organic compounds
N,N′-Bis(4-hydroxyphenyl)pyridine-2,6-dicarboxamide dimethylformamide monosolvate
aDepartment of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan, bUniversität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany, and cNESCOM, PO Box 2216 Islamabad, Pakistan
*Correspondence e-mail: Humaira_siddiqi@yahoo.com
The molecular structure of the pyridine derivative, C19H15N3O4·C3H7NO, shows almost planar geometry with dihedral angles of 6.9 (1) and 13.4 (1)° between the pyridine ring and the two benzene rings. This conformation is stabilized by two intramolecular N—H⋯N(pyridine) bonds. In the crystal, strong O—H⋯O(carboxamide) and N—H⋯O(hydroxyphenyl) hydrogen bonds link the molecules, forming a three-dimensional structure. The dimethylformamide solvent molecules are not involved in the hydrogen bonding. The structure shows but in the Pbcn leads to significantly worse results and a disordered dimethylformamide molecule.
Related literature
For applications of aromatic polyamides, see: Hamciuc et al., (2001); Yang et al. (1998); Diakoumakos & Mikroyannidis (1994); Ebadi & Mehdipour-Ataei (2010). For the structure of a related Co-complex, see: Ali et al. (2012).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.
Supporting information
10.1107/S1600536813013810/bt6908sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813013810/bt6908Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813013810/bt6908Isup3.cml
This preparation was carried out by using reagent grade quality chemicals without their further purification. In a 100 ml, three necked, round bottomed flask, equipped with a condenser, a nitrogen gas inlet tube, a thermometer and a magnetic stirrer, 0.02mole (2.18 g m) of 4-hydroxyaniline in 30 mL of dry tetrahydrofuran(THF) stirred at 273–278 K for 30 minutes and 0.01 mol (2.04 g m) of pyridine -2,6-dicarbonyl dichloride in 35 mL of THF was added dropwise by dropping funnel and stirring was continued for further 1 h under same conditions. The temperature of reaction mixture was then raised to 308–313 K and stirring was continued for 30 minutes. The flask content was cooled to room temperature, poured into water and let it for 24 h. Resulting purplish precipitates were filtered, washed with hot water and 5% NaOH solution. Finally, product was washed with hot water and methanol, dried under vacuum at 80°C. The crude product was recrystallized from tetrahydrofuran and dimethylformamide(4:1).
Hydrogen atoms were clearly identified in difference syntheses, refined at idealized positions riding on the carbon, nitrogen or oxygen atoms with C–H 0.95–0.98, N–H 0.88, O–H 0.84 Å and with isotropic displacement parameters Uiso(H) = 1.2Ueq(C/N) or 1.5Ueq(–CH3 and –OH H atoms). All CH3 and OH hydrogen atoms were allowed to rotate but not to tip.
The title compound crystallizes in the non-centrosymmetric
Pca21; however, in the absence of significant effects, the is essentially meaningless. Accordingly, Friedel pairs were merged.Refinement in σ), most of them with I>3σ(I) and significantly worse parameters R1 = 0.107, wR2 = 0.284, S = 1.24.
Pbcn with both molecules on special positions gives 359 systematic absence violations (in Pca21 only 3, all with I less than 3Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.Fig. 1. Molecular structure of the title compound with anisotropic displacement parameters drawn at the 50% probability level. | |
Fig. 2. Crystal packing viewed along b axis with intermolecular hydrogen bonds as dotted lines. H-atoms not involved are omitted. |
C19H15N3O4·C3H7NO | Dx = 1.393 Mg m−3 |
Mr = 422.44 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pca21 | Cell parameters from 8531 reflections |
a = 16.8124 (12) Å | θ = 2.2–28.3° |
b = 10.9545 (8) Å | µ = 0.10 mm−1 |
c = 10.9331 (7) Å | T = 130 K |
V = 2013.6 (2) Å3 | Prism, pale-pink |
Z = 4 | 0.47 × 0.41 × 0.39 mm |
F(000) = 888 |
Bruker SMART APEX diffractometer | 2536 independent reflections |
Radiation source: sealed tube | 2434 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
ϕ and ω scans | θmax = 27.9°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −22→22 |
Tmin = 0.954, Tmax = 0.962 | k = −14→14 |
18386 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0683P)2 + 0.4544P] where P = (Fo2 + 2Fc2)/3 |
2536 reflections | (Δ/σ)max < 0.001 |
284 parameters | Δρmax = 0.33 e Å−3 |
1 restraint | Δρmin = −0.32 e Å−3 |
C19H15N3O4·C3H7NO | V = 2013.6 (2) Å3 |
Mr = 422.44 | Z = 4 |
Orthorhombic, Pca21 | Mo Kα radiation |
a = 16.8124 (12) Å | µ = 0.10 mm−1 |
b = 10.9545 (8) Å | T = 130 K |
c = 10.9331 (7) Å | 0.47 × 0.41 × 0.39 mm |
Bruker SMART APEX diffractometer | 2536 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 2434 reflections with I > 2σ(I) |
Tmin = 0.954, Tmax = 0.962 | Rint = 0.022 |
18386 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 1 restraint |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.33 e Å−3 |
2536 reflections | Δρmin = −0.32 e Å−3 |
284 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.22086 (7) | 0.57263 (12) | 0.50884 (13) | 0.0191 (3) | |
O2 | 0.58528 (7) | 0.39649 (13) | 0.37035 (15) | 0.0215 (3) | |
H2 | 0.6268 | 0.4049 | 0.4122 | 0.032* | |
O3 | 0.22824 (7) | 0.93446 (12) | 1.04434 (13) | 0.0202 (3) | |
O4 | 0.59295 (8) | 1.09650 (14) | 1.18167 (15) | 0.0242 (3) | |
H4 | 0.6353 | 1.0812 | 1.1440 | 0.036* | |
N1 | 0.25192 (7) | 0.75080 (13) | 0.77701 (18) | 0.0152 (2) | |
N2 | 0.33363 (8) | 0.62143 (14) | 0.61383 (17) | 0.0183 (3) | |
H2B | 0.3500 | 0.6615 | 0.6789 | 0.022* | |
N3 | 0.33916 (8) | 0.87656 (14) | 0.93824 (16) | 0.0180 (3) | |
H3A | 0.3544 | 0.8341 | 0.8741 | 0.022* | |
C1 | 0.08639 (9) | 0.7555 (2) | 0.7806 (2) | 0.0224 (3) | |
H1A | 0.0299 | 0.7566 | 0.7819 | 0.027* | |
C2 | 0.12663 (10) | 0.69108 (18) | 0.69062 (19) | 0.0189 (4) | |
H2A | 0.0984 | 0.6479 | 0.6291 | 0.023* | |
C3 | 0.20912 (10) | 0.69128 (16) | 0.69270 (17) | 0.0153 (3) | |
C4 | 0.12932 (10) | 0.81813 (18) | 0.8684 (2) | 0.0193 (4) | |
H4A | 0.1031 | 0.8635 | 0.9305 | 0.023* | |
C5 | 0.21208 (10) | 0.81302 (15) | 0.86329 (17) | 0.0152 (3) | |
C6 | 0.25491 (11) | 0.62261 (14) | 0.59558 (19) | 0.0152 (3) | |
C7 | 0.39446 (10) | 0.56544 (16) | 0.54420 (19) | 0.0165 (4) | |
C8 | 0.38133 (10) | 0.48237 (17) | 0.44972 (19) | 0.0188 (4) | |
H8A | 0.3286 | 0.4630 | 0.4253 | 0.023* | |
C9 | 0.44580 (10) | 0.42785 (18) | 0.3914 (2) | 0.0192 (4) | |
H9A | 0.4369 | 0.3711 | 0.3271 | 0.023* | |
C10 | 0.52331 (10) | 0.45623 (16) | 0.42674 (19) | 0.0170 (4) | |
C11 | 0.53648 (10) | 0.54289 (17) | 0.51766 (19) | 0.0181 (4) | |
H11A | 0.5892 | 0.5652 | 0.5395 | 0.022* | |
C12 | 0.47240 (10) | 0.59636 (17) | 0.57604 (19) | 0.0180 (4) | |
H12A | 0.4815 | 0.6549 | 0.6386 | 0.022* | |
C13 | 0.26050 (10) | 0.88030 (15) | 0.95796 (19) | 0.0157 (4) | |
C14 | 0.40125 (10) | 0.93161 (17) | 1.00651 (19) | 0.0165 (4) | |
C15 | 0.38915 (11) | 1.02561 (18) | 1.0904 (2) | 0.0202 (4) | |
H15A | 0.3369 | 1.0536 | 1.1075 | 0.024* | |
C16 | 0.45424 (12) | 1.07814 (19) | 1.1488 (2) | 0.0214 (4) | |
H16A | 0.4460 | 1.1425 | 1.2057 | 0.026* | |
C17 | 0.53075 (10) | 1.03808 (18) | 1.12533 (19) | 0.0186 (4) | |
C18 | 0.54283 (11) | 0.94174 (19) | 1.0435 (2) | 0.0204 (4) | |
H18A | 0.5950 | 0.9121 | 1.0286 | 0.024* | |
C19 | 0.47829 (10) | 0.88971 (17) | 0.9842 (2) | 0.0198 (4) | |
H19A | 0.4866 | 0.8249 | 0.9278 | 0.024* | |
O100 | 0.33017 (10) | 0.30965 (16) | 0.17286 (19) | 0.0424 (4) | |
N100 | 0.21891 (10) | 0.2555 (2) | 0.2759 (3) | 0.0341 (4) | |
C100 | 0.25928 (14) | 0.31580 (19) | 0.1894 (3) | 0.0342 (5) | |
H100 | 0.2297 | 0.3678 | 0.1368 | 0.041* | |
C101 | 0.2617 (2) | 0.1731 (3) | 0.3556 (4) | 0.0661 (10) | |
H101 | 0.2472 | 0.0887 | 0.3361 | 0.099* | |
H102 | 0.2479 | 0.1907 | 0.4409 | 0.099* | |
H103 | 0.3191 | 0.1841 | 0.3438 | 0.099* | |
C102 | 0.13354 (17) | 0.2626 (4) | 0.2881 (5) | 0.0805 (13) | |
H104 | 0.1127 | 0.3235 | 0.2308 | 0.121* | |
H105 | 0.1199 | 0.2864 | 0.3719 | 0.121* | |
H106 | 0.1101 | 0.1828 | 0.2699 | 0.121* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0161 (5) | 0.0232 (6) | 0.0180 (7) | 0.0000 (5) | −0.0017 (5) | −0.0037 (6) |
O2 | 0.0134 (6) | 0.0297 (7) | 0.0215 (7) | 0.0051 (5) | 0.0001 (6) | −0.0053 (6) |
O3 | 0.0157 (6) | 0.0250 (6) | 0.0200 (7) | −0.0009 (5) | 0.0019 (6) | −0.0036 (6) |
O4 | 0.0147 (6) | 0.0375 (8) | 0.0204 (8) | −0.0070 (5) | 0.0008 (6) | −0.0074 (7) |
N1 | 0.0134 (5) | 0.0171 (5) | 0.0150 (6) | −0.0018 (8) | 0.0006 (8) | 0.0015 (4) |
N2 | 0.0137 (7) | 0.0237 (7) | 0.0175 (8) | 0.0013 (5) | −0.0002 (6) | −0.0057 (7) |
N3 | 0.0144 (7) | 0.0224 (7) | 0.0171 (8) | −0.0006 (5) | 0.0008 (7) | −0.0045 (7) |
C1 | 0.0121 (6) | 0.0301 (8) | 0.0252 (8) | 0.0008 (8) | 0.0013 (9) | −0.0048 (7) |
C2 | 0.0161 (8) | 0.0226 (8) | 0.0182 (10) | −0.0017 (6) | −0.0024 (7) | −0.0035 (8) |
C3 | 0.0148 (7) | 0.0169 (7) | 0.0142 (9) | 0.0005 (6) | 0.0004 (7) | 0.0006 (7) |
C4 | 0.0145 (7) | 0.0239 (9) | 0.0195 (9) | 0.0023 (6) | 0.0010 (7) | −0.0025 (8) |
C5 | 0.0148 (7) | 0.0157 (7) | 0.0151 (9) | −0.0001 (6) | −0.0006 (7) | 0.0018 (7) |
C6 | 0.0141 (7) | 0.0159 (7) | 0.0156 (9) | −0.0003 (6) | −0.0004 (7) | 0.0023 (7) |
C7 | 0.0131 (7) | 0.0198 (8) | 0.0167 (9) | 0.0020 (6) | 0.0002 (7) | 0.0014 (8) |
C8 | 0.0133 (7) | 0.0232 (8) | 0.0201 (10) | −0.0011 (6) | −0.0011 (7) | −0.0028 (8) |
C9 | 0.0176 (8) | 0.0226 (9) | 0.0173 (8) | 0.0008 (7) | −0.0021 (7) | −0.0025 (7) |
C10 | 0.0146 (7) | 0.0197 (8) | 0.0167 (9) | 0.0023 (6) | 0.0005 (7) | 0.0011 (8) |
C11 | 0.0136 (7) | 0.0213 (8) | 0.0193 (9) | 0.0008 (6) | −0.0022 (7) | −0.0001 (7) |
C12 | 0.0167 (8) | 0.0202 (8) | 0.0172 (10) | −0.0002 (6) | −0.0015 (7) | −0.0023 (7) |
C13 | 0.0145 (8) | 0.0159 (7) | 0.0167 (9) | −0.0007 (6) | −0.0015 (7) | 0.0018 (7) |
C14 | 0.0126 (7) | 0.0205 (8) | 0.0163 (9) | −0.0016 (6) | −0.0007 (7) | −0.0013 (7) |
C15 | 0.0143 (7) | 0.0245 (8) | 0.0217 (9) | 0.0006 (7) | 0.0007 (7) | −0.0041 (8) |
C16 | 0.0193 (8) | 0.0250 (9) | 0.0198 (10) | −0.0030 (7) | 0.0002 (8) | −0.0063 (8) |
C17 | 0.0161 (8) | 0.0251 (9) | 0.0148 (9) | −0.0052 (6) | −0.0002 (7) | 0.0014 (8) |
C18 | 0.0138 (7) | 0.0245 (8) | 0.0228 (9) | −0.0003 (6) | 0.0013 (8) | −0.0009 (8) |
C19 | 0.0168 (8) | 0.0205 (8) | 0.0220 (10) | −0.0002 (6) | 0.0019 (7) | −0.0031 (7) |
O100 | 0.0323 (8) | 0.0469 (10) | 0.0478 (11) | −0.0081 (7) | 0.0065 (8) | 0.0085 (9) |
N100 | 0.0273 (8) | 0.0307 (8) | 0.0442 (10) | −0.0010 (8) | 0.0072 (11) | −0.0014 (7) |
C100 | 0.0339 (11) | 0.0272 (9) | 0.0415 (14) | 0.0009 (9) | −0.0054 (11) | 0.0063 (11) |
C101 | 0.069 (2) | 0.076 (2) | 0.053 (2) | −0.0001 (18) | 0.0106 (18) | 0.0381 (19) |
C102 | 0.0282 (13) | 0.089 (3) | 0.124 (4) | −0.0040 (15) | 0.026 (2) | −0.037 (3) |
O1—C6 | 1.236 (2) | C9—C10 | 1.394 (2) |
O2—C10 | 1.376 (2) | C9—H9A | 0.9500 |
O2—H2 | 0.8400 | C10—C11 | 1.392 (3) |
O3—C13 | 1.240 (2) | C11—C12 | 1.382 (3) |
O4—C17 | 1.372 (2) | C11—H11A | 0.9500 |
O4—H4 | 0.8400 | C12—H12A | 0.9500 |
N1—C3 | 1.339 (2) | C14—C15 | 1.394 (3) |
N1—C5 | 1.343 (2) | C14—C19 | 1.396 (2) |
N2—C6 | 1.338 (2) | C15—C16 | 1.392 (3) |
N2—C7 | 1.415 (2) | C15—H15A | 0.9500 |
N2—H2B | 0.8800 | C16—C17 | 1.383 (3) |
N3—C13 | 1.341 (2) | C16—H16A | 0.9500 |
N3—C14 | 1.418 (2) | C17—C18 | 1.398 (3) |
N3—H3A | 0.8800 | C18—C19 | 1.387 (3) |
C1—C4 | 1.383 (3) | C18—H18A | 0.9500 |
C1—C2 | 1.387 (3) | C19—H19A | 0.9500 |
C1—H1A | 0.9500 | O100—C100 | 1.207 (3) |
C2—C3 | 1.387 (2) | N100—C100 | 1.339 (3) |
C2—H2A | 0.9500 | N100—C102 | 1.444 (3) |
C3—C6 | 1.512 (3) | N100—C101 | 1.446 (4) |
C4—C5 | 1.394 (2) | C100—H100 | 0.9500 |
C4—H4A | 0.9500 | C101—H101 | 0.9800 |
C5—C13 | 1.509 (2) | C101—H102 | 0.9800 |
C7—C8 | 1.394 (3) | C101—H103 | 0.9800 |
C7—C12 | 1.397 (2) | C102—H104 | 0.9800 |
C8—C9 | 1.392 (3) | C102—H105 | 0.9800 |
C8—H8A | 0.9500 | C102—H106 | 0.9800 |
C10—O2—H2 | 109.5 | C11—C12—C7 | 120.87 (18) |
C17—O4—H4 | 109.5 | C11—C12—H12A | 119.6 |
C3—N1—C5 | 117.56 (13) | C7—C12—H12A | 119.6 |
C6—N2—C7 | 129.70 (17) | O3—C13—N3 | 124.65 (17) |
C6—N2—H2B | 115.2 | O3—C13—C5 | 121.33 (15) |
C7—N2—H2B | 115.2 | N3—C13—C5 | 114.01 (17) |
C13—N3—C14 | 128.95 (17) | C15—C14—C19 | 119.57 (17) |
C13—N3—H3A | 115.5 | C15—C14—N3 | 123.58 (16) |
C14—N3—H3A | 115.5 | C19—C14—N3 | 116.83 (17) |
C4—C1—C2 | 119.34 (15) | C16—C15—C14 | 119.53 (17) |
C4—C1—H1A | 120.3 | C16—C15—H15A | 120.2 |
C2—C1—H1A | 120.3 | C14—C15—H15A | 120.2 |
C1—C2—C3 | 118.38 (18) | C17—C16—C15 | 120.99 (18) |
C1—C2—H2A | 120.8 | C17—C16—H16A | 119.5 |
C3—C2—H2A | 120.8 | C15—C16—H16A | 119.5 |
N1—C3—C2 | 123.33 (17) | O4—C17—C16 | 118.52 (18) |
N1—C3—C6 | 116.88 (15) | O4—C17—C18 | 121.91 (17) |
C2—C3—C6 | 119.79 (17) | C16—C17—C18 | 119.55 (17) |
C1—C4—C5 | 118.27 (19) | C19—C18—C17 | 119.72 (17) |
C1—C4—H4A | 120.9 | C19—C18—H18A | 120.1 |
C5—C4—H4A | 120.9 | C17—C18—H18A | 120.1 |
N1—C5—C4 | 123.12 (18) | C18—C19—C14 | 120.62 (18) |
N1—C5—C13 | 117.43 (15) | C18—C19—H19A | 119.7 |
C4—C5—C13 | 119.45 (17) | C14—C19—H19A | 119.7 |
O1—C6—N2 | 124.63 (18) | C100—N100—C102 | 122.9 (3) |
O1—C6—C3 | 121.56 (16) | C100—N100—C101 | 118.78 (19) |
N2—C6—C3 | 113.81 (17) | C102—N100—C101 | 118.2 (3) |
C8—C7—C12 | 119.42 (17) | O100—C100—N100 | 125.4 (2) |
C8—C7—N2 | 124.55 (16) | O100—C100—H100 | 117.3 |
C12—C7—N2 | 116.02 (17) | N100—C100—H100 | 117.3 |
C9—C8—C7 | 119.75 (16) | N100—C101—H101 | 109.5 |
C9—C8—H8A | 120.1 | N100—C101—H102 | 109.5 |
C7—C8—H8A | 120.1 | H101—C101—H102 | 109.5 |
C8—C9—C10 | 120.31 (18) | N100—C101—H103 | 109.5 |
C8—C9—H9A | 119.8 | H101—C101—H103 | 109.5 |
C10—C9—H9A | 119.8 | H102—C101—H103 | 109.5 |
O2—C10—C11 | 121.57 (16) | N100—C102—H104 | 109.5 |
O2—C10—C9 | 118.51 (17) | N100—C102—H105 | 109.5 |
C11—C10—C9 | 119.92 (17) | H104—C102—H105 | 109.5 |
C12—C11—C10 | 119.64 (17) | N100—C102—H106 | 109.5 |
C12—C11—H11A | 120.2 | H104—C102—H106 | 109.5 |
C10—C11—H11A | 120.2 | H105—C102—H106 | 109.5 |
C4—C1—C2—C3 | 0.5 (4) | C9—C10—C11—C12 | 2.8 (3) |
C5—N1—C3—C2 | 0.0 (3) | C10—C11—C12—C7 | −0.6 (3) |
C5—N1—C3—C6 | 179.48 (14) | C8—C7—C12—C11 | −2.0 (3) |
C1—C2—C3—N1 | −0.2 (3) | N2—C7—C12—C11 | 177.10 (18) |
C1—C2—C3—C6 | −179.65 (18) | C14—N3—C13—O3 | −0.8 (3) |
C2—C1—C4—C5 | −0.5 (4) | C14—N3—C13—C5 | 178.39 (17) |
C3—N1—C5—C4 | −0.1 (3) | N1—C5—C13—O3 | −176.12 (17) |
C3—N1—C5—C13 | −179.83 (14) | C4—C5—C13—O3 | 4.1 (3) |
C1—C4—C5—N1 | 0.4 (3) | N1—C5—C13—N3 | 4.7 (2) |
C1—C4—C5—C13 | −179.91 (18) | C4—C5—C13—N3 | −175.07 (18) |
C7—N2—C6—O1 | −0.7 (3) | C13—N3—C14—C15 | −16.9 (3) |
C7—N2—C6—C3 | 178.91 (17) | C13—N3—C14—C19 | 164.9 (2) |
N1—C3—C6—O1 | −174.51 (16) | C19—C14—C15—C16 | 1.3 (3) |
C2—C3—C6—O1 | 5.0 (3) | N3—C14—C15—C16 | −176.87 (19) |
N1—C3—C6—N2 | 5.9 (2) | C14—C15—C16—C17 | −0.3 (3) |
C2—C3—C6—N2 | −174.64 (18) | C15—C16—C17—O4 | 177.3 (2) |
C6—N2—C7—C8 | −10.6 (3) | C15—C16—C17—C18 | −1.3 (3) |
C6—N2—C7—C12 | 170.39 (19) | O4—C17—C18—C19 | −176.8 (2) |
C12—C7—C8—C9 | 2.4 (3) | C16—C17—C18—C19 | 1.8 (3) |
N2—C7—C8—C9 | −176.64 (18) | C17—C18—C19—C14 | −0.8 (3) |
C7—C8—C9—C10 | −0.2 (3) | C15—C14—C19—C18 | −0.8 (3) |
C8—C9—C10—O2 | 177.25 (18) | N3—C14—C19—C18 | 177.52 (19) |
C8—C9—C10—C11 | −2.4 (3) | C102—N100—C100—O100 | −177.4 (3) |
O2—C10—C11—C12 | −176.86 (19) | C101—N100—C100—O100 | −1.6 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2B···N1 | 0.88 | 2.20 | 2.661 (2) | 113 |
N3—H3A···N1 | 0.88 | 2.22 | 2.675 (2) | 112 |
O2—H2···O1i | 0.84 | 1.92 | 2.7572 (19) | 179 |
O4—H4···O3ii | 0.84 | 1.91 | 2.7464 (19) | 172 |
N2—H2B···O2iii | 0.88 | 2.44 | 3.125 (2) | 135 |
N3—H3A···O4iv | 0.88 | 2.41 | 3.043 (2) | 130 |
Symmetry codes: (i) x+1/2, −y+1, z; (ii) x+1/2, −y+2, z; (iii) −x+1, −y+1, z+1/2; (iv) −x+1, −y+2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C19H15N3O4·C3H7NO |
Mr | 422.44 |
Crystal system, space group | Orthorhombic, Pca21 |
Temperature (K) | 130 |
a, b, c (Å) | 16.8124 (12), 10.9545 (8), 10.9331 (7) |
V (Å3) | 2013.6 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.47 × 0.41 × 0.39 |
Data collection | |
Diffractometer | Bruker SMART APEX diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.954, 0.962 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18386, 2536, 2434 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.658 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.099, 1.03 |
No. of reflections | 2536 |
No. of parameters | 284 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.33, −0.32 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXTL (Sheldrick, 2008) and local programs.
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2B···N1 | 0.88 | 2.20 | 2.661 (2) | 112.5 |
N3—H3A···N1 | 0.88 | 2.22 | 2.675 (2) | 111.9 |
O2—H2···O1i | 0.84 | 1.92 | 2.7572 (19) | 178.8 |
O4—H4···O3ii | 0.84 | 1.91 | 2.7464 (19) | 172.0 |
N2—H2B···O2iii | 0.88 | 2.44 | 3.125 (2) | 134.6 |
N3—H3A···O4iv | 0.88 | 2.41 | 3.043 (2) | 129.6 |
Symmetry codes: (i) x+1/2, −y+1, z; (ii) x+1/2, −y+2, z; (iii) −x+1, −y+1, z+1/2; (iv) −x+1, −y+2, z−1/2. |
Acknowledgements
The authors acknowledge the Higher Education Commission of Pakistan for financial assistance and the Universität Paderborn, Germany, for carrying out XRD analysis.
References
Ali, A., Hundal, G. & Gupta, R. (2012). Cryst. Growth Des. 12, 1308–1319. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Diakoumakos, C. D. & Mikroyannidis, J. A. (1994). Polymer, 35, 1986–1990. CrossRef CAS Web of Science Google Scholar
Ebadi, H. & Mehdipour-Ataei, S. (2010). Chin. J. Polym. Sci. 28, 29–37. Web of Science CrossRef CAS Google Scholar
Hamciuc, E., Hamciuc, C., Sava, I. & Bruma, M. (2001). Eur. Polym. J. 37, 287–293. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, G., Jikei, M. & Kakimoto, M.-A. (1998). Macromolecules, 31, 5964–5966. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Aromatic polyamides' application in novel technologies has grown rapidly due to their usage as a beneficial alternative for metals and other goods (Yang, et al., 1998, Hamciuc et al., 2001). The company of amide linkages makes them strong applicant for semi-permeable membrane as they are hydrophilic polymers and water absorbent. In addition their high tech artificial fibre usage in the production of defensive attire of protective firemen, soldiers, race car drivers and gas filteration makes them prominent among others (Ebadi, et al., 2010, Diakoumakos et al., 1994). As part of our ongoing research in solubility of aromatic poly(amide-imide)s by structural modification, we are reporting a pyridine-based monomer having inbuilt amide functionality. It enhances the solubility of resulting poly(amid-imide)s without deteriorating the inherent properties of the polymer.