organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1,5-Di­phenyl­pent-2-en-4-yn-1-one

aDepartment of Chemistry and Chemical Technology, Togliatti State University, 14 Belorusskaya St, Togliatti 445667, Russian Federation, and bX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St, B-334, Moscow 119991, Russian Federation
*Correspondence e-mail: a.s.bunev@gmail.com

(Received 4 May 2013; accepted 13 May 2013; online 18 May 2013)

The title compound, C17H12O, has an E conformation about the C=C bond. The C—C≡C—C torsion angle is 7.7 (2)°, and the mean planes of the phenyl­ethyl­enone [r.m.s. deviation = 0.059 (1) Å] and phenyl­acetyl­ene [r.m.s. deviation = 0.023 (1) Å] fragments form a dihedral angle of 14.16 (7)°. In the crystal, weak C—H⋯O inter­actions link the mol­ecules into zigzag chains propagated in [010].

Related literature

For the synthesis and properties of enynones, see: Toshima et al. (1999[Toshima, H., Aramaki, H. & Ichihara, A. (1999). Tetrahedron Lett. 40, 3587-3590.]); Ohe et al. (2002[Ohe, K., Yokoi, T., Miki, K. & Uemura, S. (2002). J. Am. Chem. Soc. 124, 526-527.]); Miki et al. (2002[Miki, K., Nishino, F., Ohe, K. & Uemura, S. (2002). J. Am. Chem. Soc. 124, 5260-5261.]); Kuroda et al. (2004[Kuroda, H., Hanaki, E., Izawa, H., Kano, M. & Itahashi, H. (2004). Tetrahedron, 60, 1913-1920.]); Casey & Strotman (2005[Casey, C. P. & Strotman, N. A. (2005). J. Org. Chem. 70, 2576-2581.]). For the crystal structures of related compounds, see: König et al. (1995[König, B., Bubenitschek, P. & Jones, P. G. (1995). Liebigs Ann. pp. 195-198.]); Chen & Liu (2008[Chen, J. & Liu, Y. (2008). Tetrahedron Lett. 49, 6655-6658.]); Lu et al. (2009[Lu, Y., Du, X., Jia, X. & Liu, Y. (2009). Adv. Synth. Catal. 351, 1517-1522.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12O

  • Mr = 232.27

  • Orthorhombic, P 21 21 21

  • a = 5.4696 (4) Å

  • b = 13.7164 (10) Å

  • c = 16.3117 (11) Å

  • V = 1223.76 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 120 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.977, Tmax = 0.985

  • 15765 measured reflections

  • 3576 independent reflections

  • 2987 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.107

  • S = 1.07

  • 3576 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O1i 0.95 2.54 3.165 (2) 124
C17—H17⋯O1i 0.95 2.61 3.202 (2) 121
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

cis- and trans-Enynones are important building blocks in organic synthesis, particularly, in total synthesis of natural products (Toshima et al., 1999), in reactions of conjugated addition (Kuroda et al., 2004; Casey & Strotman, 2005), in metal catalyzed furan formations via 2-furyl carbene complexes (Miki et al., 2002), and as substrate precursors in [3,3]-sigmatropic rearrangement (Ohe et al., 2002). In this work, we present the title compound, I, prepared by the condensation reaction of 3-phenylpropiolaldehyde with acetophenone at reduced temperature (0–5°C) (Fig. 1).

Compound I represents the E-isomer about the C2C3 bond and adopts almost planar structure (Figure 2). The small folding of 14.16 (7)° is between the mean planes of the phenylethylenone (O1/C1/C2/C3/C6/C7/C8/C9/C10/C11, r.m.s. deviation = 0.059 (1) Å) and phenylacetylene (C3/C4/C5/C12/C13/C14/C15/C16/C17, r.m.s. deviation = 0.023 (1) Å) fragments. The C3—C4C5—C12 torsion angle is 7.7 (2)°, and the bond elongations observed within the C3—C4C5—C12 acetylene fragment (C3—C4 1.419 (3) Å, C5—C12 1.432 (2) Å, C4C5 1.201 (3) Å) are characteristic for compounds of this type (König et al., 1995; Chen & Liu, 2008; Lu et al., 2009).

In the crystal, the molecules of I form zigzag chains along the b axis by the weak intermolecular C—H···O hydrogen bonds (Table 1). The crystal packing of the chains is stacking along the a axis (Figure 3).

Related literature top

For the synthesis and properties of enynones, see: Toshima et al. (1999); Ohe et al. (2002); Miki et al. (2002); Kuroda et al. (2004); Casey & Strotman (2005). For the crystal structures of related compounds, see: König et al. (1995); Chen & Liu (2008); Lu et al. (2009).

Experimental top

A solution of sodium hydroxide (0.24 g, 6 mmol) in H2O (1 ml) was added dropwise over 15 min to a mixture of 3-phenylpropiolaldehyde (1.0 g, 8 mmol) and acetophenone (0.9 ml, 0.93 g, 8 mmol) in 50% EtOH (10 ml) cooled to 0°C. During the reaction, the temperature was not allowed to exceed 5 °C. The mixture was stirred for 10 h. The precipitated solid was filtered and crystallized from EtOH. Yield is 86%. The single-crystal of the product was obtained by slow crystallization from methanol. M.p. = 372–373 K. IR (KBr), ν/cm-1: 3063, 2191, 1661, 1597, 1580, 1337, 1308, 1254, 1211. 1H NMR (400 MHz, CDCl3, 303 K): δ = 7.13 (d, 1H, J = 15.6), 7.33–7.37 (m, 3H), 7.43 (d, 1H, J = 15.2), 7.47–7.53 (m, 4H), 7.55–7.57 (m, 1H), 7.96–7.99 (m, 2H). 13C NMR (100 MHz, CDCl3, 303 K): δ = 87.7, 99.3, 122.2, 125.1, 128.5, 128.5, 128.7, 129.4, 132.0, 133.0, 137.2, 133.2, 188.8. Anal. Calcd. for C17H12O: C, 87.90; H, 5.21. Found: C, 87.78; H, 5.29.

Refinement top

All hydrogen atoms were placed in the calculated positions with C—H = 0.95 Å and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].

Structure description top

cis- and trans-Enynones are important building blocks in organic synthesis, particularly, in total synthesis of natural products (Toshima et al., 1999), in reactions of conjugated addition (Kuroda et al., 2004; Casey & Strotman, 2005), in metal catalyzed furan formations via 2-furyl carbene complexes (Miki et al., 2002), and as substrate precursors in [3,3]-sigmatropic rearrangement (Ohe et al., 2002). In this work, we present the title compound, I, prepared by the condensation reaction of 3-phenylpropiolaldehyde with acetophenone at reduced temperature (0–5°C) (Fig. 1).

Compound I represents the E-isomer about the C2C3 bond and adopts almost planar structure (Figure 2). The small folding of 14.16 (7)° is between the mean planes of the phenylethylenone (O1/C1/C2/C3/C6/C7/C8/C9/C10/C11, r.m.s. deviation = 0.059 (1) Å) and phenylacetylene (C3/C4/C5/C12/C13/C14/C15/C16/C17, r.m.s. deviation = 0.023 (1) Å) fragments. The C3—C4C5—C12 torsion angle is 7.7 (2)°, and the bond elongations observed within the C3—C4C5—C12 acetylene fragment (C3—C4 1.419 (3) Å, C5—C12 1.432 (2) Å, C4C5 1.201 (3) Å) are characteristic for compounds of this type (König et al., 1995; Chen & Liu, 2008; Lu et al., 2009).

In the crystal, the molecules of I form zigzag chains along the b axis by the weak intermolecular C—H···O hydrogen bonds (Table 1). The crystal packing of the chains is stacking along the a axis (Figure 3).

For the synthesis and properties of enynones, see: Toshima et al. (1999); Ohe et al. (2002); Miki et al. (2002); Kuroda et al. (2004); Casey & Strotman (2005). For the crystal structures of related compounds, see: König et al. (1995); Chen & Liu (2008); Lu et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The condensation reaction of 3-phenylpropiolaldehyde with acetophenone.
[Figure 2] Fig. 2. Molecular structure of I. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 3] Fig. 3. A portion of the crystal structure demonstrating the H-bonded zigzag chains of I along the b axis. The weak intermolecular C—H···O hydrogen bonds are depicted by dashed lines.
(E)-1,5-Diphenylpent-2-en-4-yn-1-one top
Crystal data top
C17H12OF(000) = 488
Mr = 232.27Dx = 1.261 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2940 reflections
a = 5.4696 (4) Åθ = 2.5–31.0°
b = 13.7164 (10) ŵ = 0.08 mm1
c = 16.3117 (11) ÅT = 120 K
V = 1223.76 (15) Å3Prism, yellow
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
3576 independent reflections
Radiation source: fine-focus sealed tube2987 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
φ and ω scansθmax = 30.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 77
Tmin = 0.977, Tmax = 0.985k = 1919
15765 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0338P)2 + 0.3124P]
where P = (Fo2 + 2Fc2)/3
3576 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C17H12OV = 1223.76 (15) Å3
Mr = 232.27Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.4696 (4) ŵ = 0.08 mm1
b = 13.7164 (10) ÅT = 120 K
c = 16.3117 (11) Å0.30 × 0.25 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
3576 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2987 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.985Rint = 0.058
15765 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.07Δρmax = 0.20 e Å3
3576 reflectionsΔρmin = 0.28 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1245 (3)0.55925 (10)0.38879 (8)0.0335 (4)
C10.2582 (3)0.54777 (13)0.44784 (10)0.0206 (4)
C20.4701 (4)0.48088 (14)0.44289 (11)0.0256 (4)
H20.58330.47840.48700.031*
C30.5045 (3)0.42448 (13)0.37800 (11)0.0244 (4)
H30.39300.43100.33370.029*
C40.6951 (3)0.35500 (13)0.36950 (11)0.0236 (4)
C50.8456 (3)0.29185 (13)0.36230 (10)0.0220 (4)
C60.2084 (3)0.60079 (12)0.52645 (11)0.0186 (3)
C70.0018 (3)0.65863 (13)0.53149 (11)0.0229 (4)
H70.10860.66340.48570.027*
C80.0548 (3)0.70902 (13)0.60295 (11)0.0243 (4)
H80.19890.74740.60620.029*
C90.1022 (3)0.70358 (13)0.66981 (12)0.0252 (4)
H90.06610.73860.71860.030*
C100.3109 (4)0.64699 (14)0.66512 (12)0.0259 (4)
H100.41860.64340.71070.031*
C110.3639 (3)0.59521 (13)0.59370 (11)0.0210 (4)
H110.50690.55600.59100.025*
C121.0198 (3)0.21457 (12)0.35339 (10)0.0198 (4)
C131.2102 (4)0.20245 (14)0.40995 (11)0.0239 (4)
H131.22280.24510.45570.029*
C141.3797 (4)0.12875 (13)0.39951 (12)0.0265 (4)
H141.50790.12070.43820.032*
C151.3632 (4)0.06627 (13)0.33257 (12)0.0254 (4)
H151.48130.01620.32530.031*
C161.1752 (3)0.07688 (13)0.27652 (11)0.0240 (4)
H161.16320.03370.23120.029*
C171.0046 (3)0.15044 (13)0.28663 (10)0.0213 (4)
H170.87600.15760.24800.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0380 (8)0.0373 (8)0.0251 (7)0.0140 (7)0.0102 (6)0.0036 (6)
C10.0223 (9)0.0184 (8)0.0211 (8)0.0014 (7)0.0001 (7)0.0016 (7)
C20.0276 (10)0.0249 (9)0.0242 (9)0.0061 (8)0.0026 (8)0.0011 (8)
C30.0264 (9)0.0247 (9)0.0222 (9)0.0025 (8)0.0001 (8)0.0028 (7)
C40.0277 (9)0.0242 (9)0.0190 (8)0.0007 (8)0.0016 (8)0.0004 (7)
C50.0261 (9)0.0226 (8)0.0174 (8)0.0030 (8)0.0037 (7)0.0017 (7)
C60.0194 (8)0.0154 (8)0.0211 (8)0.0025 (7)0.0028 (7)0.0020 (6)
C70.0219 (9)0.0209 (9)0.0258 (9)0.0018 (8)0.0007 (8)0.0035 (7)
C80.0215 (9)0.0192 (9)0.0323 (10)0.0016 (7)0.0049 (8)0.0005 (8)
C90.0268 (10)0.0209 (9)0.0278 (9)0.0029 (8)0.0050 (8)0.0056 (8)
C100.0253 (9)0.0286 (9)0.0237 (9)0.0024 (8)0.0024 (8)0.0033 (8)
C110.0178 (8)0.0208 (8)0.0246 (9)0.0013 (7)0.0005 (7)0.0001 (7)
C120.0235 (9)0.0186 (8)0.0172 (8)0.0030 (7)0.0055 (7)0.0013 (6)
C130.0280 (9)0.0243 (9)0.0194 (8)0.0031 (8)0.0001 (7)0.0000 (7)
C140.0227 (9)0.0268 (10)0.0300 (10)0.0027 (8)0.0068 (8)0.0058 (8)
C150.0221 (9)0.0223 (9)0.0319 (10)0.0031 (8)0.0027 (8)0.0020 (8)
C160.0276 (10)0.0214 (9)0.0230 (9)0.0012 (8)0.0031 (8)0.0018 (7)
C170.0218 (9)0.0229 (9)0.0193 (8)0.0015 (8)0.0002 (7)0.0021 (7)
Geometric parameters (Å, º) top
O1—C11.220 (2)C9—H90.9500
C1—C21.480 (3)C10—C111.395 (2)
C1—C61.499 (2)C10—H100.9500
C2—C31.324 (3)C11—H110.9500
C2—H20.9500C12—C131.401 (2)
C3—C41.419 (3)C12—C171.402 (2)
C3—H30.9500C13—C141.382 (3)
C4—C51.201 (3)C13—H130.9500
C5—C121.432 (2)C14—C151.391 (3)
C6—C111.390 (2)C14—H140.9500
C6—C71.399 (2)C15—C161.384 (3)
C7—C81.386 (2)C15—H150.9500
C7—H70.9500C16—C171.384 (3)
C8—C91.390 (3)C16—H160.9500
C8—H80.9500C17—H170.9500
C9—C101.383 (3)
O1—C1—C2120.42 (16)C9—C10—H10119.9
O1—C1—C6120.26 (16)C11—C10—H10119.9
C2—C1—C6119.33 (16)C6—C11—C10120.25 (17)
C3—C2—C1121.14 (17)C6—C11—H11119.9
C3—C2—H2119.4C10—C11—H11119.9
C1—C2—H2119.4C13—C12—C17118.73 (17)
C2—C3—C4125.09 (18)C13—C12—C5121.01 (16)
C2—C3—H3117.5C17—C12—C5120.25 (16)
C4—C3—H3117.5C14—C13—C12120.28 (17)
C5—C4—C3176.0 (2)C14—C13—H13119.9
C4—C5—C12178.4 (2)C12—C13—H13119.9
C11—C6—C7119.19 (16)C13—C14—C15120.25 (17)
C11—C6—C1122.47 (16)C13—C14—H14119.9
C7—C6—C1118.34 (16)C15—C14—H14119.9
C8—C7—C6120.27 (17)C16—C15—C14120.14 (18)
C8—C7—H7119.9C16—C15—H15119.9
C6—C7—H7119.9C14—C15—H15119.9
C7—C8—C9120.27 (17)C15—C16—C17119.92 (17)
C7—C8—H8119.9C15—C16—H16120.0
C9—C8—H8119.9C17—C16—H16120.0
C10—C9—C8119.78 (17)C16—C17—C12120.67 (17)
C10—C9—H9120.1C16—C17—H17119.7
C8—C9—H9120.1C12—C17—H17119.7
C9—C10—C11120.24 (18)
O1—C1—C2—C37.3 (3)C8—C9—C10—C110.2 (3)
C6—C1—C2—C3172.28 (18)C7—C6—C11—C100.2 (3)
C1—C2—C3—C4176.86 (17)C1—C6—C11—C10179.16 (17)
O1—C1—C6—C11175.68 (18)C9—C10—C11—C60.6 (3)
C2—C1—C6—C114.8 (3)C17—C12—C13—C140.3 (3)
O1—C1—C6—C73.7 (3)C5—C12—C13—C14178.64 (17)
C2—C1—C6—C7175.85 (16)C12—C13—C14—C150.3 (3)
C3—C4—C5—C127.7 (2)C13—C14—C15—C160.7 (3)
C11—C6—C7—C80.5 (3)C14—C15—C16—C170.7 (3)
C1—C6—C7—C8179.91 (17)C15—C16—C17—C120.1 (3)
C6—C7—C8—C90.9 (3)C13—C12—C17—C160.3 (3)
C7—C8—C9—C100.5 (3)C5—C12—C17—C16178.58 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O1i0.952.543.165 (2)124
C17—H17···O1i0.952.613.202 (2)121
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H12O
Mr232.27
Crystal system, space groupOrthorhombic, P212121
Temperature (K)120
a, b, c (Å)5.4696 (4), 13.7164 (10), 16.3117 (11)
V3)1223.76 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.977, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
15765, 3576, 2987
Rint0.058
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.107, 1.07
No. of reflections3576
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.28

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O1i0.952.543.165 (2)124
C17—H17···O1i0.952.613.202 (2)121
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Ministry of Education and Science of the Russian Federation (State program No. 3.1168.2011).

References

First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasey, C. P. & Strotman, N. A. (2005). J. Org. Chem. 70, 2576–2581.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChen, J. & Liu, Y. (2008). Tetrahedron Lett. 49, 6655–6658.  Web of Science CSD CrossRef CAS Google Scholar
First citationKönig, B., Bubenitschek, P. & Jones, P. G. (1995). Liebigs Ann. pp. 195–198.  Google Scholar
First citationKuroda, H., Hanaki, E., Izawa, H., Kano, M. & Itahashi, H. (2004). Tetrahedron, 60, 1913–1920.  Web of Science CrossRef CAS Google Scholar
First citationLu, Y., Du, X., Jia, X. & Liu, Y. (2009). Adv. Synth. Catal. 351, 1517–1522.  Web of Science CSD CrossRef CAS Google Scholar
First citationMiki, K., Nishino, F., Ohe, K. & Uemura, S. (2002). J. Am. Chem. Soc. 124, 5260–5261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOhe, K., Yokoi, T., Miki, K. & Uemura, S. (2002). J. Am. Chem. Soc. 124, 526–527.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToshima, H., Aramaki, H. & Ichihara, A. (1999). Tetrahedron Lett. 40, 3587–3590.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds