metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{N,N-Bis[bis­­(2,2,2-tri­fluoro­eth­­oxy)phosphan­yl]methyl­amine-κ2P,P′}bis­­(η5-cyclo­penta­dien­yl)titanium(II)

aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: torsten.beweries@catalysis.de

(Received 21 May 2013; accepted 22 May 2013; online 31 May 2013)

The title compound, [Ti(C5H5)2(C9H11F12NO4P2)], is a four-membered titanacycle obtained from the reaction of Cp2Ti(η2-Me3SiC2SiMe3) and CH3N[P(OCH2CF3)2]2 {N,N-bis­[bis­(tri­fluoro­eth­oxy)phosphan­yl]methyl­amine, tfepma}. The TiII atom is coordinated by two cyclo­penta­dienyl (Cp) ligands and the chelating tfepma ligand in a strongly distorted tetra­hedral geometry. The mol­ecule is located on a mirror plane.

Related literature

For other titanocene complexes with four-membered metallacycles [TiPNP], see: Haehnel et al. (2012[Haehnel, M., Hansen, S., Spannenberg, A., Arndt, P., Beweries, T. & Rosenthal, U. (2012). Chem. Eur. J. 18, 10546-10553.]). For selected examples of four-membered metallacycles with a chelating tfepma ligand, see: M = Rh, Esswein et al. (2005[Esswein, A. J., Veige, A. S. & Nocera, D. G. (2005). J. Am. Chem. Soc. 127, 16641-16651.], 2007[Esswein, A. J., Dempsey, J. L. & Nocera, D. G. (2007). Inorg. Chem. 46, 2362-2364.]); M = Ir, Heyduk & Nocera (1999[Heyduk, A. F. & Nocera, D. G. (1999). Chem. Commun. pp. 1519-1520.], 2000[Heyduk, A. F. & Nocera, D. G. (2000). J. Am. Chem. Soc. 122, 9415-9426.]); Gray et al. (2004[Gray, T. G., Veige, A. S. & Nocera, D. G. (2004). J. Am. Chem. Soc. 126, 9760-9768.]); Veige et al. (2005[Veige, A. S., Gray, T. G. & Nocera, D. G. (2005). Inorg. Chem. 44, 17-26.]); Esswein et al. (2008[Esswein, A. J., Veige, A. S., Piccoli, P. M. B., Schultz, A. J. & Nocera, D. G. (2008). Organometallics, 27, 1073-1083.]). The starting alkyne complex Cp2Ti(η2-Me3SiC2SiMe3) is described by Burlakov et al. (1988[Burlakov, V. V., Rosenthal, U., Petrovskii, P. V., Shur, V. B. & Vol'pin, M. E. (1988). Organomet. Chem. USSR, 1, 526-528.]).

[Scheme 1]

Experimental

Crystal data
  • [Ti(C5H5)2(C9H11F12NO4P2)]

  • Mr = 665.21

  • Orthorhombic, P n m a

  • a = 14.6494 (2) Å

  • b = 20.0535 (3) Å

  • c = 8.7694 (1) Å

  • V = 2576.20 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 150 K

  • 0.42 × 0.41 × 0.16 mm

Data collection
  • Bruker Kappa APEXII DUO diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.90, Tmax = 1.00

  • 60903 measured reflections

  • 3420 independent reflections

  • 2988 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.079

  • S = 1.06

  • 3420 reflections

  • 191 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The reaction of tfepma with the titanocene precursor Cp2Ti(η2-Me3SiC2SiMe3) was investigated to synthesize a new 4-membered hetero-metallacycle. In this reaction, the spectator ligand Me3SiC2SiMe3 is replaced by the chelating tfepma ligand, which is binding over both phosphorus atoms to result in the four membered metallacycle.

In the title compound the titanium center is coordinated by two Cp units and the chelating tfepma ligand (Fig. 1). The molecule is located on a mirror plane which passes through H5A, C5, N1, Ti1, C7, H7, C11 and H11. The geometry at the titanium center is found to be strongly distorted tetrahedral. The largest deviation from the ideal tetrahedral angle is observed for P1—Ti1—P1i [63.94 (2)°, symmetry code to generate equivalent atoms: (i) x, -y + 1/2, z]. The four membered metallacycle Ti1,P1,N1,P1i is planar with a mean deviation from the best plane of 0.015 Å. The following bond lengths and angles of the cyclic unit were observed: Ti1—P1 = 2.4266 (4) Å, P1—N1 = 1.696 (1) Å, P1—N1—P1i = 98.51 (8)°.

Related literature top

For other titanocene complexes with four-membered metallacycles [TiPNP], see: Haehnel et al. (2012). For selected examples of four-membered metallacycles with a chelating tfepma ligand, see: M = Rh, Esswein et al. (2005, 2007); M = Ir, Heyduk & Nocera (1999, 2000); Gray et al. (2004); Veige et al. (2005); Esswein et al. (2008). The starting alkyne complex Cp2Ti(η2-Me3SiC2SiMe3) is described by Burlakov et al. (1988).

Experimental top

To a stirred solution of Cp2Ti(η2-Me3SiC2SiMe3) (150 mg, 0.430 mmol) in 5 ml of toluene was added a solution of tfepma (210 mg, 0.430 mmol) in 5 ml of toluene at room temperature. The colour of the reaction mixture instantly changed from brown to dark green. After additional stirring for 1 h, all volatiles were removed in vacuum and the resulting green precipitate was dissolved in 7 ml of toluene and stored at -30°C for several weeks. The resulting dark green single crystals were filtered, washed with cold n-hexane and dried in vacuum. Yield: 96% (274 mg, 0.412 mmol).

Refinement top

H5A and H5B were found from the difference Fourier map and refined freely. All other H atoms were placed in idealized positions with d(C—H) = 0.95 Å (CH), 0.99 Å (CH2) and refined using a riding model with Uiso(H) fixed at 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound in the crystal (symmetry code to generate equivalent atoms: (i) x, -y + 1/2, z). Hydrogen atoms are omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level.
{N,N-Bis[bis(2,2,2-trifluoroethoxy)phosphanyl]methylamine-κ2P,P'}bis(η5-cyclopentadienyl)titanium(II) top
Crystal data top
[Ti(C5H5)2(C9H11F12NO4P2)]Dx = 1.715 Mg m3
Mr = 665.21Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 9979 reflections
a = 14.6494 (2) Åθ = 2.5–28.6°
b = 20.0535 (3) ŵ = 0.57 mm1
c = 8.7694 (1) ÅT = 150 K
V = 2576.20 (6) Å3Prism, dark green
Z = 40.42 × 0.41 × 0.16 mm
F(000) = 1336
Data collection top
Bruker Kappa APEXII DUO
diffractometer
3420 independent reflections
Radiation source: fine-focus sealed tube2988 reflections with I > 2σ(I)
Curved graphite monochromatorRint = 0.033
Detector resolution: 8.3333 pixels mm-1θmax = 28.7°, θmin = 2.5°
ω and phi scansh = 1919
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 2724
Tmin = 0.90, Tmax = 1.00l = 1111
60903 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0339P)2 + 1.9223P]
where P = (Fo2 + 2Fc2)/3
3420 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Ti(C5H5)2(C9H11F12NO4P2)]V = 2576.20 (6) Å3
Mr = 665.21Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 14.6494 (2) ŵ = 0.57 mm1
b = 20.0535 (3) ÅT = 150 K
c = 8.7694 (1) Å0.42 × 0.41 × 0.16 mm
Data collection top
Bruker Kappa APEXII DUO
diffractometer
3420 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2988 reflections with I > 2σ(I)
Tmin = 0.90, Tmax = 1.00Rint = 0.033
60903 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.51 e Å3
3420 reflectionsΔρmin = 0.40 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.92098 (11)0.13133 (8)0.72113 (17)0.0261 (3)
H1A0.92350.17030.65200.031*
H1B0.85740.12590.75740.031*
C20.95209 (12)0.06964 (8)0.63952 (18)0.0296 (3)
C30.88445 (11)0.07502 (8)1.1082 (2)0.0310 (4)
H3A0.90980.07191.21260.037*
H3B0.92780.05371.03670.037*
C40.79412 (13)0.04136 (9)1.1005 (2)0.0379 (4)
C50.79887 (14)0.25000.8632 (3)0.0228 (4)
H5A0.8034 (17)0.25000.752 (3)0.023 (6)*
H5B0.7653 (14)0.2887 (10)0.897 (2)0.033 (5)*
C61.01942 (18)0.19336 (12)1.3387 (2)0.0528 (6)
H60.99980.14831.33200.063*
C70.9650 (2)0.25001.3137 (3)0.0561 (9)
H70.90250.25001.28500.067*
C81.10686 (16)0.28522 (10)1.3748 (2)0.0437 (5)
H81.15780.31311.39590.052*
C91.22452 (11)0.21453 (9)1.0707 (3)0.0404 (5)
H91.25740.18681.13920.049*
C101.16817 (10)0.19273 (8)0.9531 (2)0.0336 (4)
H101.15650.14760.92650.040*
C111.13093 (15)0.25000.8793 (3)0.0292 (5)
H111.08910.25000.79640.035*
F10.94470 (9)0.01516 (5)0.72635 (13)0.0447 (3)
F21.03855 (8)0.07332 (6)0.59488 (13)0.0441 (3)
F30.90112 (9)0.05987 (6)0.51500 (12)0.0455 (3)
F40.80238 (10)0.02315 (5)1.13574 (17)0.0569 (4)
F50.73432 (10)0.06669 (6)1.1954 (2)0.0734 (5)
F60.75798 (12)0.04567 (8)0.96213 (19)0.0813 (5)
N10.89119 (11)0.25000.93043 (19)0.0167 (3)
O10.98087 (7)0.14063 (5)0.84642 (12)0.0253 (2)
O20.87059 (7)0.14299 (5)1.06745 (13)0.0239 (2)
P10.95613 (2)0.185927 (17)0.99495 (4)0.01645 (9)
Ti11.07370 (2)0.25001.12354 (4)0.01905 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0296 (7)0.0269 (7)0.0217 (7)0.0021 (6)0.0017 (6)0.0068 (6)
C20.0402 (9)0.0244 (7)0.0242 (7)0.0003 (6)0.0027 (6)0.0049 (6)
C30.0308 (8)0.0214 (7)0.0409 (9)0.0025 (6)0.0028 (7)0.0091 (7)
C40.0424 (10)0.0239 (8)0.0473 (10)0.0106 (7)0.0011 (8)0.0034 (7)
C50.0146 (9)0.0275 (11)0.0263 (10)0.0000.0043 (8)0.000
C60.0838 (16)0.0552 (13)0.0192 (8)0.0323 (12)0.0119 (9)0.0102 (8)
C70.0390 (15)0.113 (3)0.0162 (11)0.0000.0021 (10)0.000
C80.0644 (13)0.0359 (10)0.0308 (9)0.0074 (9)0.0247 (9)0.0022 (7)
C90.0156 (7)0.0351 (9)0.0707 (13)0.0046 (6)0.0038 (8)0.0044 (9)
C100.0183 (7)0.0251 (8)0.0573 (11)0.0015 (6)0.0114 (7)0.0044 (7)
C110.0196 (9)0.0327 (11)0.0354 (12)0.0000.0116 (9)0.000
F10.0710 (8)0.0228 (5)0.0403 (6)0.0047 (5)0.0008 (6)0.0001 (4)
F20.0448 (6)0.0437 (6)0.0437 (6)0.0072 (5)0.0161 (5)0.0106 (5)
F30.0649 (8)0.0431 (6)0.0285 (5)0.0021 (6)0.0079 (5)0.0152 (5)
F40.0704 (8)0.0208 (5)0.0794 (9)0.0123 (5)0.0114 (7)0.0060 (6)
F50.0586 (8)0.0395 (7)0.1222 (13)0.0053 (6)0.0509 (9)0.0120 (8)
F60.0961 (12)0.0685 (10)0.0791 (10)0.0436 (9)0.0491 (9)0.0132 (8)
N10.0136 (7)0.0184 (7)0.0180 (7)0.0000.0020 (6)0.000
O10.0226 (5)0.0269 (5)0.0263 (5)0.0036 (4)0.0020 (4)0.0097 (4)
O20.0197 (5)0.0187 (5)0.0335 (6)0.0029 (4)0.0012 (4)0.0048 (4)
P10.01472 (15)0.01642 (16)0.01822 (16)0.00044 (12)0.00029 (12)0.00094 (12)
Ti10.01473 (16)0.01974 (17)0.02269 (18)0.0000.00488 (13)0.000
Geometric parameters (Å, º) top
C1—O11.4183 (18)C8—C8i1.413 (4)
C1—C21.500 (2)C8—Ti12.3644 (18)
C1—H1A0.9900C8—H80.9500
C1—H1B0.9900C9—C101.392 (3)
C2—F21.328 (2)C9—C9i1.422 (4)
C2—F11.3360 (19)C9—Ti12.3670 (17)
C2—F31.3374 (19)C9—H90.9500
C3—O21.4235 (18)C10—C111.427 (2)
C3—C41.487 (2)C10—Ti12.3387 (17)
C3—H3A0.9900C10—H100.9500
C3—H3B0.9900C11—C10i1.427 (2)
C4—F51.311 (2)C11—Ti12.300 (2)
C4—F61.327 (2)C11—H110.9500
C4—F41.336 (2)N1—P1i1.6959 (11)
C5—N11.475 (2)N1—P11.6959 (11)
C5—H5A0.98 (3)O1—P11.6287 (11)
C5—H5B0.97 (2)O2—P11.6481 (10)
C6—C8i1.388 (3)P1—Ti12.4266 (4)
C6—C71.405 (3)P1—P1i2.5697 (7)
C6—Ti12.3412 (19)Ti1—C10i2.3387 (17)
C6—H60.9500Ti1—C6i2.3412 (19)
C7—C6i1.405 (3)Ti1—C8i2.3644 (18)
C7—Ti12.305 (3)Ti1—C9i2.3670 (17)
C7—H70.9500Ti1—P1i2.4266 (4)
C8—C6i1.388 (3)
O1—C1—C2106.86 (13)O2—P1—Ti1129.57 (4)
O1—C1—H1A110.3N1—P1—Ti198.74 (4)
C2—C1—H1A110.3O1—P1—P1i123.89 (4)
O1—C1—H1B110.3O2—P1—P1i121.50 (4)
C2—C1—H1B110.3Ti1—P1—P1i58.029 (9)
H1A—C1—H1B108.6C11—Ti1—C7157.70 (10)
F2—C2—F1106.91 (14)C11—Ti1—C1035.81 (6)
F2—C2—F3107.46 (13)C7—Ti1—C10150.58 (4)
F1—C2—F3107.48 (14)C11—Ti1—C10i35.81 (6)
F2—C2—C1112.62 (14)C7—Ti1—C10i150.58 (4)
F1—C2—C1112.20 (13)C10—Ti1—C10i58.82 (8)
F3—C2—C1109.92 (14)C11—Ti1—C6i150.94 (6)
O2—C3—C4107.24 (14)C7—Ti1—C6i35.18 (8)
O2—C3—H3A110.3C10—Ti1—C6i162.62 (7)
C4—C3—H3A110.3C10i—Ti1—C6i118.54 (8)
O2—C3—H3B110.3C11—Ti1—C6150.94 (6)
C4—C3—H3B110.3C7—Ti1—C635.18 (8)
H3A—C3—H3B108.5C10—Ti1—C6118.54 (8)
F5—C4—F6106.78 (19)C10i—Ti1—C6162.61 (7)
F5—C4—F4106.79 (15)C6i—Ti1—C658.05 (12)
F6—C4—F4108.12 (16)C11—Ti1—C8i142.46 (8)
F5—C4—C3112.95 (16)C7—Ti1—C8i57.85 (9)
F6—C4—C3111.54 (16)C10—Ti1—C8i109.11 (7)
F4—C4—C3110.41 (16)C10i—Ti1—C8i128.38 (8)
N1—C5—H5A109.7 (15)C6i—Ti1—C8i57.57 (7)
N1—C5—H5B110.2 (12)C6—Ti1—C8i34.30 (8)
H5A—C5—H5B109.9 (14)C11—Ti1—C8142.46 (8)
C8i—C6—C7108.0 (2)C7—Ti1—C857.85 (9)
C8i—C6—Ti173.76 (12)C10—Ti1—C8128.38 (8)
C7—C6—Ti171.01 (13)C10i—Ti1—C8109.11 (7)
C8i—C6—H6126.0C6i—Ti1—C834.30 (8)
C7—C6—H6126.0C6—Ti1—C857.57 (7)
Ti1—C6—H6121.0C8i—Ti1—C834.76 (9)
C6i—C7—C6107.9 (3)C11—Ti1—C958.49 (8)
C6i—C7—Ti173.80 (14)C7—Ti1—C9141.84 (8)
C6—C7—Ti173.80 (14)C10—Ti1—C934.39 (7)
C6i—C7—H7126.0C10i—Ti1—C957.99 (6)
C6—C7—H7126.0C6i—Ti1—C9128.36 (8)
Ti1—C7—H7118.3C6—Ti1—C9109.21 (9)
C6i—C8—C8i108.03 (13)C8i—Ti1—C984.32 (8)
C6i—C8—Ti171.93 (10)C8—Ti1—C994.62 (8)
C8i—C8—Ti172.62 (5)C11—Ti1—C9i58.49 (8)
C6i—C8—H8126.0C7—Ti1—C9i141.84 (8)
C8i—C8—H8126.0C10—Ti1—C9i57.99 (6)
Ti1—C8—H8121.2C10i—Ti1—C9i34.39 (7)
C10—C9—C9i108.31 (10)C6i—Ti1—C9i109.21 (9)
C10—C9—Ti171.69 (9)C6—Ti1—C9i128.36 (8)
C9i—C9—Ti172.51 (4)C8i—Ti1—C9i94.62 (8)
C10—C9—H9125.8C8—Ti1—C9i84.32 (8)
C9i—C9—H9125.8C9—Ti1—C9i34.97 (9)
Ti1—C9—H9121.7C11—Ti1—P1i79.98 (5)
C9—C10—C11108.07 (16)C7—Ti1—P1i81.14 (6)
C9—C10—Ti173.91 (10)C10—Ti1—P1i112.52 (5)
C11—C10—Ti170.63 (11)C10i—Ti1—P1i82.12 (4)
C9—C10—H10126.0C6i—Ti1—P1i82.91 (5)
C11—C10—H10126.0C6—Ti1—P1i112.97 (7)
Ti1—C10—H10121.2C8i—Ti1—P1i137.48 (6)
C10—C11—C10i107.2 (2)C8—Ti1—P1i114.88 (5)
C10—C11—Ti173.56 (12)C9—Ti1—P1i136.94 (6)
C10i—C11—Ti173.56 (12)C9i—Ti1—P1i114.36 (5)
C10—C11—H11126.4C11—Ti1—P179.98 (5)
C10i—C11—H11126.4C7—Ti1—P181.14 (6)
Ti1—C11—H11118.5C10—Ti1—P182.12 (4)
C5—N1—P1i130.36 (4)C10i—Ti1—P1112.52 (5)
C5—N1—P1130.36 (4)C6i—Ti1—P1112.97 (7)
P1i—N1—P198.51 (8)C6—Ti1—P182.91 (5)
C1—O1—P1123.73 (9)C8i—Ti1—P1114.88 (5)
C3—O2—P1119.25 (10)C8—Ti1—P1137.48 (6)
O1—P1—O2100.73 (6)C9—Ti1—P1114.35 (5)
O1—P1—N1106.29 (7)C9i—Ti1—P1136.94 (6)
O2—P1—N195.62 (6)P1i—Ti1—P163.942 (18)
O1—P1—Ti1120.60 (4)
Symmetry code: (i) x, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Ti(C5H5)2(C9H11F12NO4P2)]
Mr665.21
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)150
a, b, c (Å)14.6494 (2), 20.0535 (3), 8.7694 (1)
V3)2576.20 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.42 × 0.41 × 0.16
Data collection
DiffractometerBruker Kappa APEXII DUO
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.90, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
60903, 3420, 2988
Rint0.033
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.079, 1.06
No. of reflections3420
No. of parameters191
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.40

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

Financial support by the DFG (grant code RO 1269/8-1) and the BMBF (project "Light2Hydrogen") is gratefully acknowledged.

References

First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurlakov, V. V., Rosenthal, U., Petrovskii, P. V., Shur, V. B. & Vol'pin, M. E. (1988). Organomet. Chem. USSR, 1, 526–528.  Google Scholar
First citationEsswein, A. J., Dempsey, J. L. & Nocera, D. G. (2007). Inorg. Chem. 46, 2362–2364.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEsswein, A. J., Veige, A. S. & Nocera, D. G. (2005). J. Am. Chem. Soc. 127, 16641–16651.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEsswein, A. J., Veige, A. S., Piccoli, P. M. B., Schultz, A. J. & Nocera, D. G. (2008). Organometallics, 27, 1073–1083.  Web of Science CSD CrossRef CAS Google Scholar
First citationGray, T. G., Veige, A. S. & Nocera, D. G. (2004). J. Am. Chem. Soc. 126, 9760–9768.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHaehnel, M., Hansen, S., Spannenberg, A., Arndt, P., Beweries, T. & Rosenthal, U. (2012). Chem. Eur. J. 18, 10546–10553.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHeyduk, A. F. & Nocera, D. G. (1999). Chem. Commun. pp. 1519–1520.  Web of Science CSD CrossRef Google Scholar
First citationHeyduk, A. F. & Nocera, D. G. (2000). J. Am. Chem. Soc. 122, 9415–9426.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVeige, A. S., Gray, T. G. & Nocera, D. G. (2005). Inorg. Chem. 44, 17–26.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds