organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o906-o907
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

1-[4-(Di­methyl­amino)­benzyl­­idene]-4-o-tolyl­thio­semicarbazide

aDepartment of Chemistry, Xiamen University, Xiamen 361005, People's Republic of China
*Correspondence e-mail: linlr@xmu.edu.cn

(Received 21 April 2013; accepted 10 May 2013; online 18 May 2013)

The asymmetric unit of the title compound, C17H20N4S, contains two independent mol­ecules, the main difference between them being the dihedral angles between the benzene rings [19.99 (17) and 9.72 (17)°]. The mol­ecules both have a trans conformation about the C=N double bond and intra­molecular C—H⋯S and N—H⋯N hydrogen bonds are observed in both mol­ecules. In the crystal, mol­ecules are linked by weak N—H⋯S hydrogen bonds with graph-set motif R22(8). In each mol­ecule, all but one of the N atoms and both the S atoms are involved in hydrogen bonding.

Related literature

For details of anion recognition, see: Sessler et al. (2006[Sessler, J. L., Gale, P. A. & Cho, W. S. (2006). In Anion Receptor Chemistry. Cambridge: RSC Publishing.]); Amendola et al. (2006[Amendola, V., Bonizzoni, M., Esteban-Gomez, D., Fabbrizzi, L., Licchelli, M., Sancenn, F. & Taglietti, A. (2006). Coord. Chem. Rev. 250, 1451-1470.]); Fahlbusch et al. (2006[Fahlbusch, T., Frank, M., Schatz, J. & Schmaderer, H. (2006). Eur. J. Org. Chem. pp. 1899-1903.]); Gale & Quesada (2006[Gale, P. A. & Quesada, R. (2006). Coord. Chem. Rev. 250, 3219-3244.]); Perez & Riera (2008[Perez, J. & Riera, L. (2008). Chem. Soc. Rev. 37, 2658-2667.]); Willans et al. (2009[Willans, C. E., Anderson, K. M., Potts, L. C. & Steed, J. W. (2009). Org. Biomol. Chem. 7, 2756-2759.]); Amendola & Fabbrizzi (2009[Amendola, V. & Fabbrizzi, L. (2009). Chem. Commun. pp. 513-531.]); Haridas et al. (2012[Haridas, V., Sahu, S., Praveen Kumar P. P. & Sapala, A. R. (2012). RSC Adv. 2, 12594-12605.]). For applications of thio­semicarbazides, see: Basuli et al. (1998[Basuli, F., Ruf, M., Pierpont, C. G. & Bhattacharya, S. (1998). Inorg. Chem. 37, 6113-6116.]); Pandeya et al. (1999[Pandeya, S. N., Sriram, D., Nath, G. & DeClercq, E. (1999). Eur. J. Pharm. Sci. 9, 25-31.]); Kowol et al. (2010[Kowol, C. R., Trondl, R., Arion, V. B., Jakupec, M. A., Lichtscheidl, I. & Keppler, B. K. (2010). Dalton Trans. 39, 704-706.]). For thio­semicarbazones acting as anion acceptors, see: Chikate et al. (2005[Chikate, R. C., Belapure, A. R. & Padhye, S. B. (2005). Polyhedron, 24, 889-899.]); Krisitin (2005[Krisitin, B. J. (2005). Acc. Chem. Res. 38, 671-678.]). For details of the synthesis of the Schiff base ligand, see: Pouralimardan et al. (2007[Pouralimardan, O., Chamayou, A.-C., Janiak, C. & Hosseini-Monfared, H. (2007). Inorg. Chim. Acta, 360, 1599-1608.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20N4S

  • Mr = 312.43

  • Triclinic, [P \overline 1]

  • a = 9.172 (3) Å

  • b = 12.224 (4) Å

  • c = 15.563 (5) Å

  • α = 86.933 (6)°

  • β = 86.990 (7)°

  • γ = 70.382 (6)°

  • V = 1640.3 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 173 K

  • 0.20 × 0.15 × 0.03 mm

Data collection
  • Brucker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick,2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.961, Tmax = 0.994

  • 7929 measured reflections

  • 5640 independent reflections

  • 3127 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.155

  • S = 0.95

  • 5640 reflections

  • 419 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4N⋯N2 0.95 (3) 2.05 (3) 2.587 (3) 114 (3)
C12—H12A⋯S1 0.93 2.64 3.239 (4) 123
C29—H29A⋯S2 0.93 2.57 3.257 (4) 131
N7—H7N⋯S1i 0.86 2.61 3.458 (3) 170
N3—H3N⋯S2ii 0.86 2.59 3.439 (3) 171
N8—H8N⋯N6 0.97 (3) 2.01 (3) 2.587 (4) 116 (2)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z-1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, anions recognition and sensing has attracted growing attentions due to their important roles in the fields of environmental science, biology, catalysis and medicine (Sessler et al. 2006). Substantial progress has been made in the development of anion receptors (Amendola et al. 2006, Gale et al. 2006, Perez & Riera 2008, Amendola et al. 2009, Kowol et al. 2010, Haridas et al. 2012). Thiosemicarbazide has been widely used in catalysis, drug, bacterialcide, flotation agent, (Pouralimardan et al. 2007). Some thiosemicarbazide derivatives show interesting biological effects, such as anticancer and anti-HIV properties (Pandeya et al. 1999; Fahlbusch et al. 2006). There are also a few reports of thiosemicarbazide acting as anion acceptors (Chikate et al. 2005). The introduction of a strong electron-donating group such as the N,N-dimethylanilino group through a double bond imparts new properties that are not commonly observed for the parent thiourea. As part of our work in this area, we report here the synthesis and structure of the title compound.The asymmetric unit of the title compound, C17H20N4S, consists of two crystallographically independent molecules. The main differences of both molecules are the dihedral angles between the benzene rings, 19.99 (17)° and 9.72 (17)°. In the crystal, molecules are linked by weak intermolecular N—H···S hydrogen bonds with set graph-motif R22(8) (Bernstein et al., 1995). Intramolecular C—H···S and N—H···N hydrogen bonds are observe. In both molecules, all of the N atoms and two of the S atoms are involved in hydrogen bonding, with an average H···S distance of 2.61Å and N— H···S angles in the range 170–171°. The molecules have a trans configuration about the C=N double bond.

Related literature top

For details of anion recognition, see: Sessler et al. (2006); Amendola et al. (2006); Fahlbusch et al. (2006); Gale & Quesada (2006); Perez & Riera (2008); Willans et al. (2009); Amendola & Fabbrizzi (2009); Haridas et al. (2012). For applications of thiosemicarbazides, see: Basuli et al. (1998); Pandeya et al. (1999); Kowol et al. (2010). For thiosemicarbazones acting as anion acceptors, see: Chikate et al. (2005); Krisitin (2005). For details of the synthesis of the Schiff base ligand, see: Pouralimardan et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized by refluxing an ethanol solution (20 ml) of 4-(dimethylamino) benzaldehyde (10 mmol) and 4-(4-methylphenyl)-3-thiosemicarbazide (10 mmol) for 3 h. The resulting yellow and clear solution was then cooled to room temperature. Light-yellow crystals were obtained, filtered and washed with cold ethanol. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of an acetonitrile and dichromethane mixed solution. M.P. 179~180 °C, MS (APCI) m/z (%): M+ 311.4, 1H-NMR (CDCl3), δ (p.p.m.): 9.53 (s,NH), 9.00 (s, NH), 7.84 (s, CH=N), 7.77 (dd, 1H, J = 4 Hz, ArH), 7.63 (d, 2H, J = 12 Hz, ArH), 7.32~7.30 (m, 1H, ArH), 7.25~7.23 (m, 2H, ArH), 7.02~6.99 (m, 2H, ArH), 3.10 (s, 6H, CH3), 2.39 (s, 3H, CH3).

Refinement top

Treatment of hydrogen atoms in the least-squares refinement: some constrained, some independent. For constrained, H atoms were positioned geometrically (C—H = 0.95–0.98 A ° and N—H = 0.88 A °) and refined as riding, with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP plot of the title compound. The thermal ellipsoids are drawn at 30% probability level.
1-[4-(Dimethylamino)benzylidene]-4-o-tolylthiosemicarbazide top
Crystal data top
C17H20N4SZ = 4
Mr = 312.43F(000) = 664
Triclinic, P1Dx = 1.265 Mg m3
Hall symbol: -P 1Melting point: 452 K
a = 9.172 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.224 (4) ÅCell parameters from 9709 reflections
c = 15.563 (5) Åθ = 1.8–25.0°
α = 86.933 (6)°µ = 0.20 mm1
β = 86.990 (7)°T = 173 K
γ = 70.382 (6)°Block, yellow
V = 1640.3 (9) Å30.20 × 0.15 × 0.03 mm
Data collection top
Brucker SMART APEX
diffractometer
5640 independent reflections
Radiation source: fine-focus sealed tube3127 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scanθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick,2008)
h = 910
Tmin = 0.961, Tmax = 0.994k = 1414
7929 measured reflectionsl = 1815
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0697P)2]
where P = (Fo2 + 2Fc2)/3
5640 reflections(Δ/σ)max = 0.001
419 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.17 e Å3
0 constraints
Crystal data top
C17H20N4Sγ = 70.382 (6)°
Mr = 312.43V = 1640.3 (9) Å3
Triclinic, P1Z = 4
a = 9.172 (3) ÅMo Kα radiation
b = 12.224 (4) ŵ = 0.20 mm1
c = 15.563 (5) ÅT = 173 K
α = 86.933 (6)°0.20 × 0.15 × 0.03 mm
β = 86.990 (7)°
Data collection top
Brucker SMART APEX
diffractometer
5640 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick,2008)
3127 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.994Rint = 0.027
7929 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.29 e Å3
5640 reflectionsΔρmin = 0.17 e Å3
419 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H4N0.578 (4)0.812 (3)0.419 (2)0.090 (12)*
S21.04941 (11)0.49993 (7)1.21135 (6)0.0688 (3)
S10.71619 (13)0.85281 (7)0.21044 (6)0.0790 (3)
N80.9444 (3)0.4024 (2)1.08541 (17)0.0587 (7)
N60.7262 (3)0.5924 (2)1.04273 (16)0.0592 (7)
N70.8225 (3)0.5919 (2)1.10796 (16)0.0617 (7)
H7N0.80920.65501.13410.074*
N30.7612 (3)0.6926 (2)0.33190 (16)0.0667 (8)
H3N0.83580.65180.29900.080*
N20.7239 (3)0.6441 (2)0.40899 (16)0.0622 (7)
C30.7517 (4)0.3395 (3)0.6503 (2)0.0591 (8)
C270.9379 (4)0.4935 (3)1.13162 (18)0.0526 (8)
N40.5776 (3)0.8602 (2)0.36927 (18)0.0651 (8)
C200.3119 (3)0.7492 (3)0.8192 (2)0.0540 (8)
C80.7901 (4)0.4768 (2)0.50474 (19)0.0548 (8)
C250.5234 (3)0.7076 (2)0.95183 (19)0.0530 (8)
C230.3245 (4)0.8396 (3)0.8656 (2)0.0591 (8)
H23A0.26160.91540.85300.071*
C281.0406 (4)0.2847 (3)1.0853 (2)0.0544 (8)
C100.6811 (4)0.8030 (3)0.3086 (2)0.0600 (8)
C210.4065 (4)0.6374 (3)0.8423 (2)0.0639 (9)
H21A0.40010.57480.81320.077*
N50.2121 (3)0.7702 (2)0.75317 (19)0.0726 (8)
C240.4275 (4)0.8183 (2)0.9290 (2)0.0580 (8)
H24A0.43400.88080.95830.070*
C90.8135 (4)0.5414 (3)0.4282 (2)0.0614 (9)
C70.8969 (4)0.3691 (3)0.5240 (2)0.0648 (9)
H7B0.98360.34060.48740.078*
C260.6322 (4)0.6915 (3)1.0191 (2)0.0576 (8)
C110.4741 (4)0.9757 (3)0.37105 (19)0.0559 (8)
C220.5090 (4)0.6176 (2)0.9070 (2)0.0619 (9)
H22A0.57040.54180.92100.074*
C331.0155 (4)0.2181 (3)1.0214 (2)0.0612 (9)
C60.8797 (4)0.3028 (3)0.5947 (2)0.0635 (9)
H6B0.95570.23150.60570.076*
N10.7278 (3)0.2725 (2)0.71832 (18)0.0754 (8)
C160.3454 (4)0.9972 (3)0.42636 (19)0.0617 (9)
C50.6640 (4)0.5151 (3)0.5611 (2)0.0727 (10)
H5A0.59000.58760.55050.087*
C40.6443 (4)0.4499 (3)0.6320 (2)0.0758 (10)
H4B0.55820.47930.66880.091*
C291.1542 (4)0.2360 (3)1.1439 (2)0.0695 (9)
H29A1.17050.28131.18610.083*
C140.2744 (4)1.1999 (3)0.3839 (2)0.0814 (11)
H14A0.20661.27570.38860.098*
C301.2434 (4)0.1207 (3)1.1403 (2)0.0768 (10)
H30A1.31920.08751.18030.092*
C150.2464 (4)1.1115 (3)0.4309 (2)0.0777 (10)
H15A0.15851.12800.46720.093*
C321.1080 (5)0.1035 (3)1.0189 (2)0.0777 (11)
H32A1.09410.05770.97630.093*
C311.2200 (5)0.0552 (3)1.0775 (3)0.0832 (12)
H31A1.28050.02281.07460.100*
C130.4014 (4)1.1774 (3)0.3301 (2)0.0771 (10)
H13A0.42041.23730.29720.092*
C120.5015 (4)1.0657 (3)0.3246 (2)0.0731 (10)
H12A0.58971.05060.28860.088*
C20.8405 (4)0.1598 (3)0.7369 (2)0.0862 (12)
H2B0.85780.11320.68720.129*
H2C0.80270.12220.78440.129*
H2D0.93610.16890.75150.129*
C340.8908 (4)0.2672 (3)0.9584 (2)0.0783 (10)
H34A0.79270.29770.98880.117*
H34B0.88830.20710.92180.117*
H34C0.91110.32840.92400.117*
C190.1023 (4)0.8841 (3)0.7355 (2)0.0801 (11)
H19A0.05300.91710.78850.120*
H19B0.02550.87800.69820.120*
H19C0.15520.93300.70810.120*
C170.3151 (5)0.9008 (3)0.4802 (2)0.0911 (12)
H17A0.31840.83890.44390.137*
H17B0.21470.92970.50850.137*
H17C0.39270.87220.52250.137*
C180.2157 (4)0.6813 (3)0.6966 (2)0.0889 (12)
H18A0.31040.66050.66230.133*
H18B0.12930.70930.65960.133*
H18C0.20970.61430.72970.133*
C10.6037 (4)0.3152 (3)0.7806 (2)0.0912 (12)
H1A0.50710.34300.75210.137*
H1B0.61800.37760.81010.137*
H1C0.60290.25360.82140.137*
H8N0.864 (3)0.425 (2)1.0437 (18)0.062 (9)*
H9A0.903 (3)0.512 (2)0.3926 (16)0.041 (8)*
H26A0.635 (4)0.761 (3)1.045 (2)0.082 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0767 (6)0.0649 (5)0.0642 (6)0.0209 (5)0.0089 (4)0.0088 (4)
S10.1248 (9)0.0507 (5)0.0585 (6)0.0272 (5)0.0087 (5)0.0021 (4)
N80.0627 (19)0.0517 (16)0.0603 (17)0.0157 (14)0.0058 (15)0.0080 (14)
N60.0618 (18)0.0560 (17)0.0585 (17)0.0181 (14)0.0022 (14)0.0015 (13)
N70.0688 (19)0.0515 (16)0.0644 (17)0.0178 (14)0.0060 (15)0.0105 (13)
N30.089 (2)0.0469 (15)0.0544 (16)0.0118 (14)0.0088 (15)0.0007 (13)
N20.078 (2)0.0491 (16)0.0560 (17)0.0172 (15)0.0005 (14)0.0036 (13)
C30.074 (2)0.0452 (18)0.055 (2)0.0161 (17)0.0033 (18)0.0022 (15)
C270.056 (2)0.0499 (18)0.0516 (18)0.0180 (16)0.0068 (15)0.0011 (15)
N40.078 (2)0.0502 (16)0.0579 (18)0.0105 (15)0.0004 (15)0.0052 (14)
C200.050 (2)0.0517 (19)0.058 (2)0.0142 (16)0.0050 (16)0.0031 (15)
C80.066 (2)0.0457 (17)0.0501 (18)0.0146 (16)0.0012 (16)0.0036 (15)
C250.058 (2)0.0464 (18)0.0518 (19)0.0145 (16)0.0065 (16)0.0031 (14)
C230.059 (2)0.0453 (18)0.063 (2)0.0063 (16)0.0053 (17)0.0054 (16)
C280.056 (2)0.0527 (19)0.0555 (19)0.0210 (17)0.0090 (16)0.0005 (16)
C100.075 (2)0.0449 (18)0.061 (2)0.0197 (17)0.0036 (18)0.0047 (16)
C210.071 (2)0.0473 (19)0.071 (2)0.0149 (17)0.0082 (19)0.0087 (16)
N50.070 (2)0.0604 (18)0.077 (2)0.0055 (15)0.0151 (16)0.0037 (15)
C240.064 (2)0.0441 (18)0.063 (2)0.0155 (16)0.0108 (17)0.0079 (15)
C90.075 (3)0.051 (2)0.056 (2)0.0177 (19)0.0027 (19)0.0048 (17)
C70.070 (2)0.053 (2)0.058 (2)0.0039 (18)0.0071 (17)0.0050 (16)
C260.064 (2)0.050 (2)0.060 (2)0.0201 (18)0.0066 (17)0.0069 (17)
C110.060 (2)0.0527 (19)0.0515 (19)0.0145 (17)0.0028 (16)0.0019 (15)
C220.062 (2)0.0412 (17)0.075 (2)0.0084 (16)0.0012 (18)0.0022 (16)
C330.074 (2)0.060 (2)0.054 (2)0.0301 (19)0.0160 (17)0.0107 (16)
C60.068 (2)0.0466 (18)0.060 (2)0.0018 (16)0.0001 (17)0.0012 (16)
N10.089 (2)0.0561 (17)0.0674 (19)0.0107 (16)0.0108 (17)0.0104 (14)
C160.073 (2)0.064 (2)0.0496 (19)0.0246 (19)0.0016 (17)0.0051 (16)
C50.076 (3)0.0494 (19)0.074 (2)0.0017 (18)0.001 (2)0.0050 (18)
C40.073 (2)0.061 (2)0.072 (2)0.0006 (19)0.0183 (19)0.0071 (18)
C290.072 (2)0.058 (2)0.076 (2)0.0192 (19)0.001 (2)0.0033 (18)
C140.084 (3)0.061 (2)0.083 (3)0.003 (2)0.008 (2)0.006 (2)
C300.071 (3)0.066 (2)0.083 (3)0.011 (2)0.007 (2)0.005 (2)
C150.070 (3)0.076 (3)0.076 (3)0.012 (2)0.0144 (19)0.013 (2)
C320.101 (3)0.066 (2)0.067 (2)0.030 (2)0.022 (2)0.0169 (19)
C310.101 (3)0.055 (2)0.086 (3)0.020 (2)0.033 (3)0.009 (2)
C130.086 (3)0.057 (2)0.080 (3)0.016 (2)0.012 (2)0.0020 (18)
C120.072 (2)0.059 (2)0.078 (2)0.0108 (19)0.0117 (19)0.0023 (18)
C20.119 (3)0.063 (2)0.061 (2)0.012 (2)0.003 (2)0.0100 (18)
C340.101 (3)0.086 (2)0.062 (2)0.050 (2)0.003 (2)0.0141 (19)
C190.066 (2)0.074 (2)0.092 (3)0.012 (2)0.014 (2)0.010 (2)
C170.103 (3)0.092 (3)0.083 (3)0.041 (2)0.019 (2)0.005 (2)
C180.090 (3)0.086 (3)0.089 (3)0.023 (2)0.024 (2)0.007 (2)
C10.089 (3)0.095 (3)0.079 (3)0.021 (2)0.009 (2)0.015 (2)
Geometric parameters (Å, º) top
S2—C271.670 (3)C22—H22A0.9300
S1—C101.670 (3)C33—C321.374 (4)
N8—C271.340 (4)C33—C341.491 (4)
N8—C281.413 (4)C6—H6B0.9300
N8—H8N0.97 (3)N1—C11.430 (4)
N6—C261.277 (4)N1—C21.443 (4)
N6—N71.379 (3)C16—C151.391 (4)
N7—C271.357 (4)C16—C171.503 (4)
N7—H7N0.8600C5—C41.367 (4)
N3—C101.343 (3)C5—H5A0.9300
N3—N21.388 (3)C4—H4B0.9300
N3—H3N0.8600C29—C301.375 (4)
N2—C91.279 (4)C29—H29A0.9300
C3—N11.358 (4)C14—C131.357 (5)
C3—C61.382 (4)C14—C151.361 (4)
C3—C41.402 (4)C14—H14A0.9300
N4—C101.347 (4)C30—C311.365 (5)
N4—C111.414 (4)C30—H30A0.9300
N4—H4N0.94 (3)C15—H15A0.9300
C20—N51.369 (4)C32—C311.367 (5)
C20—C211.391 (4)C32—H32A0.9300
C20—C231.391 (4)C31—H31A0.9300
C8—C51.378 (4)C13—C121.371 (4)
C8—C71.381 (4)C13—H13A0.9300
C8—C91.440 (4)C12—H12A0.9300
C25—C221.379 (4)C2—H2B0.9600
C25—C241.383 (4)C2—H2C0.9600
C25—C261.445 (4)C2—H2D0.9600
C23—C241.356 (4)C34—H34A0.9600
C23—H23A0.9300C34—H34B0.9600
C28—C291.378 (4)C34—H34C0.9600
C28—C331.393 (4)C19—H19A0.9600
C21—C221.370 (4)C19—H19B0.9600
C21—H21A0.9300C19—H19C0.9600
N5—C181.426 (4)C17—H17A0.9600
N5—C191.440 (4)C17—H17B0.9600
C24—H24A0.9300C17—H17C0.9600
C9—H9A0.94 (2)C18—H18A0.9600
C7—C61.366 (4)C18—H18B0.9600
C7—H7B0.9300C18—H18C0.9600
C26—H26A0.97 (3)C1—H1A0.9600
C11—C121.370 (4)C1—H1B0.9600
C11—C161.383 (4)C1—H1C0.9600
C27—N8—C28134.1 (3)C1—N1—C2116.9 (3)
C27—N8—H8N110.5 (17)C11—C16—C15117.4 (3)
C28—N8—H8N115.4 (17)C11—C16—C17121.2 (3)
C26—N6—N7116.2 (3)C15—C16—C17121.4 (3)
C27—N7—N6121.1 (3)C4—C5—C8122.0 (3)
C27—N7—H7N119.5C4—C5—H5A119.0
N6—N7—H7N119.5C8—C5—H5A119.0
C10—N3—N2120.1 (3)C5—C4—C3121.2 (3)
C10—N3—H3N120.0C5—C4—H4B119.4
N2—N3—H3N120.0C3—C4—H4B119.4
C9—N2—N3115.3 (3)C30—C29—C28120.2 (3)
N1—C3—C6122.5 (3)C30—C29—H29A119.9
N1—C3—C4121.1 (3)C28—C29—H29A119.9
C6—C3—C4116.5 (3)C13—C14—C15119.9 (3)
N8—C27—N7112.7 (3)C13—C14—H14A120.1
N8—C27—S2129.1 (3)C15—C14—H14A120.1
N7—C27—S2118.2 (2)C31—C30—C29119.6 (4)
C10—N4—C11131.7 (3)C31—C30—H30A120.2
C10—N4—H4N111 (2)C29—C30—H30A120.2
C11—N4—H4N117 (2)C14—C15—C16121.9 (3)
N5—C20—C21121.8 (3)C14—C15—H15A119.0
N5—C20—C23121.2 (3)C16—C15—H15A119.0
C21—C20—C23117.0 (3)C31—C32—C33121.6 (4)
C5—C8—C7116.5 (3)C31—C32—H32A119.2
C5—C8—C9123.9 (3)C33—C32—H32A119.2
C7—C8—C9119.6 (3)C30—C31—C32120.4 (3)
C22—C25—C24116.6 (3)C30—C31—H31A119.8
C22—C25—C26123.6 (3)C32—C31—H31A119.8
C24—C25—C26119.7 (3)C14—C13—C12119.5 (3)
C24—C23—C20120.8 (3)C14—C13—H13A120.3
C24—C23—H23A119.6C12—C13—H13A120.3
C20—C23—H23A119.6C11—C12—C13121.2 (3)
C29—C28—C33120.5 (3)C11—C12—H12A119.4
C29—C28—N8123.2 (3)C13—C12—H12A119.4
C33—C28—N8116.3 (3)N1—C2—H2B109.5
N3—C10—N4113.9 (3)N1—C2—H2C109.5
N3—C10—S1118.4 (2)H2B—C2—H2C109.5
N4—C10—S1127.7 (2)N1—C2—H2D109.5
C22—C21—C20121.4 (3)H2B—C2—H2D109.5
C22—C21—H21A119.3H2C—C2—H2D109.5
C20—C21—H21A119.3C33—C34—H34A109.5
C20—N5—C18121.6 (3)C33—C34—H34B109.5
C20—N5—C19121.7 (3)H34A—C34—H34B109.5
C18—N5—C19116.7 (3)C33—C34—H34C109.5
C23—C24—C25122.7 (3)H34A—C34—H34C109.5
C23—C24—H24A118.7H34B—C34—H34C109.5
C25—C24—H24A118.7N5—C19—H19A109.5
N2—C9—C8122.8 (3)N5—C19—H19B109.5
N2—C9—H9A116.4 (15)H19A—C19—H19B109.5
C8—C9—H9A120.4 (15)N5—C19—H19C109.5
C6—C7—C8122.3 (3)H19A—C19—H19C109.5
C6—C7—H7B118.8H19B—C19—H19C109.5
C8—C7—H7B118.8C16—C17—H17A109.5
N6—C26—C25123.4 (3)C16—C17—H17B109.5
N6—C26—H26A119.9 (19)H17A—C17—H17B109.5
C25—C26—H26A116.6 (18)C16—C17—H17C109.5
C12—C11—C16120.0 (3)H17A—C17—H17C109.5
C12—C11—N4122.7 (3)H17B—C17—H17C109.5
C16—C11—N4117.2 (3)N5—C18—H18A109.5
C21—C22—C25121.5 (3)N5—C18—H18B109.5
C21—C22—H22A119.2H18A—C18—H18B109.5
C25—C22—H22A119.2N5—C18—H18C109.5
C32—C33—C28117.8 (3)H18A—C18—H18C109.5
C32—C33—C34120.3 (3)H18B—C18—H18C109.5
C28—C33—C34121.9 (3)N1—C1—H1A109.5
C7—C6—C3121.4 (3)N1—C1—H1B109.5
C7—C6—H6B119.3H1A—C1—H1B109.5
C3—C6—H6B119.3N1—C1—H1C109.5
C3—N1—C1122.2 (3)H1A—C1—H1C109.5
C3—N1—C2120.3 (3)H1B—C1—H1C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···N20.95 (3)2.05 (3)2.587 (3)114 (3)
C12—H12A···S10.932.643.239 (4)123
C29—H29A···S20.932.573.257 (4)131
N7—H7N···S1i0.862.613.458 (3)170
N3—H3N···S2ii0.862.593.439 (3)171
N8—H8N···N60.97 (3)2.01 (3)2.587 (4)116 (2)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC17H20N4S
Mr312.43
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)9.172 (3), 12.224 (4), 15.563 (5)
α, β, γ (°)86.933 (6), 86.990 (7), 70.382 (6)
V3)1640.3 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.20 × 0.15 × 0.03
Data collection
DiffractometerBrucker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick,2008)
Tmin, Tmax0.961, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
7929, 5640, 3127
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.155, 0.95
No. of reflections5640
No. of parameters419
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.17

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···N20.95 (3)2.05 (3)2.587 (3)114 (3)
C12—H12A···S10.932.643.239 (4)123
C29—H29A···S20.932.573.257 (4)131
N7—H7N···S1i0.862.613.458 (3)169.7
N3—H3N···S2ii0.862.593.439 (3)170.5
N8—H8N···N60.97 (3)2.01 (3)2.587 (4)116 (2)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (No. 21271150) and the Natural Science Foundation of Fujian Province (No. 2010 J01048).

References

First citationAmendola, V., Bonizzoni, M., Esteban-Gomez, D., Fabbrizzi, L., Licchelli, M., Sancenn, F. & Taglietti, A. (2006). Coord. Chem. Rev. 250, 1451–1470.  Web of Science CrossRef CAS Google Scholar
First citationAmendola, V. & Fabbrizzi, L. (2009). Chem. Commun. pp. 513–531.  Web of Science CrossRef Google Scholar
First citationBasuli, F., Ruf, M., Pierpont, C. G. & Bhattacharya, S. (1998). Inorg. Chem. 37, 6113–6116.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChikate, R. C., Belapure, A. R. & Padhye, S. B. (2005). Polyhedron, 24, 889–899.  Web of Science CrossRef CAS Google Scholar
First citationFahlbusch, T., Frank, M., Schatz, J. & Schmaderer, H. (2006). Eur. J. Org. Chem. pp. 1899–1903.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGale, P. A. & Quesada, R. (2006). Coord. Chem. Rev. 250, 3219–3244.  Web of Science CrossRef CAS Google Scholar
First citationHaridas, V., Sahu, S., Praveen Kumar P. P. & Sapala, A. R. (2012). RSC Adv. 2, 12594–12605.  Google Scholar
First citationKowol, C. R., Trondl, R., Arion, V. B., Jakupec, M. A., Lichtscheidl, I. & Keppler, B. K. (2010). Dalton Trans. 39, 704–706.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrisitin, B. J. (2005). Acc. Chem. Res. 38, 671–678.  Web of Science CrossRef PubMed Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & DeClercq, E. (1999). Eur. J. Pharm. Sci. 9, 25–31.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPerez, J. & Riera, L. (2008). Chem. Soc. Rev. 37, 2658–2667.  Web of Science PubMed CAS Google Scholar
First citationPouralimardan, O., Chamayou, A.-C., Janiak, C. & Hosseini-Monfared, H. (2007). Inorg. Chim. Acta, 360, 1599–1608.  Web of Science CSD CrossRef CAS Google Scholar
First citationSessler, J. L., Gale, P. A. & Cho, W. S. (2006). In Anion Receptor Chemistry. Cambridge: RSC Publishing.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWillans, C. E., Anderson, K. M., Potts, L. C. & Steed, J. W. (2009). Org. Biomol. Chem. 7, 2756–2759.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o906-o907
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds