organic compounds
Methyl 2-(5-chloro-1-methyl-2-oxo-2,3-dihydro-1H-indol-3-ylidene)acetate
aDepartment of Physics, S.M.K. Fomra Institute of Technology, Thaiyur, Chennai 603 103, India, bIndustrial Chemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, India, and cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: a_sp59@yahoo.in
The title compound, C12H10ClNO3, the indoline ring system is essentially planar, with a maximum deviation of 0.009 Å for the N atom. The indoline ring and acetate group are essentially coplanar, with a maximum deviation of 0.086 Å for the O atom. The mean plane through the methoxycarbonylmethyl group forms a dihedral angle of 3.68 (5)° with the plane of the indoline ring system. The molecular structure is stabilized by an intramolecular C—H⋯O hydrogen-bond interaction. In the crystal, π–π stacking interactions [centroid–centroid distance = 3.7677 (8) Å] occur between benzene rings, forming a chain running along the c-axis direction.
Related literature
For the biological activity of indole derivatives, see: Chai et al. (2006); Nieto et al. (2005); Singh et al. (2000); Andreani et al. (2001); Quetin-Leclercq (1994); Mukhopadhyay et al. (1981); Taylor et al. (1999). For closely related structures, see: Hu et al. (2011); Han & Luo (2012); Deng (2011). For puckering parameters, see: Cremer & Pople (1975).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536813011768/bx2438sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813011768/bx2438Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813011768/bx2438Isup3.cml
To a mixture of 1eq of (E)-methyl 2-(5-chloro-1-methyl-2-oxoindolin- 3-ylidene) acetate, 1eq of isatin and 1.5eq of sarcosine were dissolved in acetonitrile. This reaction mixture refluxed at 80°C for 8hours. Completion of reaction monitor by Thin layar
The reaction mixture was extracted with ethyl acetate and water. The product was dried and purified by coloumn using ethyl acetate and hexane (1:9) as an elutent to afford pure Dispiro oxindole. Yield (90%). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms. The positions of methyl hydrogens were optimized rotationally.
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The structure of showing the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level. |
C12H10ClNO3 | F(000) = 520 |
Mr = 251.66 | Dx = 1.514 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2857 reflections |
a = 8.4709 (7) Å | θ = 2.4–28.6° |
b = 17.1658 (13) Å | µ = 0.34 mm−1 |
c = 7.9481 (6) Å | T = 293 K |
β = 107.228 (4)° | Block, colourless |
V = 1103.88 (15) Å3 | 0.30 × 0.25 × 0.20 mm |
Z = 4 |
Bruker SMART APEXII area-detector diffractometer | 2815 independent reflections |
Radiation source: fine-focus sealed tube | 2410 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
ω and ϕ scans | θmax = 28.6°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −11→11 |
Tmin = 0.903, Tmax = 0.934 | k = −23→23 |
10447 measured reflections | l = −10→10 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.138 | w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max < 0.001 |
2815 reflections | Δρmax = 0.34 e Å−3 |
157 parameters | Δρmin = −0.21 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.008 (3) |
C12H10ClNO3 | V = 1103.88 (15) Å3 |
Mr = 251.66 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.4709 (7) Å | µ = 0.34 mm−1 |
b = 17.1658 (13) Å | T = 293 K |
c = 7.9481 (6) Å | 0.30 × 0.25 × 0.20 mm |
β = 107.228 (4)° |
Bruker SMART APEXII area-detector diffractometer | 2815 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 2410 reflections with I > 2σ(I) |
Tmin = 0.903, Tmax = 0.934 | Rint = 0.031 |
10447 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.138 | H-atom parameters constrained |
S = 1.13 | Δρmax = 0.34 e Å−3 |
2815 reflections | Δρmin = −0.21 e Å−3 |
157 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.18640 (15) | 0.52152 (8) | 0.41988 (16) | 0.0337 (3) | |
C2 | 0.22645 (18) | 0.44379 (9) | 0.44263 (18) | 0.0400 (3) | |
H2 | 0.3224 | 0.4283 | 0.5281 | 0.048* | |
C3 | 0.12324 (18) | 0.38846 (8) | 0.33765 (19) | 0.0396 (3) | |
H3 | 0.1487 | 0.3357 | 0.3514 | 0.047* | |
C4 | −0.01720 (16) | 0.41357 (7) | 0.21330 (17) | 0.0321 (3) | |
C5 | −0.05973 (15) | 0.49301 (7) | 0.18943 (15) | 0.0287 (3) | |
C6 | 0.04383 (15) | 0.54819 (7) | 0.29523 (15) | 0.0317 (3) | |
H6 | 0.0187 | 0.6010 | 0.2831 | 0.038* | |
C7 | −0.21570 (16) | 0.49743 (7) | 0.04971 (15) | 0.0306 (3) | |
C8 | −0.25984 (18) | 0.41402 (7) | −0.00755 (18) | 0.0344 (3) | |
C9 | −0.1339 (2) | 0.28462 (9) | 0.0829 (2) | 0.0509 (4) | |
H9A | −0.2332 | 0.2668 | −0.0022 | 0.076* | |
H9B | −0.1267 | 0.2625 | 0.1960 | 0.076* | |
H9C | −0.0398 | 0.2687 | 0.0476 | 0.076* | |
C10 | −0.31915 (15) | 0.55312 (8) | −0.03603 (16) | 0.0349 (3) | |
H10 | −0.4126 | 0.5363 | −0.1232 | 0.042* | |
C11 | −0.30207 (15) | 0.63753 (7) | −0.00835 (16) | 0.0341 (3) | |
C12 | −0.4227 (2) | 0.75770 (8) | −0.1167 (2) | 0.0499 (4) | |
H12A | −0.4311 | 0.7724 | −0.0031 | 0.075* | |
H12B | −0.5155 | 0.7782 | −0.2068 | 0.075* | |
H12C | −0.3222 | 0.7783 | −0.1314 | 0.075* | |
N1 | −0.13690 (14) | 0.36835 (6) | 0.09414 (14) | 0.0370 (3) | |
O1 | −0.38178 (14) | 0.39168 (7) | −0.12194 (15) | 0.0484 (3) | |
O2 | −0.19597 (13) | 0.67151 (6) | 0.10265 (16) | 0.0503 (3) | |
O3 | −0.42172 (12) | 0.67452 (6) | −0.12966 (13) | 0.0426 (3) | |
Cl1 | 0.31706 (4) | 0.58922 (2) | 0.55565 (4) | 0.04557 (17) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0283 (6) | 0.0363 (7) | 0.0319 (6) | −0.0017 (5) | 0.0015 (5) | 0.0008 (4) |
C2 | 0.0347 (7) | 0.0386 (7) | 0.0406 (6) | 0.0058 (6) | 0.0016 (5) | 0.0059 (5) |
C3 | 0.0409 (7) | 0.0302 (6) | 0.0437 (7) | 0.0054 (5) | 0.0065 (6) | 0.0047 (5) |
C4 | 0.0331 (7) | 0.0284 (6) | 0.0340 (6) | −0.0013 (4) | 0.0084 (5) | −0.0007 (4) |
C5 | 0.0277 (6) | 0.0265 (6) | 0.0306 (5) | 0.0001 (4) | 0.0065 (4) | −0.0003 (4) |
C6 | 0.0285 (6) | 0.0303 (6) | 0.0324 (6) | −0.0003 (5) | 0.0031 (4) | −0.0001 (4) |
C7 | 0.0289 (6) | 0.0299 (6) | 0.0307 (6) | −0.0030 (4) | 0.0052 (4) | −0.0027 (4) |
C8 | 0.0372 (7) | 0.0298 (6) | 0.0346 (6) | −0.0055 (5) | 0.0084 (5) | −0.0045 (4) |
C9 | 0.0618 (10) | 0.0273 (7) | 0.0595 (9) | −0.0019 (6) | 0.0116 (7) | −0.0034 (6) |
C10 | 0.0298 (6) | 0.0344 (7) | 0.0346 (6) | −0.0026 (5) | 0.0003 (5) | −0.0025 (5) |
C11 | 0.0298 (6) | 0.0345 (7) | 0.0332 (6) | 0.0040 (5) | 0.0021 (4) | 0.0012 (5) |
C12 | 0.0546 (9) | 0.0351 (8) | 0.0501 (8) | 0.0081 (6) | 0.0003 (7) | 0.0075 (6) |
N1 | 0.0406 (6) | 0.0272 (6) | 0.0399 (6) | −0.0034 (4) | 0.0068 (5) | −0.0045 (4) |
O1 | 0.0443 (6) | 0.0404 (5) | 0.0503 (6) | −0.0094 (4) | −0.0018 (5) | −0.0099 (4) |
O2 | 0.0423 (6) | 0.0347 (5) | 0.0547 (6) | 0.0022 (4) | −0.0151 (4) | −0.0065 (4) |
O3 | 0.0408 (6) | 0.0336 (5) | 0.0406 (5) | 0.0029 (4) | −0.0074 (4) | 0.0021 (4) |
Cl1 | 0.0370 (2) | 0.0450 (3) | 0.0434 (2) | −0.00716 (13) | −0.00546 (16) | −0.00314 (13) |
C1—C2 | 1.3753 (19) | C8—O1 | 1.2183 (18) |
C1—C6 | 1.3932 (16) | C8—N1 | 1.3615 (18) |
C1—Cl1 | 1.7415 (13) | C9—N1 | 1.4408 (18) |
C2—C3 | 1.389 (2) | C9—H9A | 0.9600 |
C2—H2 | 0.9300 | C9—H9B | 0.9600 |
C3—C4 | 1.3717 (18) | C9—H9C | 0.9600 |
C3—H3 | 0.9300 | C10—C11 | 1.4661 (19) |
C4—N1 | 1.3995 (16) | C10—H10 | 0.9300 |
C4—C5 | 1.4089 (17) | C11—O2 | 1.2070 (16) |
C5—C6 | 1.3917 (16) | C11—O3 | 1.3346 (15) |
C5—C7 | 1.4545 (17) | C12—O3 | 1.4320 (16) |
C6—H6 | 0.9300 | C12—H12A | 0.9600 |
C7—C10 | 1.3389 (19) | C12—H12B | 0.9600 |
C7—C8 | 1.5153 (17) | C12—H12C | 0.9600 |
C2—C1—C6 | 122.71 (12) | N1—C8—C7 | 106.77 (11) |
C2—C1—Cl1 | 118.64 (10) | N1—C9—H9A | 109.5 |
C6—C1—Cl1 | 118.64 (10) | N1—C9—H9B | 109.5 |
C1—C2—C3 | 119.83 (13) | H9A—C9—H9B | 109.5 |
C1—C2—H2 | 120.1 | N1—C9—H9C | 109.5 |
C3—C2—H2 | 120.1 | H9A—C9—H9C | 109.5 |
C4—C3—C2 | 118.36 (12) | H9B—C9—H9C | 109.5 |
C4—C3—H3 | 120.8 | C7—C10—C11 | 127.50 (11) |
C2—C3—H3 | 120.8 | C7—C10—H10 | 116.3 |
C3—C4—N1 | 127.82 (11) | C11—C10—H10 | 116.3 |
C3—C4—C5 | 122.27 (12) | O2—C11—O3 | 122.67 (12) |
N1—C4—C5 | 109.92 (11) | O2—C11—C10 | 127.33 (11) |
C6—C5—C4 | 119.15 (11) | O3—C11—C10 | 109.98 (11) |
C6—C5—C7 | 133.90 (11) | O3—C12—H12A | 109.5 |
C4—C5—C7 | 106.94 (11) | O3—C12—H12B | 109.5 |
C5—C6—C1 | 117.68 (11) | H12A—C12—H12B | 109.5 |
C5—C6—H6 | 121.2 | O3—C12—H12C | 109.5 |
C1—C6—H6 | 121.2 | H12A—C12—H12C | 109.5 |
C10—C7—C5 | 137.34 (12) | H12B—C12—H12C | 109.5 |
C10—C7—C8 | 117.12 (12) | C8—N1—C4 | 110.84 (10) |
C5—C7—C8 | 105.52 (11) | C8—N1—C9 | 124.20 (12) |
O1—C8—N1 | 126.31 (12) | C4—N1—C9 | 124.94 (12) |
O1—C8—C7 | 126.92 (13) | C11—O3—C12 | 116.21 (11) |
C6—C1—C2—C3 | 0.6 (2) | C5—C7—C8—O1 | 179.90 (14) |
Cl1—C1—C2—C3 | 179.16 (10) | C10—C7—C8—N1 | 178.76 (11) |
C1—C2—C3—C4 | −0.1 (2) | C5—C7—C8—N1 | 0.12 (13) |
C2—C3—C4—N1 | 179.68 (12) | C5—C7—C10—C11 | −0.4 (2) |
C2—C3—C4—C5 | −0.2 (2) | C8—C7—C10—C11 | −178.48 (12) |
C3—C4—C5—C6 | 0.01 (19) | C7—C10—C11—O2 | −4.1 (2) |
N1—C4—C5—C6 | −179.87 (10) | C7—C10—C11—O3 | 174.29 (13) |
C3—C4—C5—C7 | −179.19 (12) | O1—C8—N1—C4 | −179.33 (13) |
N1—C4—C5—C7 | 0.93 (13) | C7—C8—N1—C4 | 0.45 (14) |
C4—C5—C6—C1 | 0.42 (17) | O1—C8—N1—C9 | −0.9 (2) |
C7—C5—C6—C1 | 179.36 (11) | C7—C8—N1—C9 | 178.84 (12) |
C2—C1—C6—C5 | −0.71 (19) | C3—C4—N1—C8 | 179.24 (13) |
Cl1—C1—C6—C5 | −179.32 (9) | C5—C4—N1—C8 | −0.88 (14) |
C6—C5—C7—C10 | 2.1 (2) | C3—C4—N1—C9 | 0.9 (2) |
C4—C5—C7—C10 | −178.84 (15) | C5—C4—N1—C9 | −179.26 (13) |
C6—C5—C7—C8 | −179.66 (13) | O2—C11—O3—C12 | −2.8 (2) |
C4—C5—C7—C8 | −0.63 (12) | C10—C11—O3—C12 | 178.73 (12) |
C10—C7—C8—O1 | −1.5 (2) |
Experimental details
Crystal data | |
Chemical formula | C12H10ClNO3 |
Mr | 251.66 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 8.4709 (7), 17.1658 (13), 7.9481 (6) |
β (°) | 107.228 (4) |
V (Å3) | 1103.88 (15) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.34 |
Crystal size (mm) | 0.30 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART APEXII area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.903, 0.934 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10447, 2815, 2410 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.673 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.138, 1.13 |
No. of reflections | 2815 |
No. of parameters | 157 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.34, −0.21 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
Acknowledgements
The authors thank the TBI X-ray facility, CAS in Crystallography and BioPhysics, University of Madras, Chennai, India, for the data collection.
References
Andreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anticancer Drug Des. 16, 167–174. Web of Science PubMed CAS Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chai, H., Zhao, C. & Gong, P. (2006). Bioorg. Med. Chem. 14, 911–917. Web of Science CrossRef PubMed CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Deng, Q. (2011). Acta Cryst. E67, o897. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Han, X.-L. & Luo, Y.-H. (2012). Acta Cryst. E68, o145. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hu, F., Zheng, L., Zeng, X. C. & Li, K. P. (2011). Acta Cryst. E67, o742. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mukhopadhyay, S., Handy, G. A., Funayama, S. & Cordell, G. A. (1981). J. Nat. Prod. 44, 696–700. CrossRef CAS PubMed Web of Science Google Scholar
Nieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J. Med. Chem. 40, 361–369. Web of Science CrossRef PubMed CAS Google Scholar
Quetin-Leclercq, J. (1994). J. Pharm. Belg. 49, 181–192. CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Singh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Folia Microbiol. (Praha), 45, 173–176. Web of Science CrossRef PubMed CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Taylor, D. L., Ahmed, P. S., Chambers, P., Tyms, A. S., Bedard, J., Duchaine, J., Falardeau, G., Lavallee, J. F., Brown, W., Rando, R. F. & Bowlin, T. (1999). Antivir. Chem. Chemother. 10, 79–86. Web of Science PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Indole derivatives exhibit antihepatitis B virus (Chai et al., 2006) and antibacterial (Nieto et al., 2005) activities. Indole derivatives have been found to exhibit antibacterial, antifungal (Singh et al., 2000) and antitumour activities (Andreani et al., 2001). Some of the indole alkaloids extracted from plants possess interesting cytotoxic, antitumour or antiparasitic properties (Quetin-Leclercq, 1994; Mukhopadhyay et al., 1981). Pyrido[1,2-a]indole derivatives have been identified as potent inhibitors of human immunodeficiency virus type 1 (Taylor et al., 1999).
In the title compound, C12H10Cl1N1O3,Figure 1 the indole ring system [C1-C8/N1] is essentially co-planar, with maxmium deviations of -0.009 Å for N1 atom. The indole ring and acetate group systems are essentially co-planar, with maxmium deviations of 0.086 Å for O2 atom. The mean plane through the methyl 4-oxobutanoate(acetate) group forms a dihedral angle of 3.68 (5)° with the plane of the indole ring system.
The geometric parameters of the title molecule (Fig. 1) agree well with the reported similar structures (Han et al., 2012). The sum of the angles at N1 [359.98 (1)°] of the pyrrolidine rings are in accordance with sp2 hybridizations.The crystal structure is stabilized by intramolecular C-H···O hydrogen bond interaction and π -π stacking interactions [centroid–centroid distance = 3.7677 (8) Å] between benzene rings [Cg1–Cg1i (Cg1:C1–C6) (i):symmetry code: -x,1-y,1-z]