organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Tosyl-2,3,3a,4,9,9a-hexa­hydro-1H-benzo[f]isoindol-1-one

aSchool of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China
*Correspondence e-mail: yiminhu@yahoo.cn

(Received 9 March 2013; accepted 23 April 2013; online 18 May 2013)

The title compound, C19H19NO3S, was produced by the self-reaction of N-cinnamyl-N-tosyl­acryl­amide in the presence of palladium(II) acetate via an intra­molecular C—C coupling reaction and C—H activation. There are two chiral C atoms in the mol­ecule, but the crystal is a racemic system due to a lack of chiral separation. The five-membered ring is twisted about the methyl­ene–methane bond, and the cyclo­hexa-1,4-diene ring has a boat conformation. The dihedral angle between the benzene rings is 88.27 (14)°, indicating an almost orthogonal relationship and an approximate L-shape for the mol­ecule. In the crystal, the presence of C—H⋯π inter­actions leads to inversion dimers.

Related literature

For palladium-catalysed inter­molecular and intra­molecular reactions, see: Zhao et al. (2012[Zhao, Q.-S., Hu, Q., Wen, L., Wu, M. & Hu, Y.-M. (2012). Adv. Synth. Catal. 354, 2113-2116.]) and for palladium-catalysed coupling reactions, see: Meng et al. (2011[Meng, T.-J., Hu, Y.-M., Zhao, Q.-S., Yu, T. & Wang, S. (2011). Tetrahedron, 67, 8710-8716.]); Hu et al. (2011[Hu, Y.-M., Sun, Y.-J., Hu, J.-P., Zhu, T., Yu, T. & Zhao, Q.-S. (2011). Chem. Asian J. 6, 797-800.]). They have made a wide variety active pharmaceutical ingredients and complex organic mol­ecules economically accessible, see: Hu et al. (2009[Hu, Y.-M., Yu, C.-L., Ren, D., Hu, Q., Zhang, L.-D. & Cheng, D. (2009). Angew. Chem. Int. Ed. 48, 5448-5451.], 2010[Hu, Y.-M., Lin, X.-G., Zhu, T., Wan, J., Sun, Y.-J., Zhao, Q. S. & Yu, T. (2010). Synthesis, 42, 3467-3473.]). For the physiological activity of benzo[f]isoindol-1-one derivatives, see: Pitchumani & Vijaikumar (2010[Pitchumani, K. & Vijaikumar, S. (2010). Indian J. Chem. 49, 469-474.]).

[Scheme 1]

Experimental

Crystal data
  • C19H19NO3S

  • Mr = 341.41

  • Triclinic, [P \overline 1]

  • a = 6.4389 (8) Å

  • b = 8.4336 (11) Å

  • c = 15.4958 (12) Å

  • α = 89.312 (2)°

  • β = 87.395 (3)°

  • γ = 81.224 (2)°

  • V = 830.75 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 291 K

  • 0.28 × 0.24 × 0.22 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.943, Tmax = 0.955

  • 7242 measured reflections

  • 3724 independent reflections

  • 1902 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.140

  • S = 1.00

  • 3724 reflections

  • 218 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10ACg1i 0.97 2.63 3.555 (3) 159
Symmetry code: (i) -x+1, -y, -z+2.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Palladium-catalyzed intermolecular and intramolecular reactions have become an important tool of modern organic synthesis chemistry(Zhao et al., 2012). They have made a wide variety of active pharmaceutical ingredients and complex organic molecules economically accessible(Hu et al., 2009; Hu et al., 2010). The benzo[f]isoindol-1-one derivatives, which have physiological activity, are effective intermediates in the preparation of many complex natural products(Pitchumani et al., 2010). We have reported some novel palladium-catalyzed coupling reactions of aryl halides with the olefins and dienes(Meng et al., 2011; Hu et al., 2011). The self-reaction of N-cinnamyl-N-tosylacrylamide, in the presence of palladium(II) acetate and triphenylphosphine, in DMF at 393 K for 16 h, gave the unexpected title product.

The crystal structure data of molecule (I), C19H19NO3S, reveals that all the bond lengths and angles have normal values. An asymmetric unit is composed of one title compound molecule. The title compound molecule contains two phenyl ring, one five-member carbon ring, and one six-member carbon ring. All the rings are not coplanar (figure 1). In the molecule (I) there are two chiral carbon atoms, C8 and C9, but the crystal is a racemic system due to lacking of the chiral separation. The five-membered ring is twisted about the methylene–methane bond, and the cyclohexa-1,4-diene ring has a boat conformation. The dihedral angle between the benzene rings is 88.27 (14)°, indicating an almost orthogonal relationship and an approximate L-shape for the molecule. In the crystal, the presence of C—H···π interactions leads to inversion dimers. The molecules with R, S(C8, C9) conformation form a 1-D chain through weak H9···O1i(i: 1 + x, y,z) interactions, so do molecules with S, R(C8iii, C9iii) conformation (H9iii···O1iv (iii: -x, 1 - y,1 - z; iv: 1 - x,1 - y,1 - z). Two chains are parallel with each other along the a axis(Fig. 2).

Related literature top

For palladium-catalysed intermolecular and intramolecular reactions, see: Zhao et al. (2012) and for palladium-catalysed coupling reactions, see: Meng et al. (2011); Hu et al. (2011).They have made a wide variety active pharmaceutical ingredients and complex organic molecules economically accessible, see: Hu et al. (2009, 2010. For the physiological activity of benzo[f]isoindol-1-one derivatives, see: Pitchumani & Vijaikumar (2010).

Experimental top

An oven-dried Schlenk flask was evacuated, filled with nitrogen, and then charged with N-cinnamyl-N-tosylacrylamide (3.41 g, 10 mmol), tributylamine (3 ml), PPh3 (52.5 mg, 0.2 mmol), Pd(OAc)2 (24 mg, 0.1 mol), and DMF (10 ml) to give a yellow solution. The reaction mixture was heated at 393 K with stirring. The reaction mixture was cooled to room temperature after 16 h and the resultant yellow-orange mixture was diluted with Et2O (10 ml). The mixture was washed with H2O (15 ml) and the aqueous layer was extracted with Et2O (20 ml). The combined organic layers were dried (MgSO4), filtered, and concentrated in vacuo. The crude material was purified by flash column chromatography on silica gel (petroleum ester:EtOAc = 7:1) and recrystalized from EtOAc, yield 3.11 g (91%). Colorless crystals suitable for X-ray diffraction were obtained by recrystallization from a solution of the title compound from ethyl acetate over a period of one week.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound showing the atom-numbering scheme and displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. A view of the forming a 1-D chain along the a axis. (i: 1 + x, y, z; ii: -1 + x,y,z; iii:-x,1 - y,1 - z; iv: 1 - x,1 - y,1 - z; v: 2 - x,1 - y,1 - z)
[Figure 3] Fig. 3. A view of the cell packing.
[Figure 4] Fig. 4. The formation of the title compound.
2-Tosyl-2,3,3a,4,9,9a-hexahydro-1H-benzo[f]isoindol-1-one top
Crystal data top
C19H19NO3SZ = 2
Mr = 341.41F(000) = 360
Triclinic, P1Dx = 1.365 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.4389 (8) ÅCell parameters from 3121 reflections
b = 8.4336 (11) Åθ = 2.1–23.6°
c = 15.4958 (12) ŵ = 0.21 mm1
α = 89.312 (2)°T = 291 K
β = 87.395 (3)°Block, colorless
γ = 81.224 (2)°0.28 × 0.24 × 0.22 mm
V = 830.75 (16) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
3724 independent reflections
Radiation source: sealed tube1902 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
phi and ω scansθmax = 27.5°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 88
Tmin = 0.943, Tmax = 0.955k = 1010
7242 measured reflectionsl = 2018
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0538P)2 + 0.0132P]
where P = (Fo2 + 2Fc2)/3
3724 reflections(Δ/σ)max = 0.002
218 parametersΔρmax = 0.19 e Å3
1 restraintΔρmin = 0.27 e Å3
Crystal data top
C19H19NO3Sγ = 81.224 (2)°
Mr = 341.41V = 830.75 (16) Å3
Triclinic, P1Z = 2
a = 6.4389 (8) ÅMo Kα radiation
b = 8.4336 (11) ŵ = 0.21 mm1
c = 15.4958 (12) ÅT = 291 K
α = 89.312 (2)°0.28 × 0.24 × 0.22 mm
β = 87.395 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3724 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1902 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.955Rint = 0.041
7242 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0551 restraint
wR(F2) = 0.140H-atom parameters constrained
S = 1.00Δρmax = 0.19 e Å3
3724 reflectionsΔρmin = 0.27 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3560 (5)0.2477 (3)1.14379 (19)0.0529 (8)
H10.22290.29111.16580.063*
C20.5104 (6)0.1853 (4)1.1995 (2)0.0632 (9)
H20.47930.18461.25870.076*
C30.7085 (6)0.1248 (4)1.1681 (2)0.0632 (9)
H30.81210.08371.20580.076*
C40.7530 (5)0.1253 (3)1.0804 (2)0.0516 (8)
H40.88850.08631.05930.062*
C50.6001 (4)0.1827 (3)1.02266 (18)0.0402 (7)
C60.3994 (4)0.2456 (3)1.05538 (18)0.0420 (7)
C70.2351 (4)0.3035 (4)0.99167 (19)0.0509 (8)
H7A0.12170.37441.02110.061*
H7B0.17710.21210.97110.061*
C80.3179 (4)0.3927 (3)0.91382 (17)0.0402 (7)
H80.29590.50780.92640.048*
C90.5518 (4)0.3398 (3)0.88727 (16)0.0383 (7)
H90.63310.42090.90670.046*
C100.6378 (4)0.1798 (3)0.92661 (17)0.0421 (7)
H10A0.57020.09630.90240.050*
H10B0.78760.15520.91270.050*
C110.5606 (4)0.3383 (4)0.78857 (18)0.0474 (8)
H11A0.60510.43550.76520.057*
H11B0.65670.24640.76660.057*
C120.1997 (5)0.3657 (4)0.83510 (19)0.0478 (7)
C130.1097 (4)0.4760 (3)0.64007 (17)0.0424 (7)
C140.0883 (4)0.4722 (4)0.61141 (18)0.0510 (8)
H140.14120.37580.60870.061*
C150.2072 (5)0.6144 (5)0.58664 (19)0.0614 (9)
H150.33990.61200.56580.074*
C160.1359 (6)0.7594 (4)0.59177 (19)0.0621 (9)
C170.0634 (6)0.7592 (4)0.6211 (2)0.0703 (10)
H170.11510.85580.62520.084*
C180.1867 (5)0.6194 (4)0.6445 (2)0.0631 (9)
H180.32150.62140.66320.076*
C190.2678 (6)0.9147 (5)0.5653 (2)0.0981 (14)
H19A0.27300.99190.61060.147*
H19B0.40780.89570.55490.147*
H19C0.20640.95510.51350.147*
N10.3425 (3)0.3281 (3)0.76626 (14)0.0429 (6)
O10.0116 (3)0.3754 (3)0.83041 (14)0.0784 (8)
O20.4664 (3)0.2878 (3)0.61566 (13)0.0654 (6)
O30.1562 (4)0.1696 (2)0.66729 (15)0.0769 (7)
S10.27381 (13)0.29881 (9)0.66632 (5)0.0514 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.062 (2)0.0443 (18)0.051 (2)0.0084 (16)0.0091 (17)0.0015 (15)
C20.088 (3)0.062 (2)0.0405 (19)0.015 (2)0.0038 (19)0.0014 (16)
C30.073 (3)0.062 (2)0.056 (2)0.012 (2)0.0174 (19)0.0071 (17)
C40.0528 (19)0.0468 (18)0.056 (2)0.0073 (15)0.0084 (16)0.0053 (15)
C50.0443 (17)0.0313 (15)0.0456 (18)0.0079 (13)0.0024 (14)0.0049 (12)
C60.0468 (18)0.0358 (16)0.0434 (18)0.0082 (14)0.0033 (14)0.0000 (13)
C70.0381 (17)0.0528 (19)0.060 (2)0.0048 (14)0.0082 (15)0.0021 (15)
C80.0320 (16)0.0358 (16)0.0514 (18)0.0013 (12)0.0003 (13)0.0006 (13)
C90.0311 (15)0.0395 (16)0.0451 (17)0.0082 (12)0.0022 (12)0.0026 (12)
C100.0351 (16)0.0374 (16)0.0523 (19)0.0018 (13)0.0004 (13)0.0018 (13)
C110.0303 (16)0.058 (2)0.0524 (19)0.0017 (14)0.0056 (13)0.0079 (14)
C120.0337 (17)0.055 (2)0.054 (2)0.0039 (14)0.0043 (15)0.0103 (15)
C130.0415 (17)0.0445 (17)0.0409 (17)0.0038 (14)0.0073 (13)0.0063 (13)
C140.0422 (18)0.065 (2)0.0459 (19)0.0080 (16)0.0033 (15)0.0028 (15)
C150.0412 (19)0.089 (3)0.049 (2)0.0066 (19)0.0047 (15)0.0037 (19)
C160.068 (2)0.069 (2)0.0385 (19)0.0218 (19)0.0013 (17)0.0017 (16)
C170.089 (3)0.050 (2)0.070 (2)0.001 (2)0.020 (2)0.0058 (18)
C180.057 (2)0.055 (2)0.078 (3)0.0072 (18)0.0216 (18)0.0065 (18)
C190.115 (3)0.087 (3)0.073 (3)0.046 (3)0.009 (2)0.013 (2)
N10.0325 (13)0.0520 (15)0.0437 (15)0.0036 (11)0.0070 (11)0.0052 (11)
O10.0266 (12)0.135 (2)0.0729 (17)0.0107 (13)0.0060 (11)0.0115 (15)
O20.0576 (12)0.0761 (16)0.0547 (14)0.0166 (12)0.0041 (9)0.0101 (11)
O30.0937 (18)0.0507 (14)0.0942 (18)0.0258 (13)0.0428 (14)0.0088 (12)
S10.0530 (5)0.0458 (5)0.0553 (5)0.0035 (4)0.0151 (4)0.0002 (4)
Geometric parameters (Å, º) top
C1—C21.385 (4)C11—N11.477 (3)
C1—C61.385 (4)C11—H11A0.9700
C1—H10.9300C11—H11B0.9700
C2—C31.369 (4)C12—O11.207 (3)
C2—H20.9300C12—N11.383 (3)
C3—C41.378 (4)C13—C141.374 (4)
C3—H30.9300C13—C181.379 (4)
C4—C51.388 (4)C13—S11.749 (3)
C4—H40.9300C14—C151.381 (4)
C5—C61.396 (4)C14—H140.9300
C5—C101.497 (4)C15—C161.375 (5)
C6—C71.503 (4)C15—H150.9300
C7—C81.532 (4)C16—C171.381 (5)
C7—H7A0.9700C16—C191.511 (4)
C7—H7B0.9700C17—C181.372 (4)
C8—C121.504 (4)C17—H170.9300
C8—C91.542 (3)C18—H180.9300
C8—H80.9800C19—H19A0.9600
C9—C101.511 (3)C19—H19B0.9600
C9—C111.528 (4)C19—H19C0.9600
C9—H90.9800N1—S11.661 (2)
C10—H10A0.9700O2—S11.428 (2)
C10—H10B0.9700O3—S11.419 (2)
C2—C1—C6120.1 (3)N1—C11—C9104.1 (2)
C2—C1—H1119.9N1—C11—H11A110.9
C6—C1—H1119.9C9—C11—H11A110.9
C3—C2—C1120.5 (3)N1—C11—H11B110.9
C3—C2—H2119.7C9—C11—H11B110.9
C1—C2—H2119.7H11A—C11—H11B108.9
C2—C3—C4119.4 (3)O1—C12—N1124.1 (3)
C2—C3—H3120.3O1—C12—C8127.0 (3)
C4—C3—H3120.3N1—C12—C8108.8 (2)
C3—C4—C5121.4 (3)C14—C13—C18120.4 (3)
C3—C4—H4119.3C14—C13—S1120.8 (2)
C5—C4—H4119.3C18—C13—S1118.7 (2)
C4—C5—C6118.6 (3)C13—C14—C15118.6 (3)
C4—C5—C10123.6 (3)C13—C14—H14120.7
C6—C5—C10117.8 (2)C15—C14—H14120.7
C1—C6—C5119.8 (3)C16—C15—C14122.2 (3)
C1—C6—C7122.5 (3)C16—C15—H15118.9
C5—C6—C7117.7 (2)C14—C15—H15118.9
C6—C7—C8113.8 (2)C15—C16—C17117.7 (3)
C6—C7—H7A108.8C15—C16—C19121.9 (4)
C8—C7—H7A108.8C17—C16—C19120.4 (4)
C6—C7—H7B108.8C18—C17—C16121.4 (3)
C8—C7—H7B108.8C18—C17—H17119.3
H7A—C7—H7B107.7C16—C17—H17119.3
C12—C8—C7110.1 (2)C17—C18—C13119.6 (3)
C12—C8—C9105.1 (2)C17—C18—H18120.2
C7—C8—C9115.3 (2)C13—C18—H18120.2
C12—C8—H8108.7C16—C19—H19A109.5
C7—C8—H8108.7C16—C19—H19B109.5
C9—C8—H8108.7H19A—C19—H19B109.5
C10—C9—C11113.2 (2)C16—C19—H19C109.5
C10—C9—C8112.0 (2)H19A—C19—H19C109.5
C11—C9—C8105.2 (2)H19B—C19—H19C109.5
C10—C9—H9108.8C12—N1—C11112.5 (2)
C11—C9—H9108.8C12—N1—S1123.75 (19)
C8—C9—H9108.8C11—N1—S1123.24 (19)
C5—C10—C9110.7 (2)O3—S1—O2119.80 (15)
C5—C10—H10A109.5O3—S1—N1108.71 (13)
C9—C10—H10A109.5O2—S1—N1104.22 (12)
C5—C10—H10B109.5O3—S1—C13109.13 (14)
C9—C10—H10B109.5O2—S1—C13109.42 (13)
H10A—C10—H10B108.1N1—S1—C13104.41 (12)
C6—C1—C2—C31.6 (5)C18—C13—C14—C150.5 (4)
C1—C2—C3—C40.4 (5)S1—C13—C14—C15176.2 (2)
C2—C3—C4—C51.4 (5)C13—C14—C15—C161.6 (5)
C3—C4—C5—C62.1 (4)C14—C15—C16—C171.4 (5)
C3—C4—C5—C10177.4 (3)C14—C15—C16—C19179.4 (3)
C2—C1—C6—C51.0 (4)C15—C16—C17—C180.0 (5)
C2—C1—C6—C7176.7 (3)C19—C16—C17—C18179.2 (3)
C4—C5—C6—C10.8 (4)C16—C17—C18—C131.1 (5)
C10—C5—C6—C1178.6 (2)C14—C13—C18—C170.8 (5)
C4—C5—C6—C7178.6 (2)S1—C13—C18—C17177.6 (2)
C10—C5—C6—C70.9 (4)O1—C12—N1—C11175.1 (3)
C1—C6—C7—C8142.4 (3)C8—C12—N1—C114.5 (3)
C5—C6—C7—C839.9 (3)O1—C12—N1—S12.8 (4)
C6—C7—C8—C12148.4 (2)C8—C12—N1—S1176.76 (18)
C6—C7—C8—C929.6 (3)C9—C11—N1—C1216.0 (3)
C12—C8—C9—C10105.2 (3)C9—C11—N1—S1171.72 (18)
C7—C8—C9—C1016.3 (3)C12—N1—S1—O359.7 (3)
C12—C8—C9—C1118.1 (3)C11—N1—S1—O3128.9 (2)
C7—C8—C9—C11139.6 (2)C12—N1—S1—O2171.5 (2)
C4—C5—C10—C9133.4 (3)C11—N1—S1—O20.1 (3)
C6—C5—C10—C947.2 (3)C12—N1—S1—C1356.7 (2)
C11—C9—C10—C5172.8 (2)C11—N1—S1—C13114.7 (2)
C8—C9—C10—C554.2 (3)C14—C13—S1—O310.0 (3)
C10—C9—C11—N1102.2 (2)C18—C13—S1—O3173.2 (2)
C8—C9—C11—N120.3 (3)C14—C13—S1—O2122.8 (2)
C7—C8—C12—O146.7 (4)C18—C13—S1—O253.9 (3)
C9—C8—C12—O1171.6 (3)C14—C13—S1—N1126.1 (2)
C7—C8—C12—N1133.7 (2)C18—C13—S1—N157.1 (3)
C9—C8—C12—N18.9 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10A···Cg1i0.972.633.555 (3)159
Symmetry code: (i) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC19H19NO3S
Mr341.41
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)6.4389 (8), 8.4336 (11), 15.4958 (12)
α, β, γ (°)89.312 (2), 87.395 (3), 81.224 (2)
V3)830.75 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.28 × 0.24 × 0.22
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.943, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
7242, 3724, 1902
Rint0.041
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.140, 1.00
No. of reflections3724
No. of parameters218
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.27

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10A···Cg1i0.972.633.555 (3)159
Symmetry code: (i) x+1, y, z+2.
 

Acknowledgements

We thank the National Science Foundation of China (project Nos. 21272005 and 21072003) for financial support for this work.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHu, Y.-M., Lin, X.-G., Zhu, T., Wan, J., Sun, Y.-J., Zhao, Q. S. & Yu, T. (2010). Synthesis, 42, 3467–3473.  Web of Science CrossRef Google Scholar
First citationHu, Y.-M., Sun, Y.-J., Hu, J.-P., Zhu, T., Yu, T. & Zhao, Q.-S. (2011). Chem. Asian J. 6, 797–800.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHu, Y.-M., Yu, C.-L., Ren, D., Hu, Q., Zhang, L.-D. & Cheng, D. (2009). Angew. Chem. Int. Ed. 48, 5448–5451.  Web of Science CSD CrossRef CAS Google Scholar
First citationMeng, T.-J., Hu, Y.-M., Zhao, Q.-S., Yu, T. & Wang, S. (2011). Tetrahedron, 67, 8710–8716.  Web of Science CSD CrossRef CAS Google Scholar
First citationPitchumani, K. & Vijaikumar, S. (2010). Indian J. Chem. 49, 469–474.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, Q.-S., Hu, Q., Wen, L., Wu, M. & Hu, Y.-M. (2012). Adv. Synth. Catal. 354, 2113–2116.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds