051 (10)0.0062 (8)
C220.0739 (12)0.0631 (11)0.0516 (10)0.0381 (9)0.0122 (9)0.0067 (8)
C230.0560 (9)0.0389 (7)0.0383 (8)0.0212 (7)0.0004 (6)0.0047 (6)
C240.0418 (9)0.0488 (9)0.0697 (11)0.0120 (7)0.0065 (8)0.0077 (8)
C250.0386 (8)0.0508 (8)0.0404 (8)0.0163 (6)0.0052 (6)0.0018 (6)
C260.0395 (8)0.0666 (10)0.0439 (8)0.0163 (7)0.0052 (6)0.0082 (7)
C270.0486 (10)0.0891 (14)0.0572 (10)0.0384 (10)0.0167 (8)0.0245 (10)
C280.0812 (14)0.0735 (12)0.0610 (11)0.0502 (11)0.0256 (10)0.0169 (10)
C290.0744 (13)0.0559 (10)0.0683 (12)0.0273 (9)0.0049 (10)0.0083 (9)
C300.0450 (9)0.0555 (9)0.0671 (11)0.0199 (7)0.0023 (8)0.0081 (8)
C310.139 (2)0.0601 (13)0.0865 (17)0.0203 (14)0.0283 (16)0.0143 (12)
C320.124 (2)0.0633 (12)0.0583 (12)0.0387 (13)0.0150 (12)0.0239 (10)
C330.0567 (10)0.0596 (9)0.0328 (7)0.0262 (8)0.0013 (6)0.0016 (7)
C340.0431 (8)0.0499 (8)0.0313 (7)0.0204 (6)0.0014 (6)0.0024 (6)
C350.0544 (9)0.0547 (9)0.0387 (8)0.0206 (7)0.0062 (7)0.0096 (7)
C360.0738 (12)0.0445 (9)0.0654 (11)0.0188 (8)0.0016 (9)0.0164 (8)
N10.0431 (7)0.0525 (7)0.0361 (6)0.0181 (6)0.0076 (5)0.0014 (5)
N20.0643 (9)0.0524 (8)0.0358 (7)0.0144 (7)0.0091 (6)0.0082 (6)
N30.0431 (7)0.0494 (7)0.0458 (7)0.0210 (6)0.0059 (5)0.0015 (5)
N40.0477 (7)0.0404 (6)0.0431 (7)0.0139 (5)0.0012 (5)0.0092 (5)
O10.0673 (7)0.0607 (7)0.0368 (6)0.0282 (6)0.0168 (5)0.0008 (5)
O20.0900 (9)0.0532 (7)0.0422 (6)0.0356 (6)0.0133 (6)0.0103 (5)
O30.1283 (13)0.0852 (10)0.0349 (6)0.0421 (9)0.0181 (7)0.0060 (6)
Geometric parameters (Å, º) top
C1—N11.3842 (19)C20—H200.9300
C1—C21.407 (2)C21—C221.388 (3)
C1—C61.413 (2)C21—H210.9300
C2—C31.367 (3)C22—C231.382 (2)
C2—H20.9300C22—H220.9300
C3—C41.402 (3)C23—N31.406 (2)
C3—H30.9300C24—N31.447 (2)
C4—C51.351 (3)C24—C251.511 (2)
C4—H40.9300C24—H24A0.9700
C5—C61.414 (2)C24—H24B0.9700
C5—H50.9300C25—C261.379 (2)
C6—N21.375 (2)C25—C301.384 (2)
C7—N11.2950 (19)C26—C271.380 (3)
C7—C81.427 (2)C26—H260.9300
C7—C151.5249 (17)C27—C281.370 (3)
C8—N21.3075 (18)C27—H270.9300
C8—C91.459 (2)C28—C291.369 (3)
C9—C101.383 (2)C28—H280.9300
C9—C141.402 (2)C29—C301.387 (2)
C10—C111.380 (3)C29—H290.9300
C10—H100.9300C30—H300.9300
C11—C121.382 (3)C31—C321.430 (3)
C11—H110.9300C31—H31A0.9600
C12—C131.383 (2)C31—H31B0.9600
C12—H120.9300C31—H31C0.9600
C13—C141.390 (2)C32—O21.459 (2)
C13—H130.9300C32—H32A0.9700
C14—C151.5306 (19)C32—H32B0.9700
C15—C341.5677 (19)C33—O31.1997 (19)
C15—C161.6023 (18)C33—O21.326 (2)
C16—N41.4485 (19)C33—C341.505 (2)
C16—C181.5069 (19)C34—C351.519 (2)
C16—C171.5556 (19)C34—H340.9800
C17—O11.2146 (17)C35—N41.456 (2)
C17—N31.3651 (19)C35—H35A0.9700
C18—C191.379 (2)C35—H35B0.9700
C18—C231.390 (2)C36—N41.455 (2)
C19—C201.386 (3)C36—H36A0.9600
C19—H190.9300C36—H36B0.9600
C20—C211.369 (3)C36—H36C0.9600
N1—C1—C2119.04 (16)C21—C22—H22121.4
N1—C1—C6121.56 (14)C22—C23—C18121.71 (15)
C2—C1—C6119.40 (15)C22—C23—N3128.49 (16)
C3—C2—C1119.9 (2)C18—C23—N3109.68 (13)
C3—C2—H2120.0N3—C24—C25115.36 (13)
C1—C2—H2120.0N3—C24—H24A108.4
C2—C3—C4120.76 (19)C25—C24—H24A108.4
C2—C3—H3119.6N3—C24—H24B108.4
C4—C3—H3119.6C25—C24—H24B108.4
C5—C4—C3120.43 (17)H24A—C24—H24B107.5
C5—C4—H4119.8C26—C25—C30118.58 (15)
C3—C4—H4119.8C26—C25—C24119.15 (15)
C4—C5—C6120.7 (2)C30—C25—C24122.21 (14)
C4—C5—H5119.7C25—C26—C27121.06 (17)
C6—C5—H5119.7C25—C26—H26119.5
N2—C6—C1122.27 (13)C27—C26—H26119.5
N2—C6—C5118.93 (17)C28—C27—C26119.89 (16)
C1—C6—C5118.79 (16)C28—C27—H27120.1
N1—C7—C8123.68 (13)C26—C27—H27120.1
N1—C7—C15126.17 (13)C29—C28—C27119.96 (17)
C8—C7—C15110.16 (12)C29—C28—H28120.0
N2—C8—C7123.74 (14)C27—C28—H28120.0
N2—C8—C9127.91 (14)C28—C29—C30120.32 (18)
C7—C8—C9108.24 (12)C28—C29—H29119.8
C10—C9—C14121.55 (14)C30—C29—H29119.8
C10—C9—C8129.74 (14)C25—C30—C29120.19 (16)
C14—C9—C8108.63 (13)C25—C30—H30119.9
C11—C10—C9118.74 (16)C29—C30—H30119.9
C11—C10—H10120.6C32—C31—H31A109.5
C9—C10—H10120.6C32—C31—H31B109.5
C10—C11—C12120.38 (16)H31A—C31—H31B109.5
C10—C11—H11119.8C32—C31—H31C109.5
C12—C11—H11119.8H31A—C31—H31C109.5
C11—C12—C13121.07 (15)H31B—C31—H31C109.5
C11—C12—H12119.5C31—C32—O2109.46 (18)
C13—C12—H12119.5C31—C32—H32A109.8
C12—C13—C14119.45 (14)O2—C32—H32A109.8
C12—C13—H13120.3C31—C32—H32B109.8
C14—C13—H13120.3O2—C32—H32B109.8
C13—C14—C9118.73 (14)H32A—C32—H32B108.2
C13—C14—C15130.38 (13)O3—C33—O2123.62 (16)
C9—C14—C15110.87 (12)O3—C33—C34125.49 (16)
C7—C15—C14100.73 (11)O2—C33—C34110.89 (12)
C7—C15—C34112.04 (11)C33—C34—C35113.57 (12)
C14—C15—C34120.22 (11)C33—C34—C15114.86 (12)
C7—C15—C16109.35 (10)C35—C34—C15106.14 (11)
C14—C15—C16112.16 (11)C33—C34—H34107.3
C34—C15—C16102.35 (10)C35—C34—H34107.3
N4—C16—C18114.48 (12)C15—C34—H34107.3
N4—C16—C17115.63 (11)N4—C35—C34103.40 (11)
C18—C16—C17101.08 (11)N4—C35—H35A111.1
N4—C16—C15102.63 (11)C34—C35—H35A111.1
C18—C16—C15115.02 (11)N4—C35—H35B111.1
C17—C16—C15108.36 (11)C34—C35—H35B111.1
O1—C17—N3125.16 (14)H35A—C35—H35B109.0
O1—C17—C16127.30 (14)N4—C36—H36A109.5
N3—C17—C16107.53 (11)N4—C36—H36B109.5
C19—C18—C23119.96 (14)H36A—C36—H36B109.5
C19—C18—C16130.95 (15)N4—C36—H36C109.5
C23—C18—C16109.03 (12)H36A—C36—H36C109.5
C18—C19—C20118.79 (17)H36B—C36—H36C109.5
C18—C19—H19120.6C7—N1—C1114.53 (13)
C20—C19—H19120.6C8—N2—C6114.07 (14)
C21—C20—C19120.53 (17)C17—N3—C23110.92 (12)
C21—C20—H20119.7C17—N3—C24123.73 (13)
C19—C20—H20119.7C23—N3—C24125.33 (14)
C20—C21—C22121.83 (17)C16—N4—C36115.10 (13)
C20—C21—H21119.1C16—N4—C35107.01 (12)
C22—C21—H21119.1C36—N4—C35114.35 (13)
C23—C22—C21117.12 (18)C33—O2—C32115.43 (14)
C23—C22—H22121.4
N1—C1—C2—C3179.60 (18)C23—C18—C19—C202.6 (2)
C6—C1—C2—C30.0 (3)C16—C18—C19—C20179.42 (15)
C1—C2—C3—C41.1 (4)C18—C19—C20—C210.6 (3)
C2—C3—C4—C50.8 (4)C19—C20—C21—C221.4 (3)
C3—C4—C5—C60.5 (4)C20—C21—C22—C231.3 (3)
N1—C1—C6—N22.5 (3)C21—C22—C23—C180.8 (2)
C2—C1—C6—N2177.92 (16)C21—C22—C23—N3174.94 (16)
N1—C1—C6—C5178.32 (17)C19—C18—C23—C222.7 (2)
C2—C1—C6—C51.2 (3)C16—C18—C23—C22179.78 (14)
C4—C5—C6—N2177.67 (19)C19—C18—C23—N3173.72 (13)
C4—C5—C6—C11.5 (3)C16—C18—C23—N33.76 (16)
N1—C7—C8—N23.8 (2)N3—C24—C25—C26155.66 (15)
C15—C7—C8—N2176.38 (14)N3—C24—C25—C3027.1 (2)
N1—C7—C8—C9172.61 (13)C30—C25—C26—C270.0 (2)
C15—C7—C8—C97.16 (16)C24—C25—C26—C27177.35 (15)
N2—C8—C9—C100.8 (3)C25—C26—C27—C280.2 (2)
C7—C8—C9—C10177.05 (17)C26—C27—C28—C290.1 (3)
N2—C8—C9—C14175.83 (15)C27—C28—C29—C300.2 (3)
C7—C8—C9—C140.44 (16)C26—C25—C30—C290.3 (3)
C14—C9—C10—C111.6 (3)C24—C25—C30—C29176.91 (17)
C8—C9—C10—C11174.65 (17)C28—C29—C30—C250.5 (3)
C9—C10—C11—C121.0 (3)O3—C33—C34—C358.2 (2)
C10—C11—C12—C132.0 (3)O2—C33—C34—C35172.55 (14)
C11—C12—C13—C140.5 (3)O3—C33—C34—C15114.25 (19)
C12—C13—C14—C92.0 (2)O2—C33—C34—C1565.02 (17)
C12—C13—C14—C15175.86 (15)C7—C15—C34—C33115.27 (14)
C10—C9—C14—C133.1 (2)C14—C15—C34—C332.65 (18)
C8—C9—C14—C13173.87 (13)C16—C15—C34—C33127.70 (12)
C10—C9—C14—C15175.17 (15)C7—C15—C34—C35118.37 (13)
C8—C9—C14—C157.88 (16)C14—C15—C34—C35123.71 (13)
N1—C7—C15—C14168.74 (13)C16—C15—C34—C351.34 (14)
C8—C7—C15—C1411.03 (14)C33—C34—C35—N4152.74 (13)
N1—C7—C15—C3439.74 (19)C15—C34—C35—N425.61 (15)
C8—C7—C15—C34140.03 (12)C8—C7—N1—C13.7 (2)
N1—C7—C15—C1673.01 (17)C15—C7—N1—C1176.57 (13)
C8—C7—C15—C16107.22 (13)C2—C1—N1—C7178.85 (15)
C13—C14—C15—C7170.60 (14)C6—C1—N1—C70.7 (2)
C9—C14—C15—C711.42 (14)C7—C8—N2—C60.4 (2)
C13—C14—C15—C3447.1 (2)C9—C8—N2—C6175.31 (15)
C9—C14—C15—C34134.95 (13)C1—C6—N2—C82.5 (2)
C13—C14—C15—C1673.22 (18)C5—C6—N2—C8178.34 (16)
C9—C14—C15—C16104.77 (13)O1—C17—N3—C23168.75 (14)
C7—C15—C16—N495.51 (12)C16—C17—N3—C2311.93 (15)
C14—C15—C16—N4153.63 (11)O1—C17—N3—C2412.8 (2)
C34—C15—C16—N423.44 (13)C16—C17—N3—C24166.53 (13)
C7—C15—C16—C1829.47 (16)C22—C23—N3—C17170.70 (15)
C14—C15—C16—C1881.39 (14)C18—C23—N3—C175.45 (16)
C34—C15—C16—C18148.41 (12)C22—C23—N3—C2410.9 (2)
C7—C15—C16—C17141.70 (12)C18—C23—N3—C24172.98 (13)
C14—C15—C16—C1730.85 (15)C25—C24—N3—C1798.76 (18)
C34—C15—C16—C1799.35 (12)C25—C24—N3—C2383.00 (19)
N4—C16—C17—O143.3 (2)C18—C16—N4—C3664.59 (17)
C18—C16—C17—O1167.54 (14)C17—C16—N4—C3652.33 (18)
C15—C16—C17—O171.18 (18)C15—C16—N4—C36170.08 (13)
N4—C16—C17—N3137.37 (12)C18—C16—N4—C35167.14 (12)
C18—C16—C17—N313.15 (14)C17—C16—N4—C3575.94 (15)
C15—C16—C17—N3108.12 (12)C15—C16—N4—C3541.81 (13)
N4—C16—C18—C1942.1 (2)C34—C35—N4—C1643.20 (15)
C17—C16—C18—C19167.08 (15)C34—C35—N4—C36171.90 (13)
C15—C16—C18—C1976.45 (19)O3—C33—O2—C326.3 (3)
N4—C16—C18—C23135.02 (13)C34—C33—O2—C32172.97 (16)
C17—C16—C18—C2310.03 (14)C31—C32—O2—C33172.6 (2)
C15—C16—C18—C23106.44 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C27—H27···N4i0.932.603.446 (2)152
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC36H30N4O3
Mr566.64
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)11.1927 (2), 11.4535 (3), 12.1206 (3)
α, β, γ (°)87.637 (2), 86.048 (1), 70.564 (2)
V3)1461.50 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker APEXII CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.971, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
21785, 5987, 4956
Rint0.029
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.134, 1.04
No. of reflections5987
No. of parameters388
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.28

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C27—H27···N4i0.932.603.446 (2)152
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and BioPhysics, University of Madras, Chennai, India, for the data collection.

References

First citationAmal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–409.  Web of Science PubMed Google Scholar
First citationAzizian, J., Mohammadizadeh, M. R., Karimi, N., Kazemizadeh, Z., Mohammadi, A. A. & Karimi, A. R. (2005). Heteroat. Chem. 16, 549–552.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrinivasan, T., Suhitha, S., Purushothaman, S., Raghunathan, R. & Velmurugan, D. (2012). Acta Cryst. E68, o2469.  CSD CrossRef IUCr Journals Google Scholar
First citationZarranz, B., Jago, A., Aldana, I. & Monge, A. (2003). Bioorg. Med. Chem. 11, 2149–2156.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds