metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(pyridine-κN)zinc]-μ-5-carb­­oxy­benzene-1,3-di­carboxyl­ato-κ2O1:O3]

aDivision of Chemistry, School of Science, University of Phayao, Phayao 56000, Thailand, and bDepartment of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
*Correspondence e-mail: apinpus@chiangmai.ac.th

(Received 14 May 2013; accepted 23 May 2013; online 31 May 2013)

The title one-dimensional coordination polymer, [Zn(C9H4O6)(C5H5N)2]n or [Zn(HBTC)(py)2]n, (I), where BTC is benzene-1,3,5-tricarboxylate and py is pyridine, is a solvent-free polymorph of [Zn(HBTC)(py)2]·2C2H5OH [Yaghi et al. (1997[Yaghi, O. M., Li, G. & Li, H. (1997). Chem. Mater. 9, 1074-1076.]). Chem. Mater. 9, 1074–1076]. Differences in the spatial arrangements and supra­molecular packing of the [Zn(HBTC)(py)2]n chains in the two structures are described. The chain in (I) extends parallel to [100] and is severely puckered, with a Zn⋯Zn distance of 8.3599 (3) Å and a Zn⋯Zn⋯Zn angle of 107.516 (3)°, as a result of hydrogen-bonding inter­actions of the types O—H⋯O and C—H⋯O. There is no evidence for ππ inter­actions in (I). The differences between the solvent-free and solvent-containing structures can be accounted for by the absence of the ethanol solvent mol­ecule and the use of the converging pair of O atoms in the bis-monodentate bridging HBTC2− ligand in (I).

Related literature

For the ethanol monosolvate of (I), see: Yaghi et al. (1997[Yaghi, O. M., Li, G. & Li, H. (1997). Chem. Mater. 9, 1074-1076.]). For a review on supra­molecular isomerism in coordination compounds, see: Zhang et al. (2009[Zhang, J.-P., Huang, X.-C. & Chen, X.-M. (2009). Chem. Soc. Rev. 38, 2385-2396.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C9H4O6)(C5H5N)2]

  • Mr = 431.69

  • Orthorhombic, P b c a

  • a = 13.4850 (4) Å

  • b = 15.7677 (4) Å

  • c = 16.7252 (4) Å

  • V = 3556.24 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.42 mm−1

  • T = 293 K

  • 0.40 × 0.32 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.638, Tmax = 0.746

  • 18851 measured reflections

  • 4402 independent reflections

  • 3448 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.075

  • S = 1.03

  • 4402 reflections

  • 257 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5W⋯O3i 0.86 (3) 1.74 (3) 2.5813 (19) 164 (3)
C1—H1⋯O1 0.93 2.45 3.053 (2) 122
C5—H5⋯O6ii 0.93 2.39 3.129 (3) 136
C17—H17⋯O5 0.93 2.37 2.693 (2) 100
C17—H17⋯O5i 0.93 2.42 3.309 (2) 159
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and WinGX; molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The reported complex [Zn(HBTC)(py)2]n (I), where BTC = 1,3,5-benzenetricarboxylate and pyr = pyridine (C5H5N), is a supramolecular isomer of the previously reported [Zn(HBTC)(py)2].2C2H5OH (Yaghi et al., 1997). It is clear that the two isomers result from differences in the synthesis method. In order to synthesize I, a simple solution route was adopted, whereas the crystals of [Zn(HBTC)(py)2].2C2H5OH have only been synthesized when poly(ethyleneoxide) (PEO) gel is used as the reaction medium in the presence of C2H5OH as solvent (Yaghi et al., 1997). The absence or presence of the C2H5OH solvent molecules results in different spatial arrangements and supramolecular packing in the two isomers.

While the two supramolecular isomers are built up of the same structural building motifs, i.e. a tetrahedral Zn(II) ion, two monodentate pyr molecules and a bridging HBTC2- anion, the architecture of the one-dimensional chains of the two isomers notably differs. In the case of I, an asymmetric unit comprises a tetrahedral Zn(II) ion (Fig. 1), coordinated by two N atoms (N1 and N2) from two crystallographically independent pyr molecules and two O atoms (O1 and O2) from two distinct carboxylato groups of the HBTC2- anion. The HBTC2- ligand in structure I adopts a bis-monodentate bridging mode (µ2-η1:η1:η0:η0:η0:η0) (Fig. 2), linking two adjacent Zn(II) ions to form a one-dimensional chain of chemical composition [Zn(HBTC)(py)2]n, extending in the [1 0 0] direction. Because of the converging positions of the coordinating O1 and O2 atoms, the derived chain is severely puckered with a Zn···Zn distance of 8.3599 (3) Å and a Zn···Zn···Zn angle of 107.516 (3)°. In comparison, the one-dimensional chain of the previously reported [Zn(HBTC)(py)2].2C2H5OH isomer is almost linear with corresponding distance and angle values of 10.162 (2) Å and 180°, respectively. The presence of the C2H5OH solvent molecule in the vicinity of the two coordinating carboxylato groups in the [Zn(HBTC)(py)2].2C2H5OH isomer ostensibly forces the coordinating atoms to be the diverging pair of O atoms (equivalent to O3 and O6 in I), rather than the converging pair as in I.

A larger degree of puckering in I compared to that of the previously reported isomer imparts an immense influence on the corresponding supramolecular interactions and packing. While there are no ππ interactions in I, which is in contrast to the [Zn(HBTC)(py)2].2C2H5OH case, an acidic proton of the bridging HBTC2- anion is involved in the hydrogen bonding interactions with the O atom of the HBTC2- anion from the adjacent chain (Fig. 3). Weak C—H···O hydrogen bonding interactions further link these one-dimensional chains into a dense, three-dimensional supramolecular structure.

Related literature top

For the supramolecular isomer structure, Zn(HBTC)(NC5H5)2.C2H5OH, see: Yaghi et al. (1997). For a review on supramolecular isomerism in coordination compounds, see: Zhang et al. (2009).

Experimental top

A small fraction of pyridine (0.50 ml, 6.18 mmol; 99.8% Sigma-Aldrich) was gradually added to a 2.50 ml of a 0.204 molL-1 aqueous solution of 1,3,5-benzenetricarboxylic acid (H3BTC; 0.509 mmol; 95% Sigma-Aldrich) with stirring until the acid was completely dissolved. Then 2.50 ml of 0.296 molL-1 ZnSO4.7H2O (aq) solution (0.741 mmol; 99% Sigma-Aldrich) was added, giving a clear solution. The solution was left at ambient temperature for 2 days before the colourless crystals of I started to crystallize.

Refinement top

Atom H5W atom was located in a difference Fourier map. The aromatic H-atoms were treated as riding groups on the bonded C-atoms using a C—H bond length of 0.93 Å.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and WinGX (Farrugia, 2012); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008) and WinGX (Farrugia, 2012); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of an extended unit of I with atom numbering scheme. Displacement ellipsoids are drawn at the 70% probability level. [Symmetry codes: (i) 1/2 + x, 0.5 - y, 1 - z; (ii) -1/2 + x, 0.5 - y, 1 - z]
[Figure 2] Fig. 2. View of the one-dimensional chain of I. Hydrogen atoms are omitted for clarity.
[Figure 3] Fig. 3. View of supramolecular packing in I, directed primarily by the O—H···O hydrogen bonding interactions (dotted lines).
catena-Poly[[bis(pyridine-κN)zinc]-µ-5-carboxybenzene-1,3-dicarboxylato-κ2O1:O3] top
Crystal data top
[Zn(C9H4O6)(C5H5N)2]Dx = 1.613 Mg m3
Mr = 431.69Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 12396 reflections
a = 13.4850 (4) Åθ = 2.3–28.3°
b = 15.7677 (4) ŵ = 1.42 mm1
c = 16.7252 (4) ÅT = 293 K
V = 3556.24 (16) Å3Block, colorless
Z = 80.40 × 0.32 × 0.20 mm
F(000) = 1760
Data collection top
Bruker SMART CCD area-detector
diffractometer
3448 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
ω scanθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1716
Tmin = 0.638, Tmax = 0.746k = 1821
18851 measured reflectionsl = 2218
4402 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0343P)2 + 1.2882P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4402 reflectionsΔρmax = 0.32 e Å3
257 parametersΔρmin = 0.27 e Å3
Crystal data top
[Zn(C9H4O6)(C5H5N)2]V = 3556.24 (16) Å3
Mr = 431.69Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.4850 (4) ŵ = 1.42 mm1
b = 15.7677 (4) ÅT = 293 K
c = 16.7252 (4) Å0.40 × 0.32 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4402 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3448 reflections with I > 2σ(I)
Tmin = 0.638, Tmax = 0.746Rint = 0.027
18851 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.32 e Å3
4402 reflectionsΔρmin = 0.27 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.13687 (2)0.15689 (2)0.38115 (2)0.02934 (7)
O10.22574 (9)0.24099 (8)0.43444 (8)0.0387 (3)
O20.02076 (9)0.12804 (8)0.44224 (8)0.0380 (3)
O30.08532 (9)0.31056 (8)0.42911 (9)0.0403 (3)
O40.17223 (13)0.64303 (10)0.62643 (11)0.0636 (5)
O50.06430 (11)0.59328 (10)0.53854 (11)0.0610 (5)
O60.50499 (11)0.48839 (11)0.63064 (10)0.0572 (4)
N10.24456 (11)0.07341 (9)0.34795 (9)0.0344 (3)
N20.08742 (12)0.20600 (9)0.27386 (9)0.0351 (3)
C10.34018 (14)0.09488 (13)0.35799 (13)0.0403 (4)
H10.35510.14560.38370.048*
C20.41665 (16)0.04472 (14)0.33178 (15)0.0526 (6)
H20.48210.06120.33980.063*
C30.39544 (18)0.02992 (14)0.29374 (14)0.0554 (6)
H30.44630.06450.27490.066*
C40.29877 (19)0.05299 (13)0.28377 (14)0.0554 (6)
H40.28290.10380.25860.066*
C50.22515 (16)0.00031 (13)0.31132 (12)0.0451 (5)
H50.15940.01640.30430.054*
C60.14604 (16)0.21440 (13)0.21013 (12)0.0455 (5)
H60.20910.19060.21190.055*
C70.1175 (2)0.25651 (16)0.14217 (13)0.0581 (6)
H70.16070.26140.09910.070*
C80.0245 (2)0.29120 (16)0.13863 (15)0.0639 (7)
H80.00340.32000.09320.077*
C90.03721 (19)0.28258 (14)0.20360 (15)0.0570 (6)
H90.10100.30500.20250.068*
C100.00334 (15)0.24024 (12)0.27043 (12)0.0424 (5)
H100.04490.23530.31450.051*
C110.17367 (13)0.30629 (11)0.44909 (10)0.0290 (3)
C120.22248 (12)0.37837 (10)0.49276 (10)0.0274 (3)
C130.32159 (13)0.37427 (11)0.51554 (10)0.0290 (4)
H130.35890.32650.50290.035*
C140.36539 (12)0.44093 (11)0.55706 (10)0.0296 (4)
C150.30929 (13)0.51149 (11)0.57672 (11)0.0325 (4)
H150.33810.55600.60480.039*
C160.20993 (12)0.51606 (11)0.55457 (11)0.0311 (4)
C170.16744 (13)0.44966 (11)0.51237 (11)0.0306 (4)
H170.10130.45300.49700.037*
C180.14864 (13)0.59105 (12)0.57802 (13)0.0377 (4)
C190.47177 (13)0.43569 (11)0.58439 (11)0.0322 (4)
H5W0.022 (2)0.6310 (19)0.5540 (18)0.096 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02247 (11)0.02948 (11)0.03608 (12)0.00104 (8)0.00170 (8)0.00546 (8)
O10.0273 (7)0.0301 (6)0.0587 (8)0.0041 (5)0.0047 (6)0.0160 (6)
O20.0269 (7)0.0399 (7)0.0472 (7)0.0100 (5)0.0077 (6)0.0080 (6)
O30.0262 (7)0.0345 (7)0.0604 (9)0.0031 (5)0.0077 (6)0.0175 (6)
O40.0489 (9)0.0533 (10)0.0887 (13)0.0178 (8)0.0231 (9)0.0421 (9)
O50.0303 (8)0.0560 (10)0.0967 (13)0.0175 (7)0.0177 (8)0.0409 (9)
O60.0325 (8)0.0634 (10)0.0759 (11)0.0070 (7)0.0159 (7)0.0354 (8)
N10.0317 (8)0.0309 (8)0.0407 (8)0.0036 (6)0.0055 (7)0.0024 (7)
N20.0352 (9)0.0350 (8)0.0352 (8)0.0005 (7)0.0019 (7)0.0053 (7)
C10.0338 (10)0.0344 (10)0.0526 (11)0.0012 (8)0.0058 (9)0.0005 (9)
C20.0342 (11)0.0496 (12)0.0740 (16)0.0100 (9)0.0150 (10)0.0077 (11)
C30.0593 (15)0.0445 (12)0.0625 (14)0.0220 (11)0.0265 (12)0.0054 (11)
C40.0711 (16)0.0364 (11)0.0587 (14)0.0090 (11)0.0144 (12)0.0115 (10)
C50.0442 (12)0.0368 (10)0.0544 (12)0.0002 (9)0.0051 (10)0.0112 (9)
C60.0488 (13)0.0469 (11)0.0408 (11)0.0019 (10)0.0059 (9)0.0068 (9)
C70.0817 (18)0.0554 (14)0.0373 (11)0.0166 (13)0.0046 (11)0.0009 (11)
C80.094 (2)0.0476 (13)0.0500 (14)0.0149 (14)0.0259 (14)0.0094 (11)
C90.0558 (15)0.0443 (12)0.0710 (16)0.0029 (11)0.0223 (12)0.0006 (11)
C100.0403 (11)0.0397 (10)0.0472 (11)0.0016 (9)0.0036 (9)0.0043 (9)
C110.0273 (8)0.0256 (8)0.0342 (9)0.0003 (7)0.0012 (7)0.0049 (7)
C120.0239 (8)0.0256 (8)0.0328 (8)0.0012 (6)0.0005 (7)0.0037 (7)
C130.0239 (8)0.0272 (8)0.0358 (9)0.0041 (7)0.0006 (7)0.0042 (7)
C140.0224 (8)0.0321 (9)0.0342 (9)0.0018 (7)0.0015 (7)0.0028 (7)
C150.0258 (9)0.0304 (9)0.0414 (10)0.0007 (7)0.0038 (7)0.0100 (8)
C160.0242 (8)0.0287 (8)0.0404 (9)0.0023 (7)0.0015 (7)0.0080 (7)
C170.0215 (8)0.0300 (9)0.0404 (10)0.0008 (7)0.0027 (7)0.0057 (7)
C180.0256 (9)0.0338 (9)0.0536 (12)0.0040 (7)0.0019 (8)0.0114 (9)
C190.0246 (8)0.0359 (9)0.0361 (9)0.0021 (7)0.0013 (7)0.0018 (8)
Geometric parameters (Å, º) top
Zn1—O21.9241 (12)C5—H50.9300
Zn1—O11.9973 (12)C6—C71.371 (3)
Zn1—N12.0371 (14)C6—H60.9300
Zn1—N22.0650 (15)C7—C81.370 (4)
O1—C111.270 (2)C7—H70.9300
O2—C19i1.283 (2)C8—C91.375 (4)
O3—C111.239 (2)C8—H80.9300
O4—C181.195 (2)C9—C101.380 (3)
O5—C181.315 (2)C9—H90.9300
O5—H5W0.86 (3)C10—H100.9300
O6—C191.220 (2)C11—C121.503 (2)
N1—C51.340 (2)C12—C171.386 (2)
N1—C11.344 (2)C12—C131.391 (2)
N2—C61.334 (3)C13—C141.391 (2)
N2—C101.339 (2)C13—H130.9300
C1—C21.372 (3)C14—C151.385 (2)
C1—H10.9300C14—C191.508 (2)
C2—C31.368 (3)C15—C161.392 (2)
C2—H20.9300C15—H150.9300
C3—C41.364 (3)C16—C171.387 (2)
C3—H30.9300C16—C181.495 (2)
C4—C51.374 (3)C17—H170.9300
C4—H40.9300C19—O2ii1.283 (2)
O2—Zn1—O1114.10 (5)C7—C8—C9118.7 (2)
O2—Zn1—N1124.90 (6)C7—C8—H8120.6
O1—Zn1—N197.06 (6)C9—C8—H8120.6
O2—Zn1—N2106.70 (6)C8—C9—C10119.2 (2)
O1—Zn1—N2109.43 (6)C8—C9—H9120.4
N1—Zn1—N2103.63 (6)C10—C9—H9120.4
C11—O1—Zn1107.01 (11)N2—C10—C9122.2 (2)
C19i—O2—Zn1114.84 (11)N2—C10—H10118.9
C18—O5—H5W116 (2)C9—C10—H10118.9
C5—N1—C1117.60 (17)O3—C11—O1121.57 (15)
C5—N1—Zn1123.09 (13)O3—C11—C12120.73 (15)
C1—N1—Zn1119.16 (13)O1—C11—C12117.69 (15)
C6—N2—C10117.87 (18)C17—C12—C13119.16 (15)
C6—N2—Zn1122.71 (14)C17—C12—C11119.58 (15)
C10—N2—Zn1118.92 (13)C13—C12—C11121.25 (15)
N1—C1—C2122.4 (2)C12—C13—C14120.63 (15)
N1—C1—H1118.8C12—C13—H13119.7
C2—C1—H1118.8C14—C13—H13119.7
C3—C2—C1119.2 (2)C15—C14—C13119.57 (15)
C3—C2—H2120.4C15—C14—C19119.45 (15)
C1—C2—H2120.4C13—C14—C19120.92 (15)
C4—C3—C2119.09 (19)C14—C15—C16120.28 (16)
C4—C3—H3120.5C14—C15—H15119.9
C2—C3—H3120.5C16—C15—H15119.9
C3—C4—C5119.2 (2)C17—C16—C15119.61 (15)
C3—C4—H4120.4C17—C16—C18120.15 (15)
C5—C4—H4120.4C15—C16—C18120.22 (15)
N1—C5—C4122.5 (2)C12—C17—C16120.75 (16)
N1—C5—H5118.8C12—C17—H17119.6
C4—C5—H5118.8C16—C17—H17119.6
N2—C6—C7123.0 (2)O4—C18—O5123.49 (18)
N2—C6—H6118.5O4—C18—C16124.95 (17)
C7—C6—H6118.5O5—C18—C16111.55 (16)
C8—C7—C6119.1 (2)O6—C19—O2ii124.36 (17)
C8—C7—H7120.5O6—C19—C14120.27 (16)
C6—C7—H7120.5O2ii—C19—C14115.32 (15)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5W···O3iii0.86 (3)1.74 (3)2.5813 (19)164 (3)
C1—H1···O10.932.453.053 (2)122
C5—H5···O6i0.932.393.129 (3)136
C17—H17···O50.932.372.693 (2)100
C17—H17···O5iii0.932.423.309 (2)159
Symmetry codes: (i) x1/2, y+1/2, z+1; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C9H4O6)(C5H5N)2]
Mr431.69
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)13.4850 (4), 15.7677 (4), 16.7252 (4)
V3)3556.24 (16)
Z8
Radiation typeMo Kα
µ (mm1)1.42
Crystal size (mm)0.40 × 0.32 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.638, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
18851, 4402, 3448
Rint0.027
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.075, 1.03
No. of reflections4402
No. of parameters257
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.27

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008) and WinGX (Farrugia, 2012), SHELXL2013 (Sheldrick, 2008) and WinGX (Farrugia, 2012), DIAMOND (Brandenburg, 1999), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5W···O3i0.86 (3)1.74 (3)2.5813 (19)164 (3)
C1—H1···O10.932.453.053 (2)122.2
C5—H5···O6ii0.932.393.129 (3)136.2
C17—H17···O50.932.372.693 (2)100.0
C17—H17···O5i0.932.423.309 (2)159.2
Symmetry codes: (i) x, y+1, z+1; (ii) x1/2, y+1/2, z+1.
 

Acknowledgements

This work was financially supported by the Thailand Research Fund and the National Research University Project.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaghi, O. M., Li, G. & Li, H. (1997). Chem. Mater. 9, 1074–1076.  CSD CrossRef CAS Web of Science Google Scholar
First citationZhang, J.-P., Huang, X.-C. & Chen, X.-M. (2009). Chem. Soc. Rev. 38, 2385–2396.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds