organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Bis(2-methyl­prop-2-eno­yl)-1H-benz­imidazol-2(3H)-one

aDepartment of Chemistry, University College of Engineering Panruti (A Constituent College of Anna University), Panruti 607 106, Tamilnadu, India, and bDepartment of Chemistry, IIT Madras, Chennai, TamilNadu, India
*Correspondence e-mail: hari_ran@yahoo.com

(Received 2 March 2013; accepted 25 April 2013; online 4 May 2013)

The mol­ecules of the title compound, C15H14N2O3, possesses crystallographically imposed twofold rotational symmetry, so the asymmetric unit contains one half-mol­ecule. The fused-ring system deviates significantly from planarity; the planes of the five- and six-membered rings are twisted with respect to each other by 3.0 (1)°. In the crystal, weak C—H⋯O hydrogen bonds link mol­ecules related by translation in [010] into chains.

Related literature

For applications of substituted benzimidazoles, see: Gravatt et al. (1994[Gravatt, G. L., Baguley, B. C., Wilson, W. R. & Denny, W. A. (1994). J. Med. Chem. 37, 4338-4345.]); Srikanth et al. (2011[Srikanth, L., Varunraj, V., Raghunandar, N. & Venkateshwerlu, L. (2011). Pharma Chem. 3, 172-193.]). For the crystal structures of related compounds, see: Ouzidan et al. (2011[Ouzidan, Y., Kandri Rodi, Y., Jasinski, J. P., Butcher, R. J., Golen, J. A. & El Ammari, L. (2011). Acta Cryst. E67, o1091.]); Kandri Rodi et al. (2011[Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011). Acta Cryst. E67, o3234.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O3

  • Mr = 270.28

  • Monoclinic, C 2/c

  • a = 16.6359 (9) Å

  • b = 8.8629 (5) Å

  • c = 9.6221 (4) Å

  • β = 102.775 (2)°

  • V = 1383.59 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.22 × 0.18 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.991

  • 4086 measured reflections

  • 1165 independent reflections

  • 1042 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.208

  • S = 1.16

  • 1165 reflections

  • 93 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.93 2.57 3.193 (3) 124
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Substituted benzimidazole derivatives have found wide range of therapeutic and pharmacological applications (Gravatt et al., 1994; Srikanth et al., 2011). Herewith we present the title compound, (I), which is a new derivative of benzimidazole.

In (I) (Fig. 1), all bond lengths and angles are normal and comparable with those reported for related compounds (Ouzidan et al., 2011; Kandri Rodi et al., 2011). The molecules in (I) possess a crystallographically imposed twofold rotational symmetry, with half of the molecule in the assymetric unit. The five- and six-membered rings are twisted with a dihedral angle of 3.0 (1)°.

In the crystal, weak intermolecular C—H···O hydrogen bonds (Table 1) link the molecules related by translation in [010] into chains.

Related literature top

For applications of substituted benzimidazoles, see: Gravatt et al. (1994); Srikanth et al. (2011). For the crystal structures of related compounds, see: Ouzidan et al. (2011); Kandri Rodi et al. (2011).

Experimental top

2-Hydroxy benzimidazole (1 g, 0.007 moles) and THF (100 ml) were placed in a 3-neck round bottomed flask. Methacrylic anhydride (2.29 g, 0.014 moles) was added slowly, using a syringe, with stirring. The mixture was allowed to cool to 0 °C using ice-salt mixture with stirring. The mixture was treated with sodium hydroxide (0.56 g, 0.014 moles) drop by drop and the amide formation reaction was allowed to stir for 6 h at RT. The resulting crude product was dissolved in ethyl acetate, washed with bicarbonate solution and then with water thrice followed by brine solution and dried over anhydrous sodium sulfate. The resulting solvent was removed by rotary evaporation. The product was purified by column chromatography technique using 12% ethyl acetate in hexane as the eluent to obtain a product as a bright white solid. Recrystallization of the compound from acetone gave X-ray diffraction quality crystals of (I).

Refinement top

All hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms with aromatic C—H = 0.93 Å, methylene C—H = 0.97 Å and methyl C—H = 0.96 Å. The displacement parameters were set as Uiso(H) = 1.2–1.5 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) showing the atomic numbering and 50% probability displacement ellipsoids [symmetry code: -x, y, 1/2 - z].
1,3-Bis(2-methylprop-2-enoyl)-1H-benzimidazol-2(3H)-one top
Crystal data top
C15H14N2O3F(000) = 568
Mr = 270.28Dx = 1.298 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3023 reflections
a = 16.6359 (9) Åθ = 2.6–28.4°
b = 8.8629 (5) ŵ = 0.09 mm1
c = 9.6221 (4) ÅT = 298 K
β = 102.775 (2)°Prism, colourless
V = 1383.59 (12) Å30.22 × 0.18 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1165 independent reflections
Radiation source: fine-focus sealed tube1042 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
phi and ω scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1619
Tmin = 0.980, Tmax = 0.991k = 1010
4086 measured reflectionsl = 117
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.208H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.1442P)2 + 0.5014P]
where P = (Fo2 + 2Fc2)/3
1165 reflections(Δ/σ)max < 0.001
93 parametersΔρmax = 0.41 e Å3
2 restraintsΔρmin = 0.36 e Å3
Crystal data top
C15H14N2O3V = 1383.59 (12) Å3
Mr = 270.28Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.6359 (9) ŵ = 0.09 mm1
b = 8.8629 (5) ÅT = 298 K
c = 9.6221 (4) Å0.22 × 0.18 × 0.10 mm
β = 102.775 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1165 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1042 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.991Rint = 0.014
4086 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0572 restraints
wR(F2) = 0.208H-atom parameters constrained
S = 1.16Δρmax = 0.41 e Å3
1165 reflectionsΔρmin = 0.36 e Å3
93 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.47013 (18)0.8707 (3)0.7898 (4)0.0750 (10)
H10.45080.96220.81670.090*
C20.43851 (17)0.7372 (3)0.8301 (3)0.0601 (8)
H20.39810.73700.88320.072*
C30.46936 (12)0.6045 (2)0.7882 (2)0.0444 (6)
C40.50000.3574 (3)0.75000.0437 (8)
C50.38571 (13)0.4045 (2)0.8743 (2)0.0461 (7)
C60.34437 (13)0.2572 (2)0.8323 (2)0.0529 (7)
N10.44820 (10)0.45224 (19)0.80638 (19)0.0430 (6)
O10.50000.2222 (2)0.75000.0654 (8)
O20.36526 (12)0.4856 (2)0.9606 (2)0.0703 (7)
C70.31257 (19)0.2319 (4)0.6791 (2)0.0781 (10)
H7A0.35770.21170.63450.117*
H7B0.28360.32010.63710.117*
H7C0.27570.14720.66550.117*
C80.3311 (2)0.1649 (4)0.9330 (3)0.0889 (11)
H8A0.29990.07790.90840.107*
H8B0.35290.18701.02840.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0787 (19)0.0326 (12)0.117 (3)0.0049 (10)0.0282 (17)0.0064 (13)
C20.0603 (15)0.0416 (13)0.0812 (19)0.0069 (10)0.0217 (14)0.0045 (11)
C30.0411 (11)0.0326 (12)0.0578 (14)0.0014 (7)0.0071 (10)0.0007 (8)
C40.0413 (15)0.0329 (14)0.0592 (19)0.0000.0162 (13)0.000
C50.0396 (11)0.0463 (13)0.0546 (14)0.0070 (8)0.0152 (10)0.0035 (9)
C60.0398 (12)0.0520 (13)0.0710 (17)0.0020 (9)0.0208 (11)0.0046 (10)
N10.0389 (9)0.0329 (10)0.0599 (12)0.0014 (6)0.0166 (8)0.0003 (7)
O10.0647 (16)0.0316 (13)0.111 (2)0.0000.0435 (15)0.000
O20.0726 (13)0.0674 (12)0.0816 (14)0.0023 (9)0.0399 (11)0.0090 (9)
C70.0629 (17)0.077 (2)0.089 (2)0.0211 (13)0.0050 (16)0.0023 (15)
C80.100 (2)0.081 (2)0.095 (2)0.0197 (18)0.0398 (19)0.0097 (17)
Geometric parameters (Å, º) top
C1—C1i1.382 (6)C5—O21.203 (3)
C1—C21.385 (4)C5—N11.410 (3)
C1—H10.9300C5—C61.489 (3)
C2—C31.378 (3)C6—C81.3242 (19)
C2—H20.9300C6—C71.4689 (19)
C3—C3i1.383 (4)C7—H7A0.9600
C3—N11.415 (3)C7—H7B0.9600
C4—O11.198 (4)C7—H7C0.9600
C4—N11.397 (2)C8—H8A0.9300
C4—N1i1.397 (2)C8—H8B0.9300
C1i—C1—C2121.28 (17)C8—C6—C7124.0 (3)
C1i—C1—H1119.4C8—C6—C5119.0 (2)
C2—C1—H1119.4C7—C6—C5116.65 (19)
C3—C2—C1117.3 (3)C4—N1—C5125.50 (19)
C3—C2—H2121.4C4—N1—C3109.53 (17)
C1—C2—H2121.4C5—N1—C3124.95 (17)
C2—C3—C3i121.42 (15)C6—C7—H7A109.5
C2—C3—N1131.2 (2)C6—C7—H7B109.5
C3i—C3—N1107.37 (11)H7A—C7—H7B109.5
O1—C4—N1127.01 (12)C6—C7—H7C109.5
O1—C4—N1i127.01 (12)H7A—C7—H7C109.5
N1—C4—N1i106.0 (2)H7B—C7—H7C109.5
O2—C5—N1119.4 (2)C6—C8—H8A120.0
O2—C5—C6121.8 (2)C6—C8—H8B120.0
N1—C5—C6118.77 (18)H8A—C8—H8B120.0
C1i—C1—C2—C30.3 (6)N1i—C4—N1—C31.51 (11)
C1—C2—C3—C3i1.4 (5)O2—C5—N1—C4153.7 (2)
C1—C2—C3—N1177.0 (2)C6—C5—N1—C428.9 (3)
O2—C5—C6—C846.6 (4)O2—C5—N1—C324.6 (3)
N1—C5—C6—C8136.0 (3)C6—C5—N1—C3152.8 (2)
O2—C5—C6—C7126.7 (3)C2—C3—N1—C4177.4 (2)
N1—C5—C6—C750.7 (3)C3i—C3—N1—C44.0 (3)
O1—C4—N1—C50.0 (2)C2—C3—N1—C51.1 (4)
N1i—C4—N1—C5180.0 (2)C3i—C3—N1—C5177.4 (2)
O1—C4—N1—C3178.48 (11)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1ii0.932.573.193 (3)124
Symmetry code: (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H14N2O3
Mr270.28
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)16.6359 (9), 8.8629 (5), 9.6221 (4)
β (°) 102.775 (2)
V3)1383.59 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.22 × 0.18 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.980, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
4086, 1165, 1042
Rint0.014
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.208, 1.16
No. of reflections1165
No. of parameters93
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.36

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.932.573.193 (3)124
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors acknowledge the Department of Chemistry, IIT Madras, for the data collection.

References

First citationBruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGravatt, G. L., Baguley, B. C., Wilson, W. R. & Denny, W. A. (1994). J. Med. Chem. 37, 4338–4345.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011). Acta Cryst. E67, o3234.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Jasinski, J. P., Butcher, R. J., Golen, J. A. & El Ammari, L. (2011). Acta Cryst. E67, o1091.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrikanth, L., Varunraj, V., Raghunandar, N. & Venkateshwerlu, L. (2011). Pharma Chem. 3, 172–193.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds