organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o947-o948

Ethyl 4-anilino-2,6-bis­­(4-chloro­phen­yl)-1-phenyl-1,2,5,6-tetra­hydro­pyridine-3-carboxyl­ate

aDepartment of Chemistry, College of Science, China University of Petroleum, Qingdao 266555, People's Republic of China, and bState Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266555, People's Republic of China
*Correspondence e-mail: zfyancat@163.com

(Received 6 May 2013; accepted 17 May 2013; online 22 May 2013)

The title compound, C32H28Cl2N2O2, was synthesized by a multicomponent reaction of 4-chloro­benzaldehyde, aniline and ethyl aceto­acetate. The central 1,2,5,6-tetra­hydro­pyridine ring exhibits a distorted boat conformation and the two chloro­phenyl rings attached to the central ring at positions 2 and 6 are oriented in opposite directions. The two O atoms of the eth­oxy­carbonyl group are involved in intra­molecular N—H⋯O and C—H⋯O hydrogen bonds. In the crystal, weak C—H⋯O hydrogen bonds link mol­ecules related by translation along the b axis into chains.

Related literature

For applications of functionalized piperidines, see: Viegas et al. (2004[Viegas, C., Bolzani, J. V. S., Furlan, M., Barreiro, E. J., Young, M. C. M., Tomazela, D. & Eberlin, M. N. (2004). J. Nat. Prod. 67, 908-910.]); Kobayashi et al. (1999[Kobayashi, S., Ueno, M., Suzuki, R., Ishitani, H., Kim, H. S. & Wataya, Y. (1999). J. Org. Chem. 64, 6833-6841.]). For the crystal structures of related compounds, see: Khan et al. (2008[Khan, A. T., Parvin, T. & Choudhury, L. H. (2008). J. Org. Chem. 73, 8398-8402.]); Brahmachari & Das (2012[Brahmachari, G. & Das, S. (2012). Tetrahedron Lett. 53, 1479-1484.]).

[Scheme 1]

Experimental

Crystal data
  • C32H28Cl2N2O2

  • Mr = 543.46

  • Triclinic, [P \overline 1]

  • a = 9.559 (4) Å

  • b = 9.656 (3) Å

  • c = 16.392 (6) Å

  • α = 78.584 (6)°

  • β = 82.056 (6)°

  • γ = 68.390 (6)°

  • V = 1375.3 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 296 K

  • 0.26 × 0.22 × 0.19 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.934, Tmax = 0.951

  • 6863 measured reflections

  • 4767 independent reflections

  • 3177 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.310

  • S = 1.08

  • 4767 reflections

  • 344 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 2.02 2.659 (5) 130
C4—H4⋯O2 0.98 2.30 2.761 (5) 108
C22—H22⋯O1i 0.93 2.69 3.287 (6) 122
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Functionalized piperidines occur with great regularity in the natural product arena and as important units in pharmaceuticals (Viegas et al., 2004; Kobayashi et al., 1999). As a continuation of structural study of functionalized piperidines (Brahmachari et al., 2012; Khan et al., 2008), herewith we present the title compound.

In (I) (Fig. 1), the bond lengths and angles are normal and correspond to those observed in anti-ethyl 4-anilino-1,2,6-triphenyl-1,2,5,6-tetrahydro-3- pyridinecarboxylate and ethyl 4-anilino-1,2,6-triphenyl-1,2,5,6-tetrahydropyridine-3-carboxylate (Khan et al., 2008; Brahmachari et al., 2012). The molecule of (I) contains one 1,2,5,6-tetrahydropyridine ring, ester group and four benzene rings. The central 1,2,5,6-tetrahydropyridine ring exhibits a distorted boat conformation, with the benzene rings attached to the C1, C3, N2 and C4 atoms. Two p-chorobenzene groups lie in the trans- position of the boat. The dihedral angles between the phenyl ring C6—C11 and phenyl rings C12—C17, C18—C23 and C24—C29 are 39.87 (1)°,85.04 (1)° and 65.60 (1)°, respectively. Two O atoms of the ethoxycarbonyl group are involved in intramolecular hydrogen bonds, N—H···O and C—H···O (Table 1), respectively.

In the crystal, weak intermolecular C—H···O hydrogen bonds (Table 1) link the molecules related by translation along the b axis into chains.

Related literature top

For applications of functionalized piperidines, see: Viegas et al. (2004); Kobayashi et al. (1999). For the crystal structures of related compounds, see: Khan et al. (2008); Brahmachari & Das (2012).

Experimental top

A 50 ml flask was charged with a magnetic stir bar, p-chlorobenzaldehyde (5 mmol), ethylacetoacetate (2.5 mmol) and bismuth nitrate (0.005 mmol) in 10 ml e thanol; the mixture was then started to stir at room temperature. After 1 h min, p-chlorobenzaldehyde (5 mmol) was added to the reaction mixture and stirring was continued up to completion of the reaction as monitored by TLC. After completion of the reaction, a thick precipitate was obtained. The solid was dissolved in hot ethyl acetate-ethanol mixture, the filtrate on standing afforded crystals of the pure product.

Refinement top

All H atoms were placed in geometrically idealized positions (C—H 0.93–0.97 Å, N—H 0.86 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2–1.5Ueq(C, N).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering and 30% probabilty displacement ellipsoids. H atoms omitted for clarity.
Ethyl 4-anilino-2,6-bis(4-chlorophenyl)-1-phenyl-1,2,5,6-tetrahydropyridine-3-carboxylate top
Crystal data top
C32H28Cl2N2O2Z = 2
Mr = 543.46F(000) = 568
Triclinic, P1Dx = 1.312 Mg m3
a = 9.559 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.656 (3) ÅCell parameters from 1798 reflections
c = 16.392 (6) Åθ = 2.5–25.5°
α = 78.584 (6)°µ = 0.27 mm1
β = 82.056 (6)°T = 296 K
γ = 68.390 (6)°Block, yellow
V = 1375.3 (8) Å30.26 × 0.22 × 0.19 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4767 independent reflections
Radiation source: fine-focus sealed tube3177 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
phi and ω scansθmax = 25.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.934, Tmax = 0.951k = 118
6863 measured reflectionsl = 1915
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.310H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.2P)2 + 0.5326P]
where P = (Fo2 + 2Fc2)/3
4767 reflections(Δ/σ)max = 0.019
344 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C32H28Cl2N2O2γ = 68.390 (6)°
Mr = 543.46V = 1375.3 (8) Å3
Triclinic, P1Z = 2
a = 9.559 (4) ÅMo Kα radiation
b = 9.656 (3) ŵ = 0.27 mm1
c = 16.392 (6) ÅT = 296 K
α = 78.584 (6)°0.26 × 0.22 × 0.19 mm
β = 82.056 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4767 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3177 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.951Rint = 0.022
6863 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.310H-atom parameters constrained
S = 1.08Δρmax = 0.49 e Å3
4767 reflectionsΔρmin = 0.47 e Å3
344 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.27799 (17)0.38291 (18)0.06256 (10)0.0849 (6)
Cl20.09798 (15)1.31946 (16)0.46084 (8)0.0691 (5)
N10.6407 (5)0.5253 (4)0.3247 (2)0.0506 (9)
H10.60270.49770.28890.061*
N20.7215 (4)0.9294 (4)0.2401 (2)0.0402 (8)
O10.4493 (4)0.6217 (4)0.2051 (2)0.0678 (10)
O20.4070 (4)0.8552 (4)0.1351 (2)0.0603 (9)
C10.6425 (5)0.6679 (5)0.3057 (3)0.0419 (10)
C20.7482 (5)0.7082 (5)0.3480 (2)0.0421 (9)
H2A0.82120.61700.37540.051*
H2B0.69200.76930.39020.051*
C30.8308 (5)0.7960 (4)0.2840 (2)0.0405 (9)
H30.88820.83100.31520.049*
C40.5689 (4)0.9325 (4)0.2344 (2)0.0371 (9)
H40.54100.98010.17750.045*
C50.5638 (4)0.7749 (4)0.2465 (2)0.0388 (9)
C60.6926 (5)0.4163 (5)0.3953 (3)0.0494 (11)
C70.7525 (6)0.2653 (5)0.3857 (4)0.0641 (13)
H70.76380.23890.33300.077*
C80.7951 (8)0.1552 (7)0.4538 (5)0.088 (2)
H80.83240.05420.44720.106*
C90.7834 (9)0.1921 (9)0.5310 (5)0.099 (3)
H90.81700.11700.57640.119*
C100.7204 (7)0.3435 (8)0.5415 (4)0.0806 (18)
H100.70770.36910.59450.097*
C110.6774 (6)0.4544 (6)0.4736 (3)0.0603 (13)
H110.63790.55530.48040.072*
C120.9429 (4)0.6958 (4)0.2266 (2)0.0382 (9)
C130.9158 (5)0.7039 (5)0.1448 (3)0.0454 (10)
H130.82670.77310.12350.054*
C141.0212 (5)0.6088 (5)0.0943 (3)0.0516 (11)
H141.00370.61570.03900.062*
C151.1500 (5)0.5056 (5)0.1261 (3)0.0503 (11)
C161.1801 (5)0.4959 (5)0.2059 (3)0.0584 (13)
H161.26910.42530.22670.070*
C171.0788 (5)0.5906 (5)0.2554 (3)0.0469 (10)
H171.10070.58500.30980.056*
C180.7597 (5)1.0556 (4)0.2053 (2)0.0403 (9)
C190.9054 (5)1.0534 (5)0.2023 (3)0.0464 (10)
H190.98130.96530.22300.056*
C200.9399 (6)1.1826 (6)0.1684 (3)0.0581 (12)
H201.03861.17940.16750.070*
C210.8328 (6)1.3126 (5)0.1367 (3)0.0603 (13)
H210.85701.39800.11460.072*
C220.6888 (6)1.3157 (5)0.1378 (3)0.0541 (12)
H220.61481.40360.11510.065*
C230.6513 (5)1.1904 (5)0.1721 (3)0.0463 (10)
H230.55191.19590.17310.056*
C240.4517 (4)1.0286 (4)0.2940 (2)0.0362 (9)
C250.4924 (5)1.0732 (5)0.3592 (3)0.0504 (11)
H250.59401.04380.36830.060*
C260.3851 (5)1.1606 (6)0.4112 (3)0.0552 (12)
H260.41371.18950.45520.066*
C270.2356 (5)1.2047 (5)0.3973 (3)0.0472 (10)
C280.1902 (5)1.1639 (5)0.3319 (3)0.0502 (11)
H280.08861.19530.32230.060*
C290.2995 (5)1.0758 (5)0.2818 (3)0.0462 (10)
H290.27051.04660.23790.055*
C300.4708 (5)0.7404 (5)0.1958 (3)0.0453 (10)
C310.3141 (7)0.8271 (7)0.0817 (4)0.0794 (18)
H31A0.23090.80390.11480.095*
H31B0.37360.74200.05380.095*
C320.2570 (9)0.9630 (8)0.0205 (4)0.096 (2)
H32A0.18941.04370.04830.145*
H32B0.20420.94380.01930.145*
H32C0.33990.99080.00790.145*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0700 (10)0.0711 (10)0.0914 (11)0.0050 (7)0.0067 (8)0.0297 (8)
Cl20.0595 (8)0.0782 (9)0.0611 (8)0.0053 (6)0.0006 (6)0.0325 (7)
N10.065 (2)0.0365 (19)0.056 (2)0.0222 (17)0.0190 (18)0.0033 (16)
N20.0390 (18)0.0324 (17)0.049 (2)0.0133 (14)0.0061 (15)0.0038 (14)
O10.076 (2)0.0438 (19)0.095 (3)0.0248 (17)0.043 (2)0.0047 (18)
O20.079 (2)0.0481 (18)0.059 (2)0.0205 (17)0.0343 (17)0.0056 (15)
C10.049 (2)0.037 (2)0.044 (2)0.0191 (18)0.0037 (18)0.0065 (17)
C20.045 (2)0.044 (2)0.039 (2)0.0160 (19)0.0061 (17)0.0052 (17)
C30.050 (2)0.035 (2)0.041 (2)0.0171 (18)0.0121 (18)0.0060 (17)
C40.037 (2)0.037 (2)0.039 (2)0.0149 (17)0.0053 (16)0.0046 (16)
C50.038 (2)0.036 (2)0.044 (2)0.0111 (17)0.0048 (17)0.0114 (17)
C60.050 (3)0.041 (2)0.059 (3)0.023 (2)0.011 (2)0.005 (2)
C70.069 (3)0.046 (3)0.080 (4)0.023 (2)0.012 (3)0.004 (2)
C80.085 (4)0.051 (3)0.126 (6)0.028 (3)0.035 (4)0.018 (4)
C90.106 (5)0.088 (5)0.105 (6)0.053 (4)0.041 (4)0.044 (4)
C100.080 (4)0.103 (5)0.062 (3)0.047 (4)0.009 (3)0.011 (3)
C110.057 (3)0.068 (3)0.053 (3)0.026 (3)0.007 (2)0.003 (2)
C120.038 (2)0.031 (2)0.044 (2)0.0117 (17)0.0122 (16)0.0014 (16)
C130.044 (2)0.041 (2)0.045 (2)0.0073 (18)0.0086 (18)0.0044 (18)
C140.052 (3)0.051 (3)0.047 (2)0.012 (2)0.007 (2)0.010 (2)
C150.044 (2)0.040 (2)0.064 (3)0.014 (2)0.001 (2)0.006 (2)
C160.043 (3)0.045 (3)0.074 (3)0.003 (2)0.017 (2)0.006 (2)
C170.037 (2)0.045 (2)0.053 (2)0.0064 (19)0.0157 (18)0.0011 (19)
C180.054 (2)0.032 (2)0.039 (2)0.0166 (18)0.0011 (17)0.0121 (16)
C190.049 (2)0.045 (2)0.050 (2)0.021 (2)0.0018 (19)0.0106 (19)
C200.069 (3)0.062 (3)0.054 (3)0.038 (3)0.006 (2)0.006 (2)
C210.071 (3)0.046 (3)0.067 (3)0.028 (3)0.001 (3)0.004 (2)
C220.072 (3)0.036 (2)0.053 (3)0.017 (2)0.005 (2)0.007 (2)
C230.054 (3)0.040 (2)0.045 (2)0.017 (2)0.0001 (19)0.0088 (18)
C240.042 (2)0.0295 (19)0.038 (2)0.0125 (16)0.0084 (16)0.0028 (15)
C250.046 (2)0.058 (3)0.052 (2)0.017 (2)0.0110 (19)0.016 (2)
C260.055 (3)0.069 (3)0.048 (3)0.021 (2)0.002 (2)0.027 (2)
C270.053 (3)0.043 (2)0.044 (2)0.013 (2)0.0071 (19)0.0077 (18)
C280.040 (2)0.048 (3)0.058 (3)0.005 (2)0.013 (2)0.011 (2)
C290.050 (2)0.041 (2)0.050 (2)0.0119 (19)0.0154 (19)0.0117 (19)
C300.042 (2)0.037 (2)0.056 (3)0.0080 (18)0.0125 (19)0.0126 (19)
C310.094 (4)0.069 (4)0.081 (4)0.018 (3)0.046 (3)0.018 (3)
C320.119 (6)0.091 (5)0.070 (4)0.010 (4)0.045 (4)0.020 (3)
Geometric parameters (Å, º) top
Cl1—C151.747 (5)C13—C141.390 (6)
Cl2—C271.746 (5)C13—H130.9300
N1—C11.356 (5)C14—C151.360 (6)
N1—C61.410 (6)C14—H140.9300
N1—H10.8600C15—C161.356 (7)
N2—C181.393 (5)C16—C171.363 (7)
N2—C31.455 (5)C16—H160.9300
N2—C41.463 (5)C17—H170.9300
O1—C301.215 (5)C18—C191.379 (6)
O2—C301.350 (5)C18—C231.395 (6)
O2—C311.454 (6)C19—C201.397 (6)
C1—C51.344 (6)C19—H190.9300
C1—C21.499 (6)C20—C211.355 (7)
C2—C31.534 (6)C20—H200.9300
C2—H2A0.9700C21—C221.363 (7)
C2—H2B0.9700C21—H210.9300
C3—C121.513 (6)C22—C231.379 (6)
C3—H30.9800C22—H220.9300
C4—C51.513 (5)C23—H230.9300
C4—C241.537 (5)C24—C251.379 (6)
C4—H40.9800C24—C291.386 (6)
C5—C301.458 (6)C25—C261.377 (6)
C6—C111.378 (7)C25—H250.9300
C6—C71.389 (7)C26—C271.370 (6)
C7—C81.371 (8)C26—H260.9300
C7—H70.9300C27—C281.384 (6)
C8—C91.359 (11)C28—C291.370 (6)
C8—H80.9300C28—H280.9300
C9—C101.397 (10)C29—H290.9300
C9—H90.9300C31—C321.460 (8)
C10—C111.373 (8)C31—H31A0.9700
C10—H100.9300C31—H31B0.9700
C11—H110.9300C32—H32A0.9600
C12—C131.382 (6)C32—H32B0.9600
C12—C171.397 (5)C32—H32C0.9600
C1—N1—C6128.7 (4)C16—C15—Cl1119.8 (4)
C1—N1—H1115.7C14—C15—Cl1119.0 (4)
C6—N1—H1115.7C15—C16—C17119.4 (4)
C18—N2—C3120.5 (3)C15—C16—H16120.3
C18—N2—C4119.7 (3)C17—C16—H16120.3
C3—N2—C4119.8 (3)C16—C17—C12121.6 (4)
C30—O2—C31116.2 (4)C16—C17—H17119.2
C5—C1—N1124.8 (4)C12—C17—H17119.2
C5—C1—C2116.4 (3)C19—C18—N2121.8 (4)
N1—C1—C2118.7 (4)C19—C18—C23117.1 (4)
C1—C2—C3110.2 (3)N2—C18—C23121.1 (4)
C1—C2—H2A109.6C18—C19—C20120.5 (4)
C3—C2—H2A109.6C18—C19—H19119.7
C1—C2—H2B109.6C20—C19—H19119.7
C3—C2—H2B109.6C21—C20—C19121.4 (5)
H2A—C2—H2B108.1C21—C20—H20119.3
N2—C3—C12113.6 (3)C19—C20—H20119.3
N2—C3—C2109.8 (3)C20—C21—C22118.7 (4)
C12—C3—C2111.5 (3)C20—C21—H21120.6
N2—C3—H3107.2C22—C21—H21120.6
C12—C3—H3107.2C21—C22—C23121.0 (5)
C2—C3—H3107.2C21—C22—H22119.5
N2—C4—C5111.6 (3)C23—C22—H22119.5
N2—C4—C24112.6 (3)C22—C23—C18121.2 (4)
C5—C4—C24111.3 (3)C22—C23—H23119.4
N2—C4—H4107.0C18—C23—H23119.4
C5—C4—H4107.0C25—C24—C29118.0 (4)
C24—C4—H4107.0C25—C24—C4122.2 (3)
C1—C5—C30120.2 (4)C29—C24—C4119.8 (3)
C1—C5—C4119.7 (3)C26—C25—C24121.0 (4)
C30—C5—C4120.1 (3)C26—C25—H25119.5
C11—C6—C7119.5 (4)C24—C25—H25119.5
C11—C6—N1122.1 (4)C27—C26—C25119.4 (4)
C7—C6—N1118.3 (5)C27—C26—H26120.3
C8—C7—C6120.1 (6)C25—C26—H26120.3
C8—C7—H7120.0C26—C27—C28121.4 (4)
C6—C7—H7120.0C26—C27—Cl2120.1 (3)
C9—C8—C7120.7 (6)C28—C27—Cl2118.5 (3)
C9—C8—H8119.7C29—C28—C27117.9 (4)
C7—C8—H8119.7C29—C28—H28121.1
C8—C9—C10119.6 (6)C27—C28—H28121.1
C8—C9—H9120.2C28—C29—C24122.4 (4)
C10—C9—H9120.2C28—C29—H29118.8
C11—C10—C9120.0 (6)C24—C29—H29118.8
C11—C10—H10120.0O1—C30—O2121.2 (4)
C9—C10—H10120.0O1—C30—C5125.2 (4)
C10—C11—C6120.0 (6)O2—C30—C5113.6 (4)
C10—C11—H11120.0O2—C31—C32107.8 (5)
C6—C11—H11120.0O2—C31—H31A110.1
C13—C12—C17117.7 (4)C32—C31—H31A110.2
C13—C12—C3122.1 (3)O2—C31—H31B110.2
C17—C12—C3120.3 (4)C32—C31—H31B110.1
C12—C13—C14120.2 (4)H31A—C31—H31B108.5
C12—C13—H13119.9C31—C32—H32A109.5
C14—C13—H13119.9C31—C32—H32B109.5
C15—C14—C13119.8 (4)H32A—C32—H32B109.5
C15—C14—H14120.1C31—C32—H32C109.5
C13—C14—H14120.1H32A—C32—H32C109.5
C16—C15—C14121.3 (4)H32B—C32—H32C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.862.022.659 (5)130
C4—H4···O20.982.302.761 (5)108
C22—H22···O1i0.932.693.287 (6)122
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC32H28Cl2N2O2
Mr543.46
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.559 (4), 9.656 (3), 16.392 (6)
α, β, γ (°)78.584 (6), 82.056 (6), 68.390 (6)
V3)1375.3 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.26 × 0.22 × 0.19
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.934, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
6863, 4767, 3177
Rint0.022
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.310, 1.08
No. of reflections4767
No. of parameters344
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.47

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.862.022.659 (5)130
C4—H4···O20.982.302.761 (5)108
C22—H22···O1i0.932.693.287 (6)122
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors gratefully acknowledge financial support by the Fundamental Research Funds for the Central Universities (grant No. 12CX04091A).

References

First citationBrahmachari, G. & Das, S. (2012). Tetrahedron Lett. 53, 1479–1484.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKhan, A. T., Parvin, T. & Choudhury, L. H. (2008). J. Org. Chem. 73, 8398–8402.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKobayashi, S., Ueno, M., Suzuki, R., Ishitani, H., Kim, H. S. & Wataya, Y. (1999). J. Org. Chem. 64, 6833–6841.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationViegas, C., Bolzani, J. V. S., Furlan, M., Barreiro, E. J., Young, M. C. M., Tomazela, D. & Eberlin, M. N. (2004). J. Nat. Prod. 67, 908–910.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o947-o948
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds