organic compounds
5-Methyl-3-phenylisoxazole-4-carboxylic acid
aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, bDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysore 570 005, India, and cDepartment of Physics, St Philomena's College, Mysore, India
*Correspondence e-mail: mahendra@physics.uni-mysore.ac.in
In the title compound, C11H9NO3, the phenyl and isoxazole rings form a dihedral angle of 56.64 (8)°. The carboxy group is almost in the same plane as the isoxazole ring with a C—C—C—O torsion angle of −3.3 (2)°. In the crystal, pairs of O—H⋯O hydrogen bonds link the molecules into head-to-head dimers. C—H⋯N hydrogen bonds and π–π stacking interactions between phenyl rings [centroid–centroid distance = 3.9614 (17)Å] link the dimers into a three-dimensional network.
Related literature
For the biological and pharmaceutical importance of isoxazoles, see: Basappa et al., (2003); Conti et al. (1998); Kang et al. (2000); Lee et al. (2009); Shin et al. (2005); Stevens & Albizati (1984). For bond-length and angle data in related structures, see: Wolf et al. (1995); Chandra et al., (2013).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536813011410/bg2504sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813011410/bg2504Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813011410/bg2504Isup3.cml
A mixture of benzaldehyde oxime (1 mmol), ethyl acetoacetate (2 mmol) and anhydrous zinc chloride (0.1 mmol) were taken in a 10 ml round bottomed flask and the contents were gradually heated to 60°C without any solvent for about one hour. After completion of the reaction (as indicated by TLC), the mixture was cooled to room temperature and ethanol was added with stirring for about 30 min. The solid ethyl 5-methyl-3-phenylisoxazole-4-carboxylate thus obtained was treated with 5% NaOH (10 ml) at room temperature for about 4hr. After completion of the reaction (as indicated by TLC), the reaction mixture was acidified with 2 N HCl. The solids thus obtained were filtered and recrystalized from hot ethanol to get crystals of the title compound.
H atoms were placed at idealized positions and allowed to ride on their parent atoms with C–H distances in the range of 0.93 to 0.96 Å; Uiso(H) = 1.2Ueq(carrier atom) for all H atoms.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C11H9NO3 | F(000) = 424 |
Mr = 203.19 | Dx = 1.386 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 1712 reflections |
a = 11.953 (4) Å | θ = 2.0–25.0° |
b = 5.981 (2) Å | µ = 0.10 mm−1 |
c = 14.142 (5) Å | T = 273 K |
β = 105.548 (6)° | Block, yellow |
V = 974.0 (6) Å3 | 0.30 × 0.25 × 0.20 mm |
Z = 4 |
Bruker APEXII CCD area-detector diffractometer | Rint = 0.026 |
ω and ϕ scans | θmax = 25.0°, θmin = 2.0° |
8619 measured reflections | h = −14→14 |
1712 independent reflections | k = −7→7 |
1558 reflections with I > 2σ(I) | l = −16→16 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.111 | w = 1/[σ2(Fo2) + (0.0647P)2 + 0.1799P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
1712 reflections | Δρmax = 0.19 e Å−3 |
138 parameters | Δρmin = −0.14 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.078 (6) |
C11H9NO3 | V = 974.0 (6) Å3 |
Mr = 203.19 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 11.953 (4) Å | µ = 0.10 mm−1 |
b = 5.981 (2) Å | T = 273 K |
c = 14.142 (5) Å | 0.30 × 0.25 × 0.20 mm |
β = 105.548 (6)° |
Bruker APEXII CCD area-detector diffractometer | 1558 reflections with I > 2σ(I) |
8619 measured reflections | Rint = 0.026 |
1712 independent reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.111 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.19 e Å−3 |
1712 reflections | Δρmin = −0.14 e Å−3 |
138 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O9 | 0.78858 (10) | 0.77608 (19) | −0.16618 (8) | 0.0644 (4) | |
O14 | 0.98209 (9) | 0.19333 (19) | −0.09796 (8) | 0.0626 (4) | |
O15 | 0.89662 (9) | 0.16156 (18) | 0.02382 (7) | 0.0583 (4) | |
N8 | 0.72219 (12) | 0.7544 (2) | −0.09692 (10) | 0.0627 (5) | |
C1 | 0.70696 (13) | 0.6540 (3) | 0.10434 (12) | 0.0577 (5) | |
C2 | 0.65298 (14) | 0.6027 (3) | 0.17680 (13) | 0.0667 (6) | |
C3 | 0.59319 (14) | 0.4050 (3) | 0.17315 (12) | 0.0646 (6) | |
C4 | 0.58949 (14) | 0.2546 (3) | 0.09855 (13) | 0.0634 (5) | |
C5 | 0.64525 (13) | 0.3017 (3) | 0.02718 (11) | 0.0556 (5) | |
C6 | 0.70323 (11) | 0.5035 (2) | 0.02904 (9) | 0.0458 (4) | |
C7 | 0.75633 (11) | 0.5675 (2) | −0.05041 (10) | 0.0465 (4) | |
C10 | 0.85935 (12) | 0.6006 (2) | −0.15866 (10) | 0.0503 (4) | |
C11 | 0.93670 (14) | 0.6030 (3) | −0.22477 (11) | 0.0643 (6) | |
C12 | 0.84386 (10) | 0.4605 (2) | −0.08704 (9) | 0.0445 (4) | |
C13 | 0.90974 (11) | 0.2583 (2) | −0.05073 (10) | 0.0454 (4) | |
H1 | 0.74570 | 0.78940 | 0.10620 | 0.0690* | |
H2 | 0.65710 | 0.70230 | 0.22810 | 0.0800* | |
H3 | 0.55530 | 0.37280 | 0.22100 | 0.0780* | |
H4 | 0.54920 | 0.12080 | 0.09630 | 0.0760* | |
H5 | 0.64400 | 0.19820 | −0.02220 | 0.0670* | |
H11A | 0.91180 | 0.49090 | −0.27460 | 0.0960* | |
H11B | 1.01490 | 0.57240 | −0.18750 | 0.0960* | |
H11C | 0.93350 | 0.74740 | −0.25510 | 0.0960* | |
H14 | 1.01490 | 0.07930 | −0.07260 | 0.0940* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O9 | 0.0729 (7) | 0.0625 (7) | 0.0640 (7) | 0.0040 (5) | 0.0289 (6) | 0.0164 (5) |
O14 | 0.0661 (7) | 0.0664 (7) | 0.0657 (7) | 0.0140 (5) | 0.0357 (5) | 0.0054 (5) |
O15 | 0.0618 (6) | 0.0630 (7) | 0.0569 (6) | 0.0092 (5) | 0.0275 (5) | 0.0080 (5) |
N8 | 0.0654 (8) | 0.0622 (8) | 0.0683 (8) | 0.0096 (6) | 0.0312 (7) | 0.0138 (6) |
C1 | 0.0544 (8) | 0.0569 (9) | 0.0676 (9) | −0.0019 (7) | 0.0264 (7) | −0.0099 (7) |
C2 | 0.0636 (9) | 0.0795 (11) | 0.0660 (10) | 0.0025 (8) | 0.0328 (8) | −0.0163 (8) |
C3 | 0.0604 (9) | 0.0801 (11) | 0.0630 (9) | 0.0064 (8) | 0.0332 (7) | 0.0068 (8) |
C4 | 0.0634 (9) | 0.0615 (9) | 0.0722 (10) | −0.0058 (7) | 0.0304 (8) | 0.0056 (8) |
C5 | 0.0597 (9) | 0.0553 (9) | 0.0559 (8) | −0.0029 (7) | 0.0226 (7) | −0.0044 (7) |
C6 | 0.0397 (7) | 0.0511 (8) | 0.0488 (7) | 0.0059 (5) | 0.0155 (5) | 0.0022 (6) |
C7 | 0.0442 (7) | 0.0481 (7) | 0.0483 (7) | −0.0006 (6) | 0.0142 (6) | 0.0001 (6) |
C10 | 0.0513 (7) | 0.0547 (8) | 0.0459 (7) | −0.0069 (6) | 0.0147 (6) | −0.0019 (6) |
C11 | 0.0708 (10) | 0.0761 (11) | 0.0535 (9) | −0.0162 (8) | 0.0297 (8) | −0.0023 (7) |
C12 | 0.0430 (7) | 0.0496 (7) | 0.0425 (7) | −0.0052 (5) | 0.0145 (5) | −0.0040 (5) |
C13 | 0.0432 (7) | 0.0510 (8) | 0.0449 (7) | −0.0037 (5) | 0.0169 (5) | −0.0059 (6) |
O9—N8 | 1.4222 (19) | C7—C12 | 1.4363 (19) |
O9—C10 | 1.3342 (18) | C10—C12 | 1.3649 (19) |
O14—C13 | 1.2863 (18) | C10—C11 | 1.481 (2) |
O15—C13 | 1.2488 (17) | C12—C13 | 1.4593 (18) |
O14—H14 | 0.8200 | C1—H1 | 0.9300 |
N8—C7 | 1.3057 (18) | C2—H2 | 0.9300 |
C1—C2 | 1.384 (2) | C3—H3 | 0.9300 |
C1—C6 | 1.386 (2) | C4—H4 | 0.9300 |
C2—C3 | 1.375 (3) | C5—H5 | 0.9300 |
C3—C4 | 1.378 (3) | C11—H11A | 0.9600 |
C4—C5 | 1.380 (2) | C11—H11B | 0.9600 |
C5—C6 | 1.389 (2) | C11—H11C | 0.9600 |
C6—C7 | 1.4813 (19) | ||
O9···C10i | 3.268 (2) | C10···O15iii | 3.345 (2) |
O9···C11i | 3.351 (2) | C10···C13iii | 3.566 (2) |
O14···O15ii | 2.6252 (18) | C11···O14 | 2.999 (2) |
O14···C11 | 2.999 (2) | C11···O9iv | 3.351 (2) |
O15···C11iii | 3.316 (2) | C11···N8iv | 3.427 (2) |
O15···O14ii | 2.6252 (18) | C11···O15iii | 3.316 (2) |
O15···C13ii | 3.367 (2) | C12···C13iii | 3.496 (2) |
O15···C5 | 3.132 (2) | C13···O15ii | 3.367 (2) |
O15···C6 | 3.102 (2) | C13···C10iii | 3.566 (2) |
O15···C10iii | 3.345 (2) | C13···C12iii | 3.496 (2) |
O9···H11Ai | 2.6500 | C13···H14ii | 2.6600 |
O14···H11B | 2.6800 | H1···N8 | 2.8200 |
O14···H14ii | 2.9000 | H11A···O9iv | 2.6500 |
O15···H11Biii | 2.7700 | H11A···N8iv | 2.5100 |
O15···H14ii | 1.8100 | H11B···O14 | 2.6800 |
N8···C11i | 3.427 (2) | H11B···O15iii | 2.7700 |
N8···H1 | 2.8200 | H14···O14ii | 2.9000 |
N8···H11Ai | 2.5100 | H14···O15ii | 1.8100 |
C5···O15 | 3.132 (2) | H14···C13ii | 2.6600 |
C6···O15 | 3.102 (2) | H14···H14ii | 2.3700 |
C10···O9iv | 3.268 (2) | ||
N8—O9—C10 | 109.41 (11) | O14—C13—C12 | 116.24 (12) |
C13—O14—H14 | 109.00 | O15—C13—C12 | 120.20 (12) |
O9—N8—C7 | 105.56 (12) | O14—C13—O15 | 123.54 (12) |
C2—C1—C6 | 119.97 (16) | C2—C1—H1 | 120.00 |
C1—C2—C3 | 120.23 (16) | C6—C1—H1 | 120.00 |
C2—C3—C4 | 119.98 (16) | C1—C2—H2 | 120.00 |
C3—C4—C5 | 120.28 (16) | C3—C2—H2 | 120.00 |
C4—C5—C6 | 120.02 (15) | C2—C3—H3 | 120.00 |
C1—C6—C7 | 118.88 (12) | C4—C3—H3 | 120.00 |
C5—C6—C7 | 121.56 (12) | C3—C4—H4 | 120.00 |
C1—C6—C5 | 119.49 (13) | C5—C4—H4 | 120.00 |
N8—C7—C6 | 117.63 (12) | C4—C5—H5 | 120.00 |
N8—C7—C12 | 111.06 (12) | C6—C5—H5 | 120.00 |
C6—C7—C12 | 131.31 (11) | C10—C11—H11A | 109.00 |
O9—C10—C11 | 115.59 (12) | C10—C11—H11B | 109.00 |
O9—C10—C12 | 109.44 (12) | C10—C11—H11C | 110.00 |
C11—C10—C12 | 134.94 (13) | H11A—C11—H11B | 110.00 |
C7—C12—C13 | 128.23 (11) | H11A—C11—H11C | 109.00 |
C10—C12—C13 | 127.03 (12) | H11B—C11—H11C | 109.00 |
C7—C12—C10 | 104.53 (11) | ||
C10—O9—N8—C7 | 0.33 (15) | C1—C6—C7—C12 | 124.36 (16) |
N8—O9—C10—C11 | −178.39 (12) | C5—C6—C7—N8 | 122.44 (15) |
N8—O9—C10—C12 | −0.04 (15) | N8—C7—C12—C10 | 0.45 (16) |
O9—N8—C7—C12 | −0.47 (15) | N8—C7—C12—C13 | 175.43 (13) |
O9—N8—C7—C6 | 178.53 (11) | C6—C7—C12—C10 | −178.37 (14) |
C2—C1—C6—C5 | −0.1 (2) | C6—C7—C12—C13 | −3.4 (2) |
C6—C1—C2—C3 | −1.6 (3) | O9—C10—C12—C7 | −0.23 (15) |
C2—C1—C6—C7 | 176.80 (14) | O9—C10—C12—C13 | −175.28 (12) |
C1—C2—C3—C4 | 1.7 (3) | C11—C10—C12—C7 | 177.67 (16) |
C2—C3—C4—C5 | −0.2 (3) | C11—C10—C12—C13 | 2.6 (3) |
C3—C4—C5—C6 | −1.5 (3) | C7—C12—C13—O14 | 178.55 (13) |
C4—C5—C6—C7 | −175.22 (14) | C7—C12—C13—O15 | −3.3 (2) |
C4—C5—C6—C1 | 1.6 (2) | C10—C12—C13—O14 | −7.5 (2) |
C1—C6—C7—N8 | −54.40 (19) | C10—C12—C13—O15 | 170.61 (13) |
C5—C6—C7—C12 | −58.8 (2) |
Symmetry codes: (i) −x+3/2, y+1/2, −z−1/2; (ii) −x+2, −y, −z; (iii) −x+2, −y+1, −z; (iv) −x+3/2, y−1/2, −z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O14—H14···O15ii | 0.82 | 1.81 | 2.6252 (18) | 172 |
C11—H11A···N8iv | 0.96 | 2.51 | 3.427 (2) | 159 |
Symmetry codes: (ii) −x+2, −y, −z; (iv) −x+3/2, y−1/2, −z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C11H9NO3 |
Mr | 203.19 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 273 |
a, b, c (Å) | 11.953 (4), 5.981 (2), 14.142 (5) |
β (°) | 105.548 (6) |
V (Å3) | 974.0 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.30 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8619, 1712, 1558 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.111, 1.05 |
No. of reflections | 1712 |
No. of parameters | 138 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.19, −0.14 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O14—H14···O15i | 0.8200 | 1.8100 | 2.6252 (18) | 172.00 |
C11—H11A···N8ii | 0.9600 | 2.5100 | 3.427 (2) | 159.00 |
Symmetry codes: (i) −x+2, −y, −z; (ii) −x+3/2, y−1/2, −z−1/2. |
Acknowledgements
The authors would like to thank the UGC, New Delhi, Government of India, for awarding a project under the head F·No.41–920/2012(SR) dated: 25–07-2012.
References
Basappa, M. P., Sadashiva, K., Mantelingu, S., Nanjunda, S. & Rangappa, K. S. (2003). Bioorg. Med. Chem. Lett. 11, 4539–4544. CrossRef CAS Google Scholar
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chandra, Raghu, K., Srikantamurthy, N., Umesha, K. B., Palani, K. & Mahendra, M. (2013). Acta Cryst. E69, o388. CSD CrossRef IUCr Journals Google Scholar
Conti, P., Dallanoce, C., Amici, M. D., Micheli, C. D. & Klotz, K. N. (1998). Bioorg. Med. Chem. 6, 401–408. Web of Science CrossRef CAS PubMed Google Scholar
Kang, Y. Y., Shin, K. L., Yoo, K. H., Seo, K. J., Hong, C. Y., Lee, C. S., Park, S. Y., Kim, D. J. & Park, S. W. (2000). Bioorg. Med. Chem. Lett. 10, 95–99. Web of Science CrossRef PubMed CAS Google Scholar
Lee, Y., Park, S. M. & Kim, B. H. (2009). Bioorg. Med. Chem. Lett. 19, 1126–1128. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shin, K. D., Lee, M. Y., Shin, D. S., Lee, S., Son, K. H., Koh, S., Paik, Y. K., Kwon, B. M. & Han, D. C. (2005). J. Biol. Chem. 280, 41439–41448. Web of Science CrossRef PubMed CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stevens, R. V. & Albizati, K. F. (1984). Tetrahedron Lett. 25, 4587–4591. CrossRef CAS Web of Science Google Scholar
Wolf, R., Wong, M. W., Kennard, C. H. L. & Wentrup, C. (1995). J. Am. Chem. Soc. 117, 6789–6790. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Isoxazole derivatives bearing various substituents are known to have diverse biological and pharmaceutical activities; such as anti-tumor (Kang et al., 2000), antiviral (Lee et al., 2009), hypoglycemic (Conti et al., 1998), antifungal (Basappa et al., 2003) and anti-HIV activities (Shin et al., 2005). In addition, isoxazoles and related compounds have attracted much interest because of their fungicidal, plant-growth regulating and antibacterial activities (Stevens & Albizati, 1984). As part of our interest in these compounds and our extensive background on isoxazole derivatives, we have synthesized the title compound to study its crystal structure.
Fig. 1 presents an ellipsoid plot of the title compound (I). The (C7/N8/O9/C10/C12) isoxazole ring is in Syn-Clinal conformation with respect to the (C1-C2-C3-C4-C5-C6) phenyl ring, as indicated by the (C1-C6-C7-N8) torsion angle of -54.40 (19)°. The carboxylic acid group at C12 is almost in the same plane as the isoxazole ring (C7-C12-C13-O15 torsion angle = -3.3 (2)°). The bond lengths and angles are within normal ranges and are comparable to related structure (Wolf et al., 1995 & Chandra et al., 2013). The crystal structure is stabilized by O—H···O bonds (Table 1), which define head to head dimers, and weaker C-H···N bonds (Table 1), thus defining planes parallel to (101) (Fig 2). Finally, there are π···π stacking interacions between phenyl rings with Cg···Cg[1-x,1-y,-z] and slippage displacement distances of 3.9614 (17)Å and 1.284Å respectively (Fig 3) which link planes into a 3D structure.