organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o854-o855

Ethyl 1′′-benzyl-2′′-oxo-2′,3′,5′,6′,7′,7a'-hexa­hydro-1′H-di­spiro­[indeno­[1,2-b]quinoxaline-11,2′-pyrrolizine-3′,3′′-indoline]-1′-carboxyl­ate monohydrate

aDepartment of Physics, S.M.K. Fomra Institute of Technology, Thaiyur, Chennai 603 103, India, bOrganic Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai 600 020, India, and cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: a_sp59@yahoo.in

(Received 26 March 2013; accepted 27 April 2013; online 11 May 2013)

In the title compound, C38H32N4O3·H2O, the quinoxaline–indene and pyrrolizine systems are essentially planar, with maximum deviations from their mean planes of 0.162 and 0.563 Å, respectively. The pyrrolizine ring forms dihedral angles of 88.53 (5) and 89.95 (8)° with the quinoxaline–indene system and the indoline ring, respectively. The central pyrrolidine ring has an envelope conformation with the C atom bearing the quinoxaline-indene system as the flap. The pyrrolidine ring of the indole system adopts an envelope conformation with the C atom bonded to the pyrrolizine ring N atom as the flap. The five-membered ring attached to the central pyrolidine ring adopts a twisted conformation. In the crystal, O—H⋯N and O—H⋯O hydrogen bonds between water mol­ecules and pyrrolizine N and carbonyl O atoms together with C—H⋯O inter­actions result in chains along [100].

Related literature

For general background to spiro compounds and their biological activity, see: Pradhan et al. (2006[Pradhan, R., Patra, M., Behera, A. K. & Behera, R. K. (2006). Tetrahedron, 62, 779-828.]); Saeedi et al. (2010[Saeedi, M., Heravi, M. M., Beheshtiha, Y. S. & Oskooie, H. A. (2010). Tetrahedron, 66, 5345-5348.]); Dandia et al. (2011[Dandia, A., Singh, R., Bhaskarana, S. & Samant, S. D. (2011). Green Chem. 13, 1852-1859.]); He et al. (2003[He, W., Meyers, M. R., Hanney, B., Sapada, A., Blider, G., Galzeinski, H., Amin, D., Needle, S., Page, K., Jayyosi, Z. & Perrone, H. (2003). Bioorg. Med. Chem. Lett. 13, 3097-3100.]). For uses of pyrrolidine and quinoxaline derivatives, see: Amal Raj et al. (2003[Amal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407-409.]); Zarranz et al. (2003[Zarranz, B., Jago, A., Aldana, I. & Monge, A. (2003). Bioorg. Med. Chem. 11, 2149-2156.]). For a related structure, see: Srinivasan et al. (2012[Srinivasan, T., Suhitha, S., Purushothaman, S., Raghunathan, R. & Velmurugan, D. (2012). Acta Cryst. E68, o2469.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For details of the synthesis, see: Azizian et al. (2005[Azizian, J., Mohammadizadeh, M. R., Karimi, N., Kazemizadeh, Z., Mohammadi, A. A. & Karimi, A. R. (2005). Heteroat. Chem. 16, 549-552.]).

[Scheme 1]

Experimental

Crystal data
  • C38H32N4O3·H2O

  • Mr = 610.69

  • Triclinic, [P \overline 1]

  • a = 11.0527 (3) Å

  • b = 11.5834 (3) Å

  • c = 12.2015 (3) Å

  • α = 97.370 (1)°

  • β = 92.037 (1)°

  • γ = 96.810 (1)°

  • V = 1536.25 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker. (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.984

  • 21165 measured reflections

  • 5410 independent reflections

  • 4751 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.114

  • S = 1.02

  • 5410 reflections

  • 422 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯N2 0.99 (2) 2.03 (2) 2.996 (2) 164 (2)
O4—H4B⋯O1i 0.99 (2) 2.31 (2) 3.222 (2) 154 (2)
C2—H2⋯O1ii 0.93 2.50 3.393 (2) 162
C24—H24A⋯O4iii 0.97 2.56 3.495 (3) 163
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+1, -z+2; (iii) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2008[Bruker. (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker. (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Spiro compounds have received considerable interest due to their highly biological properties (Pradhan et al., 2006); Thus more and more novel spiroheterocycle compounds have been prepared and characterized (Saeedi et al., 2010); Dandia et al., 2011). In addition , quinoxaline derivatives also showed various biological activites (He et al., 2003).

Pyrrolidine derivatives are found to have anticonvulsant, antimicrobial and antifungal activities against various pathogens (Amal Raj et al., 2003). Quinoxaline derivatives shown antibacterial, antiviral and anticancer properties (Zarranz et al., 2003). As spiro pyrrolidine compounds are of great medicinal properties, we have undertaken the three dimensional structure of the title compound. In view of these importance and continuation of our work on the crystal structure analyis of pyrrolidine and quinoxaline derivatives, the crystal structure of the title compound has been carried out and the results are presented here.

X-Ray analysis confirms the molecular structure and atom connectivity of the compound as illustrated in Fig. 1. The quinoxaline-indene systems (C1-C15/N1-N2) and pyrrolizine system (C15-C16/C34-C38/N4), are essentially planar, with maximum deviations from mean plane of -0.162 Å for C3 atom and -0.563 Å for C36 atom, respectively.

The pyrrolizine ring (C15-C16/C34-C38/N4) forms a dihedral angles of 88.53 (5) and 89.95 (6)° with quinoxaline-indene systems and indole ring (C16-C23/N3) respectively. This clearly shows that the quinoxaline-indene ring system and indole rings are almost perpendicular to the pyrrolizine ring. The central pyrrolidine ring (C15-C16/C34-C35/N4) is enveloped on C15 with the puckering parameters of q2 = 0.4478 (2) Å, ϕ = 246.90 (2)° (Cremer & Pople, 1975). The pyrrolidine (C16-C18/C23/N3) of indole ring adopts envelope conformation on C16 with the puckering parameters of q2 = 0.0729 (2) Å, ϕ = 243.08 (1)°. The five membered ring (C35-C38/N4) attached with the central pyrolidine ring adopts twisted conformation on C36-C37 with the puckering parameters of q2 = 0.3767 (2) Å, ϕ = 92.96 (3)°.

In the crystal intra and intermolcular O-H···O hydrogen bonds between water molecules and pyrrolizine fragment N and carbonyl group O atoms of organic compound together with C-H···O interactions result in one-dimensional supramolecular structure.

Related literature top

For general background to spiro compounds and their biological activity, see: Pradhan et al. (2006); Saeedi et al. (2010); Dandia et al. (2011); He et al. (2003). For uses of pyrrolidine and quinoxaline derivatives, see: Amal Raj et al. (2003); Zarranz et al. (2003). For a related structure, see: Srinivasan et al. (2012). For ring conformations, see: Cremer & Pople (1975). For details of the synthesis, see: Azizian et al. (2005). [Scheme does not match name and ellipsoid plot. Please revise. Water best shown as H2O]

Experimental top

Benzyl Isatin( 0.25 mmol), L-proline ( 0.3 mmol), Ethyl Indeno[1,2-b] quinoxalin-11-ylideneacetate( 0.25 mmol) (Azizian et al., 2005) in ethanol refluxed for 60 min. The progress of the reaction was followed by TLC. After completion, the solvent was removed under reduced pressure and the resulting crude product was subjected to column chromatography. The product was recrystallised from methanol. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of the solution of the title compound in methanol at room temperature.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms. The positions of methyl hydrogens were optimized rotationally.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The molecular packing viewed down the c axis. Dashed lines shows the intermolecular O-H···O and C-H···O hydrogen bonds.
Ethyl 1''-benzyl-2''-oxo-2',3',5',6',7',7a'-hexahydro-1'H-dispiro[indeno[1,2-b]quinoxaline-11,2'-pyrrolizine-3',3''-indoline]-1'-carboxylate monohydrate top
Crystal data top
C38H32N4O3·H2OZ = 2
Mr = 610.69F(000) = 644
Triclinic, P1Dx = 1.320 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.0527 (3) ÅCell parameters from 5410 reflections
b = 11.5834 (3) Åθ = 1.7–25.0°
c = 12.2015 (3) ŵ = 0.09 mm1
α = 97.370 (1)°T = 293 K
β = 92.037 (1)°Block, colourless
γ = 96.810 (1)°0.25 × 0.22 × 0.19 mm
V = 1536.25 (7) Å3
Data collection top
Bruker APEXII CCD area detector
diffractometer
5410 independent reflections
Radiation source: fine-focus sealed tube4751 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and ϕ scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1313
Tmin = 0.979, Tmax = 0.984k = 1313
21165 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0592P)2 + 0.5303P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5410 reflectionsΔρmax = 0.27 e Å3
422 parametersΔρmin = 0.31 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0134 (15)
Crystal data top
C38H32N4O3·H2Oγ = 96.810 (1)°
Mr = 610.69V = 1536.25 (7) Å3
Triclinic, P1Z = 2
a = 11.0527 (3) ÅMo Kα radiation
b = 11.5834 (3) ŵ = 0.09 mm1
c = 12.2015 (3) ÅT = 293 K
α = 97.370 (1)°0.25 × 0.22 × 0.19 mm
β = 92.037 (1)°
Data collection top
Bruker APEXII CCD area detector
diffractometer
5410 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4751 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.984Rint = 0.027
21165 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0403 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.27 e Å3
5410 reflectionsΔρmin = 0.31 e Å3
422 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.33289 (14)0.60474 (13)0.97720 (12)0.0363 (3)
C20.27983 (16)0.53695 (15)0.88023 (13)0.0472 (4)
H20.19670.51080.87540.057*
C30.34944 (18)0.50896 (17)0.79262 (14)0.0547 (5)
H30.31320.46400.72860.066*
C40.47454 (18)0.54734 (16)0.79835 (15)0.0540 (5)
H40.52070.52870.73780.065*
C50.52933 (16)0.61179 (15)0.89196 (14)0.0487 (4)
H50.61270.63640.89510.058*
C60.46058 (14)0.64146 (13)0.98405 (13)0.0383 (3)
C70.31818 (13)0.69142 (12)1.15216 (11)0.0312 (3)
C80.44754 (13)0.72317 (12)1.16075 (12)0.0338 (3)
C90.48255 (13)0.77731 (12)1.27325 (12)0.0347 (3)
C100.59802 (14)0.81928 (14)1.32171 (14)0.0419 (4)
H100.66700.81741.28030.050*
C110.60769 (15)0.86350 (14)1.43215 (14)0.0438 (4)
H110.68390.89241.46600.053*
C120.50493 (15)0.86526 (13)1.49326 (13)0.0420 (4)
H120.51340.89411.56820.050*
C130.38954 (14)0.82503 (13)1.44535 (13)0.0382 (3)
H130.32100.82791.48730.046*
C140.37783 (13)0.78043 (12)1.33380 (12)0.0322 (3)
C150.26261 (12)0.73456 (12)1.26003 (11)0.0306 (3)
C160.17216 (12)0.64178 (12)1.30948 (11)0.0311 (3)
C170.08006 (12)0.57554 (12)1.21443 (12)0.0324 (3)
C180.22870 (12)0.54088 (12)1.34875 (12)0.0321 (3)
C190.30618 (14)0.53514 (14)1.43864 (13)0.0385 (3)
H190.33280.60201.48810.046*
C200.34386 (15)0.42751 (15)1.45399 (14)0.0436 (4)
H200.39630.42271.51410.052*
C210.30422 (15)0.32808 (14)1.38100 (14)0.0446 (4)
H210.33220.25751.39150.054*
C220.22365 (14)0.33140 (13)1.29237 (13)0.0409 (4)
H220.19540.26401.24410.049*
C230.18692 (13)0.43837 (12)1.27831 (12)0.0331 (3)
C240.04034 (15)0.37286 (14)1.11225 (13)0.0426 (4)
H24A0.10190.33901.06830.051*
H24B0.00960.41041.06390.051*
C250.03895 (16)0.27579 (15)1.15617 (15)0.0481 (4)
C260.10008 (19)0.2954 (2)1.25144 (18)0.0668 (6)
H260.09290.37051.29060.080*
C270.1720 (3)0.2049 (3)1.2897 (3)0.1052 (10)
H270.21300.21961.35440.126*
C280.1837 (3)0.0943 (3)1.2338 (4)0.1271 (15)
H280.23190.03351.26020.153*
C290.1241 (4)0.0736 (2)1.1390 (4)0.1244 (14)
H290.13210.00181.10040.149*
C300.0512 (3)0.16379 (19)1.0990 (2)0.0880 (8)
H300.01090.14871.03400.106*
C310.4884 (3)1.0676 (3)1.1530 (2)0.0950 (8)
H31A0.53021.13941.13430.143*
H31B0.52611.00251.11890.143*
H31C0.49301.06901.23190.143*
C320.3595 (2)1.05536 (18)1.1130 (2)0.0722 (6)
H32A0.32191.12201.14630.087*
H32B0.35491.05481.03340.087*
C330.24386 (15)0.95123 (13)1.23835 (13)0.0413 (4)
C340.17726 (13)0.83303 (12)1.25340 (12)0.0347 (3)
H340.11760.80791.19110.042*
C350.11039 (14)0.83350 (13)1.36057 (13)0.0382 (3)
H350.15480.89271.41700.046*
C360.02444 (16)0.84985 (17)1.35917 (17)0.0558 (5)
H36A0.03560.93171.37790.067*
H36B0.06480.82011.28750.067*
C370.07122 (18)0.77731 (19)1.44790 (19)0.0652 (5)
H37A0.05310.82071.52120.078*
H37B0.15860.75471.43750.078*
C380.00303 (15)0.67035 (16)1.43219 (15)0.0481 (4)
H38A0.00620.63831.50120.058*
H38B0.04560.60991.37720.058*
N10.26028 (11)0.63329 (11)1.06378 (10)0.0354 (3)
N20.51881 (11)0.70233 (11)1.07875 (11)0.0398 (3)
N30.10044 (11)0.46128 (10)1.19862 (10)0.0352 (3)
N40.11669 (11)0.71534 (11)1.39436 (10)0.0352 (3)
O10.00192 (9)0.61759 (9)1.16524 (9)0.0415 (3)
O20.29325 (13)0.94730 (11)1.14075 (11)0.0604 (4)
O30.25075 (15)1.03746 (11)1.30440 (12)0.0722 (4)
O40.79032 (17)0.76464 (16)1.09100 (18)0.0942 (6)
H4A0.7036 (15)0.730 (2)1.091 (2)0.113*
H4B0.832 (2)0.701 (2)1.116 (2)0.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0393 (8)0.0371 (8)0.0333 (8)0.0066 (6)0.0053 (6)0.0052 (6)
C20.0447 (9)0.0545 (10)0.0399 (9)0.0048 (7)0.0013 (7)0.0019 (7)
C30.0626 (11)0.0619 (11)0.0365 (9)0.0074 (9)0.0049 (8)0.0054 (8)
C40.0621 (11)0.0593 (11)0.0406 (9)0.0089 (9)0.0191 (8)0.0016 (8)
C50.0465 (9)0.0528 (10)0.0464 (10)0.0018 (8)0.0176 (8)0.0050 (8)
C60.0406 (8)0.0363 (8)0.0384 (8)0.0035 (6)0.0085 (6)0.0066 (6)
C70.0335 (7)0.0279 (7)0.0328 (7)0.0038 (6)0.0028 (6)0.0059 (6)
C80.0332 (7)0.0310 (7)0.0374 (8)0.0023 (6)0.0045 (6)0.0061 (6)
C90.0344 (8)0.0301 (7)0.0391 (8)0.0021 (6)0.0006 (6)0.0046 (6)
C100.0332 (8)0.0401 (8)0.0507 (9)0.0014 (6)0.0001 (7)0.0037 (7)
C110.0389 (8)0.0384 (8)0.0514 (10)0.0023 (7)0.0112 (7)0.0015 (7)
C120.0499 (9)0.0355 (8)0.0387 (8)0.0057 (7)0.0084 (7)0.0004 (6)
C130.0410 (8)0.0358 (8)0.0371 (8)0.0046 (6)0.0024 (6)0.0019 (6)
C140.0334 (7)0.0265 (7)0.0361 (8)0.0021 (5)0.0002 (6)0.0039 (6)
C150.0310 (7)0.0286 (7)0.0317 (7)0.0028 (6)0.0018 (6)0.0026 (6)
C160.0294 (7)0.0313 (7)0.0322 (7)0.0032 (6)0.0021 (6)0.0035 (6)
C170.0285 (7)0.0349 (7)0.0339 (7)0.0003 (6)0.0037 (6)0.0074 (6)
C180.0290 (7)0.0333 (7)0.0346 (7)0.0031 (6)0.0051 (6)0.0065 (6)
C190.0377 (8)0.0400 (8)0.0374 (8)0.0020 (6)0.0003 (6)0.0065 (6)
C200.0402 (8)0.0497 (9)0.0443 (9)0.0073 (7)0.0005 (7)0.0174 (7)
C210.0446 (9)0.0382 (8)0.0552 (10)0.0110 (7)0.0062 (7)0.0162 (7)
C220.0435 (9)0.0325 (8)0.0467 (9)0.0045 (6)0.0065 (7)0.0044 (6)
C230.0326 (7)0.0338 (7)0.0335 (7)0.0027 (6)0.0059 (6)0.0065 (6)
C240.0497 (9)0.0412 (9)0.0341 (8)0.0005 (7)0.0010 (7)0.0011 (7)
C250.0477 (9)0.0398 (9)0.0538 (10)0.0036 (7)0.0129 (8)0.0074 (7)
C260.0652 (13)0.0685 (13)0.0669 (13)0.0072 (10)0.0096 (10)0.0227 (10)
C270.0797 (17)0.122 (3)0.120 (2)0.0198 (17)0.0124 (16)0.068 (2)
C280.089 (2)0.103 (3)0.190 (4)0.0445 (19)0.033 (2)0.087 (3)
C290.126 (3)0.0467 (14)0.188 (4)0.0303 (16)0.045 (3)0.0187 (19)
C300.1015 (19)0.0468 (12)0.1050 (19)0.0101 (12)0.0135 (15)0.0073 (12)
C310.0943 (19)0.0915 (18)0.100 (2)0.0146 (15)0.0232 (15)0.0334 (15)
C320.0932 (17)0.0504 (11)0.0784 (14)0.0043 (11)0.0299 (12)0.0262 (10)
C330.0472 (9)0.0336 (8)0.0441 (9)0.0077 (7)0.0030 (7)0.0066 (7)
C340.0356 (8)0.0308 (7)0.0378 (8)0.0063 (6)0.0006 (6)0.0038 (6)
C350.0392 (8)0.0346 (8)0.0413 (8)0.0092 (6)0.0052 (6)0.0022 (6)
C360.0458 (10)0.0592 (11)0.0681 (12)0.0221 (8)0.0132 (9)0.0131 (9)
C370.0484 (11)0.0759 (13)0.0773 (14)0.0196 (10)0.0252 (10)0.0170 (11)
C380.0409 (9)0.0546 (10)0.0496 (10)0.0036 (7)0.0150 (7)0.0093 (8)
N10.0351 (6)0.0369 (7)0.0336 (7)0.0039 (5)0.0034 (5)0.0030 (5)
N20.0353 (7)0.0422 (7)0.0405 (7)0.0001 (5)0.0079 (6)0.0035 (6)
N30.0369 (7)0.0322 (6)0.0347 (6)0.0002 (5)0.0005 (5)0.0030 (5)
N40.0344 (6)0.0350 (6)0.0365 (7)0.0054 (5)0.0081 (5)0.0039 (5)
O10.0350 (6)0.0433 (6)0.0458 (6)0.0045 (5)0.0063 (5)0.0076 (5)
O20.0844 (9)0.0431 (7)0.0546 (8)0.0008 (6)0.0227 (7)0.0114 (6)
O30.1080 (12)0.0355 (7)0.0684 (9)0.0052 (7)0.0259 (8)0.0036 (6)
O40.0750 (11)0.0835 (12)0.1217 (15)0.0009 (9)0.0213 (11)0.0098 (11)
Geometric parameters (Å, º) top
C1—N11.3795 (19)C22—H220.9300
C1—C21.401 (2)C23—N31.4106 (19)
C1—C61.421 (2)C24—N31.4536 (19)
C2—C31.367 (2)C24—C251.508 (2)
C2—H20.9300C24—H24A0.9700
C3—C41.398 (3)C24—H24B0.9700
C3—H30.9300C25—C261.372 (3)
C4—C51.361 (3)C25—C301.381 (3)
C4—H40.9300C26—C271.380 (3)
C5—C61.408 (2)C26—H260.9300
C5—H50.9300C27—C281.362 (5)
C6—N21.370 (2)C27—H270.9300
C7—N11.2994 (19)C28—C291.361 (6)
C7—C81.430 (2)C28—H280.9300
C7—C151.5234 (19)C29—C301.392 (5)
C8—N21.3111 (19)C29—H290.9300
C8—C91.453 (2)C30—H300.9300
C9—C101.393 (2)C31—C321.475 (4)
C9—C141.397 (2)C31—H31A0.9600
C10—C111.375 (2)C31—H31B0.9600
C10—H100.9300C31—H31C0.9600
C11—C121.381 (2)C32—O21.458 (2)
C11—H110.9300C32—H32A0.9700
C12—C131.386 (2)C32—H32B0.9700
C12—H120.9300C33—O31.193 (2)
C13—C141.388 (2)C33—O21.325 (2)
C13—H130.9300C33—C341.512 (2)
C14—C151.5329 (19)C34—C351.524 (2)
C15—C341.5719 (19)C34—H340.9800
C15—C161.5725 (19)C35—N41.4879 (19)
C16—N41.4550 (18)C35—C361.524 (2)
C16—C181.510 (2)C35—H350.9800
C16—C171.5725 (19)C36—C371.522 (3)
C17—O11.2171 (17)C36—H36A0.9700
C17—N31.3593 (19)C36—H36B0.9700
C18—C191.381 (2)C37—C381.520 (3)
C18—C231.393 (2)C37—H37A0.9700
C19—C201.393 (2)C37—H37B0.9700
C19—H190.9300C38—N41.4756 (19)
C20—C211.379 (2)C38—H38A0.9700
C20—H200.9300C38—H38B0.9700
C21—C221.384 (2)O4—H4A0.997 (17)
C21—H210.9300O4—H4B0.981 (16)
C22—C231.378 (2)
N1—C1—C2119.29 (14)C25—C24—H24A108.9
N1—C1—C6121.71 (13)N3—C24—H24B108.9
C2—C1—C6119.00 (14)C25—C24—H24B108.9
C3—C2—C1120.44 (16)H24A—C24—H24B107.7
C3—C2—H2119.8C26—C25—C30118.8 (2)
C1—C2—H2119.8C26—C25—C24121.92 (16)
C2—C3—C4120.58 (16)C30—C25—C24119.30 (19)
C2—C3—H3119.7C25—C26—C27120.7 (3)
C4—C3—H3119.7C25—C26—H26119.7
C5—C4—C3120.48 (16)C27—C26—H26119.7
C5—C4—H4119.8C28—C27—C26120.6 (3)
C3—C4—H4119.8C28—C27—H27119.7
C4—C5—C6120.45 (16)C26—C27—H27119.7
C4—C5—H5119.8C29—C28—C27119.3 (3)
C6—C5—H5119.8C29—C28—H28120.3
N2—C6—C5119.23 (14)C27—C28—H28120.3
N2—C6—C1121.73 (13)C28—C29—C30120.9 (3)
C5—C6—C1119.02 (15)C28—C29—H29119.6
N1—C7—C8123.16 (13)C30—C29—H29119.6
N1—C7—C15126.77 (12)C25—C30—C29119.7 (3)
C8—C7—C15110.07 (12)C25—C30—H30120.2
N2—C8—C7123.60 (13)C29—C30—H30120.2
N2—C8—C9127.85 (13)C32—C31—H31A109.5
C7—C8—C9108.53 (12)C32—C31—H31B109.5
C10—C9—C14121.61 (14)H31A—C31—H31B109.5
C10—C9—C8129.58 (14)C32—C31—H31C109.5
C14—C9—C8108.80 (12)H31A—C31—H31C109.5
C11—C10—C9118.45 (15)H31B—C31—H31C109.5
C11—C10—H10120.8O2—C32—C31110.82 (19)
C9—C10—H10120.8O2—C32—H32A109.5
C10—C11—C12120.43 (15)C31—C32—H32A109.5
C10—C11—H11119.8O2—C32—H32B109.5
C12—C11—H11119.8C31—C32—H32B109.5
C11—C12—C13121.47 (15)H32A—C32—H32B108.1
C11—C12—H12119.3O3—C33—O2123.94 (15)
C13—C12—H12119.3O3—C33—C34125.11 (15)
C12—C13—C14118.96 (15)O2—C33—C34110.94 (13)
C12—C13—H13120.5C33—C34—C35113.68 (12)
C14—C13—H13120.5C33—C34—C15114.17 (12)
C13—C14—C9119.07 (13)C35—C34—C15103.24 (11)
C13—C14—C15129.73 (13)C33—C34—H34108.5
C9—C14—C15111.17 (12)C35—C34—H34108.5
C7—C15—C14100.96 (11)C15—C34—H34108.5
C7—C15—C34115.65 (11)N4—C35—C36105.46 (13)
C14—C15—C34111.25 (11)N4—C35—C34105.26 (11)
C7—C15—C16116.12 (11)C36—C35—C34119.23 (14)
C14—C15—C16114.20 (11)N4—C35—H35108.8
C34—C15—C1699.28 (11)C36—C35—H35108.8
N4—C16—C18115.33 (12)C34—C35—H35108.8
N4—C16—C17114.34 (11)C37—C36—C35102.07 (14)
C18—C16—C17101.24 (11)C37—C36—H36A111.4
N4—C16—C15101.90 (11)C35—C36—H36A111.4
C18—C16—C15115.48 (11)C37—C36—H36B111.4
C17—C16—C15108.92 (11)C35—C36—H36B111.4
O1—C17—N3125.59 (13)H36A—C36—H36B109.2
O1—C17—C16126.48 (13)C38—C37—C36104.06 (14)
N3—C17—C16107.90 (11)C38—C37—H37A110.9
C19—C18—C23119.19 (14)C36—C37—H37A110.9
C19—C18—C16131.86 (13)C38—C37—H37B110.9
C23—C18—C16108.92 (12)C36—C37—H37B110.9
C18—C19—C20118.91 (15)H37A—C37—H37B109.0
C18—C19—H19120.5N4—C38—C37104.17 (14)
C20—C19—H19120.5N4—C38—H38A110.9
C21—C20—C19120.68 (15)C37—C38—H38A110.9
C21—C20—H20119.7N4—C38—H38B110.9
C19—C20—H20119.7C37—C38—H38B110.9
C20—C21—C22121.23 (15)H38A—C38—H38B108.9
C20—C21—H21119.4C7—N1—C1114.98 (12)
C22—C21—H21119.4C8—N2—C6114.67 (13)
C23—C22—C21117.45 (15)C17—N3—C23111.20 (12)
C23—C22—H22121.3C17—N3—C24124.95 (13)
C21—C22—H22121.3C23—N3—C24123.85 (12)
C22—C23—C18122.46 (14)C16—N4—C38118.33 (12)
C22—C23—N3127.28 (14)C16—N4—C35110.13 (11)
C18—C23—N3110.17 (12)C38—N4—C35109.36 (12)
N3—C24—C25113.45 (13)C33—O2—C32117.59 (15)
N3—C24—H24A108.9H4A—O4—H4B100.3 (17)
N1—C1—C2—C3179.00 (15)C21—C22—C23—C180.6 (2)
C6—C1—C2—C31.5 (2)C21—C22—C23—N3175.82 (14)
C1—C2—C3—C40.1 (3)C19—C18—C23—C222.5 (2)
C2—C3—C4—C51.0 (3)C16—C18—C23—C22179.33 (13)
C3—C4—C5—C60.5 (3)C19—C18—C23—N3174.42 (12)
C4—C5—C6—N2177.39 (16)C16—C18—C23—N33.72 (16)
C4—C5—C6—C11.0 (2)N3—C24—C25—C2632.7 (2)
N1—C1—C6—N23.1 (2)N3—C24—C25—C30147.57 (19)
C2—C1—C6—N2176.36 (14)C30—C25—C26—C270.3 (3)
N1—C1—C6—C5178.56 (14)C24—C25—C26—C27180.0 (2)
C2—C1—C6—C52.0 (2)C25—C26—C27—C280.1 (4)
N1—C7—C8—N23.8 (2)C26—C27—C28—C290.4 (5)
C15—C7—C8—N2176.70 (13)C27—C28—C29—C300.3 (5)
N1—C7—C8—C9174.74 (13)C26—C25—C30—C290.3 (4)
C15—C7—C8—C94.75 (16)C24—C25—C30—C29179.9 (2)
N2—C8—C9—C100.4 (3)C28—C29—C30—C250.1 (5)
C7—C8—C9—C10178.08 (15)O3—C33—C34—C353.5 (2)
N2—C8—C9—C14178.92 (14)O2—C33—C34—C35175.81 (13)
C7—C8—C9—C140.44 (16)O3—C33—C34—C15114.54 (19)
C14—C9—C10—C110.6 (2)O2—C33—C34—C1566.11 (17)
C8—C9—C10—C11177.71 (15)C7—C15—C34—C3370.91 (16)
C9—C10—C11—C120.4 (2)C14—C15—C34—C3343.49 (16)
C10—C11—C12—C131.3 (2)C16—C15—C34—C33164.10 (12)
C11—C12—C13—C141.0 (2)C7—C15—C34—C35165.19 (12)
C12—C13—C14—C90.1 (2)C14—C15—C34—C3580.41 (14)
C12—C13—C14—C15177.74 (14)C16—C15—C34—C3540.20 (13)
C10—C9—C14—C130.9 (2)C33—C34—C35—N4147.05 (12)
C8—C9—C14—C13177.77 (13)C15—C34—C35—N422.83 (14)
C10—C9—C14—C15177.30 (13)C33—C34—C35—C3694.96 (17)
C8—C9—C14—C154.04 (16)C15—C34—C35—C36140.83 (14)
N1—C7—C15—C14172.83 (13)N4—C35—C36—C3729.94 (18)
C8—C7—C15—C146.64 (14)C34—C35—C36—C37147.83 (16)
N1—C7—C15—C3467.00 (18)C35—C36—C37—C3838.7 (2)
C8—C7—C15—C34113.53 (13)C36—C37—C38—N432.9 (2)
N1—C7—C15—C1648.77 (19)C8—C7—N1—C10.5 (2)
C8—C7—C15—C16130.70 (12)C15—C7—N1—C1179.95 (13)
C13—C14—C15—C7175.60 (14)C2—C1—N1—C7176.80 (14)
C9—C14—C15—C76.46 (14)C6—C1—N1—C72.6 (2)
C13—C14—C15—C3461.14 (19)C7—C8—N2—C63.3 (2)
C9—C14—C15—C34116.80 (13)C9—C8—N2—C6175.00 (14)
C13—C14—C15—C1650.2 (2)C5—C6—N2—C8178.33 (14)
C9—C14—C15—C16131.82 (12)C1—C6—N2—C80.0 (2)
C7—C15—C16—N4167.83 (11)O1—C17—N3—C23172.47 (13)
C14—C15—C16—N475.26 (13)C16—C17—N3—C235.77 (15)
C34—C15—C16—N443.17 (12)O1—C17—N3—C246.7 (2)
C7—C15—C16—C1866.38 (16)C16—C17—N3—C24175.06 (12)
C14—C15—C16—C1850.53 (16)C22—C23—N3—C17175.30 (14)
C34—C15—C16—C18168.96 (11)C18—C23—N3—C171.47 (16)
C7—C15—C16—C1746.67 (15)C22—C23—N3—C243.9 (2)
C14—C15—C16—C17163.58 (11)C18—C23—N3—C24179.36 (13)
C34—C15—C16—C1777.99 (12)C25—C24—N3—C17115.58 (16)
N4—C16—C17—O146.14 (19)C25—C24—N3—C2363.48 (19)
C18—C16—C17—O1170.79 (14)C18—C16—N4—C3876.15 (16)
C15—C16—C17—O167.08 (17)C17—C16—N4—C3840.64 (18)
N4—C16—C17—N3132.09 (12)C15—C16—N4—C38157.97 (13)
C18—C16—C17—N37.43 (14)C18—C16—N4—C35157.07 (12)
C15—C16—C17—N3114.69 (12)C17—C16—N4—C3586.13 (14)
N4—C16—C18—C1947.3 (2)C15—C16—N4—C3531.19 (14)
C17—C16—C18—C19171.24 (15)C37—C38—N4—C16141.24 (15)
C15—C16—C18—C1971.31 (19)C37—C38—N4—C3514.10 (18)
N4—C16—C18—C23130.56 (13)C36—C35—N4—C16121.53 (14)
C17—C16—C18—C236.58 (14)C34—C35—N4—C165.40 (15)
C15—C16—C18—C23110.87 (13)C36—C35—N4—C3810.11 (17)
C23—C18—C19—C202.3 (2)C34—C35—N4—C38137.04 (13)
C16—C18—C19—C20179.94 (14)O3—C33—O2—C320.2 (3)
C18—C19—C20—C210.2 (2)C34—C33—O2—C32179.15 (16)
C19—C20—C21—C221.7 (2)C31—C32—O2—C3388.0 (2)
C20—C21—C22—C231.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···N20.99 (2)2.03 (2)2.996 (2)164 (2)
O4—H4B···O1i0.99 (2)2.31 (2)3.222 (2)154 (2)
C2—H2···O1ii0.932.503.393 (2)162
C24—H24A···O4iii0.972.563.495 (3)163
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+2; (iii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC38H32N4O3·H2O
Mr610.69
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)11.0527 (3), 11.5834 (3), 12.2015 (3)
α, β, γ (°)97.370 (1), 92.037 (1), 96.810 (1)
V3)1536.25 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.979, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
21165, 5410, 4751
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.114, 1.02
No. of reflections5410
No. of parameters422
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.31

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···N20.994 (18)2.027 (17)2.996 (2)164 (2)
O4—H4B···O1i0.99 (2)2.31 (2)3.222 (2)153.6 (18)
C2—H2···O1ii0.932.503.393 (2)162
C24—H24A···O4iii0.972.563.495 (3)163
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+2; (iii) x+1, y+1, z+2.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and BioPhysics, University of Madras, Chennai, India, for the data collection.

References

First citationAmal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–409.  Web of Science PubMed Google Scholar
First citationAzizian, J., Mohammadizadeh, M. R., Karimi, N., Kazemizadeh, Z., Mohammadi, A. A. & Karimi, A. R. (2005). Heteroat. Chem. 16, 549–552.  Web of Science CrossRef CAS Google Scholar
First citationBruker. (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDandia, A., Singh, R., Bhaskarana, S. & Samant, S. D. (2011). Green Chem. 13, 1852–1859.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHe, W., Meyers, M. R., Hanney, B., Sapada, A., Blider, G., Galzeinski, H., Amin, D., Needle, S., Page, K., Jayyosi, Z. & Perrone, H. (2003). Bioorg. Med. Chem. Lett. 13, 3097–3100.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPradhan, R., Patra, M., Behera, A. K. & Behera, R. K. (2006). Tetrahedron, 62, 779–828.  Web of Science CrossRef CAS Google Scholar
First citationSaeedi, M., Heravi, M. M., Beheshtiha, Y. S. & Oskooie, H. A. (2010). Tetrahedron, 66, 5345–5348.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrinivasan, T., Suhitha, S., Purushothaman, S., Raghunathan, R. & Velmurugan, D. (2012). Acta Cryst. E68, o2469.  CSD CrossRef IUCr Journals Google Scholar
First citationZarranz, B., Jago, A., Aldana, I. & Monge, A. (2003). Bioorg. Med. Chem. 11, 2149–2156.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o854-o855
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds