metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­carbon­yl(ferrocenyldi­thio­phos­phon­ato-κ2S,S′)bis­­(tri­phenyl­phosphane-κP)ruthenium(II) di­chloro­methane mono­solvate

aDepartment of Applied Chemistry, School of Petrochemical Engineering, Changzhou University, Jiangsu 213164, People's Republic of China, and bInstitute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui 243002, People's Republic of China
*Correspondence e-mail: zhangqf@ahut.edu.cn

(Received 6 May 2013; accepted 23 May 2013; online 31 May 2013)

The structure of the title complex, [FeRu(C5H5)(C5H4OPS2)(CO)(C18H15P)2(H2O)]·CH2Cl2, consists of one neutral [{FcP(O)S2}Ru(CO)(H2O)(PPh3)2] complex [Fc = Fe(η5-C5H4)(η5-C5H5)] and one CH2Cl2 solvent mol­ecule. The geometry around the RuII atom is pseudo-octa­hedral, with two cis-binding PPh3 ligands and one chelating bidentate [Fc(O)PS2]2− ligand via two S atoms. The average Ru—S and Ru—P bond lengths are 2.434 (1) and 2.398 (1) Å, and the Ru—O and Ru—C bond lengths are 2.157 (3) and 1.826 (4) Å, respectively. In the crystal, pairs of O—H⋯O hydrogen bonds link adjacent mol­ecules into dimers.

Related literature

For background to ferrocen­yl–phosphono­dithiol­ato com­plexes, see: Foreman et al. (1996[Foreman, M. R. St J., Slawin, A. M. Z. & Woollins, J. D. (1996). J. Chem. Soc. Dalton Trans. pp. 3653-3657.]); Gray et al. (2003[Gray, I. P., Milton, H. L., Slawin, A. M. Z. & Woollins, J. D. (2003). Dalton Trans. pp. 3450-3457.], 2004[Gray, I. P., Slawin, A. M. Z. & Woollins, J. D. (2004). Dalton Trans. pp. 2477-2486.]); Haiduc (2001[Haiduc, I. (2001). J. Organomet. Chem. 623, 29-42.]); Thomas et al. (2001[Thomas, C. M., Neels, A., Stoeckli-Evans, H. & Sűss-Fink, G. (2001). J. Organomet. Chem. 633, 85-90.]); Van Zyl (2010[Van Zyl, W. E. (2010). Comments Inorg. Chem. 31, 13-45.]). For a related structure, see: Liu et al. (2005[Liu, X., Zhang, Q. F. & Leung, W. H. (2005). J. Coord. Chem. 58, 1299-1305.]); Wang et al. (2010[Wang, X. Y., Li, Y., Ma, Q. & Zhang, Q. F. (2010). Organometallics, 29, 2752-2760.]); Zhang et al. (2001[Zhang, Q. F., Chim, J. L. C., Lai, W., Wong, W. T. & Leung, W. H. (2001). Inorg. Chem. 40, 2470-2471.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [FeRu(C5H5)(C5H4OPS2)(CO)(C18H15P)2(H2O)]·CH2Cl2

  • Mr = 1052.67

  • Triclinic, [P \overline 1]

  • a = 12.1493 (9) Å

  • b = 14.2208 (11) Å

  • c = 14.7100 (11) Å

  • α = 101.811 (1)°

  • β = 98.278 (1)°

  • γ = 109.759 (1)°

  • V = 2277.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 296 K

  • 0.24 × 0.15 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Gőttingen, Germany.]) Tmin = 0.794, Tmax = 0.924

  • 32262 measured reflections

  • 10536 independent reflections

  • 8221 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.154

  • S = 1.05

  • 10536 reflections

  • 549 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 3.98 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1S⋯O1i 0.82 (1) 1.72 (2) 2.515 (4) 162 (4)
O3—H2S⋯O3i 0.82 (1) 2.52 (6) 2.980 (6) 117 (5)
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Lawesson's Reagent (LR) [(p-MeO-C6H4)P(S)(µ-S)]2 was initially used for the purpose of a sulfur transfer reagent, especially to convert ketones to thiones, but was later used to form dithiophosphonic acids as well (Haiduc, 2001; Van Zyl, 2010). LR is formed through the reaction between P4S10 and anisole. Recognizing anisole to be an electron-rich aromatic, Woollins and co-workers skillfully introduced ferrocene, which performs similar electrophilic substitution type chemistry to afford the ferrocenyl derivative [FcP(S)(µ-S)]2 (Fc = Fe(η5-C5H4)(η5-C5H5)) (Gray et al., 2004). This chemistry has been extended further by forming interesting ferrocenyl-type heterocycles. Similarly, [FcP(S)(µ-S)]2 can undergo a ring opening reaction by nucleophilic attack under suitable conditions, resulting in formation of the typical ferrocenyl-dithiophosphonate ligands, which may directly react with a range of metal ions to produce new heterometallic complexes containing the electron-rich and aromatic ferrocene groups (Gray et al., 2003; Thomas et al., 2001). As a part of research interest to the later transition metal-sulfur chemistry, we have recently reported ruthenium complexes with ferrocenyl-phosphonodithiolate as a dithio ligand (Wang et al., 2010). We here describe the crystal structure of a ruthenium(II)-ferrocenyl-dithiophosphonato complex [{FcP(O)S2}Ru(CO)(H2O)(PPh3)2].CH2Cl2 (Fc = Fe(η5-C5H4)(η5-C5H5)) in this paper.

The title complex crystallizes in triclinic space group P-1 with two molecules in the unit cell, as shown in Fig. 1. The ruthenium center has an octahedral coordination environment with the H2O and CO ligands mutually trans. The [FcP(O)S2]2- acts as a chelating ligand through its two sulfur atoms to bond the ruthenium center with the bite angle S(1)—Ru(1)—S(2) of 79.74 (4)° which agrees with those in cis-[Ru(CO){FcP(OCH3)PS2}2(PPh3)] [78.43 (3)° and 79.84 (3)°] (Wang et al., 2010). Two cis PPh3 ligands bind to the ruthenium center with the P—Ru—P angle of 106.97 (4)°, and one chelating [FcP(O)S2]2- ligands form the basal plane. The average Ru—S bond length (av. 2.4337 (20) Å) in the title complex is compatible to that in cis-[Ru(CO){FcP(OCH3)PS2}2(PPh3)] (av. 2.4854 (11) Å) (Wang et al., 2010). The Ru—O bond length of 2.159 (3) Å is similar to that observed for trans-Ru[N(Ph2PS)2]2(H2O)(NH3) (2.118 (4) Å) (Zhang et al., 2001). The Ru—C bond length and Ru—C—O bond angle in the title complex are 1.826 (4) Å and 176.9 (4)°, respectively, which are comparable to those in [Ru(CO){ARP(O)S2}(PPh3)2]2 (Ar = p-C6H4OMe) (Ru—C = 1.804 (4) Å and Ru—C—O = 174.8 (4)°) (Wang et al., 2010) and [RuH(CO){S2P(OEt)2}(PPh3)2] (Ru—C = 1.829 (4) Å and Ru—C—O = 175.4 (4)°) (Liu et al. 2005). A pair of head-to-tail intermolecular O—H···Oa (a: x + 1, y + 2, z + 1) hydrogen bonds (O3—H1S···O1a: 1.719 (16) Å, 2.516 (4) Å, 162 (4)°; O3—H2S···O3a: 2.53 (6) Å, 2.981 (6) Å, 116 (5)°) linking adjacent molecules to form a dimmer was observed in the crystal packing.

Related literature top

For background to ferrocenyl–phosphonodithiolato complexes, see: Foreman et al. (1996); Gray et al. (2003, 2004); Haiduc (2001); Thomas et al. (2001); Van Zyl (2010). For a related structure, see: Liu et al. (2005); Wang et al. (2010); Zhang et al. (2001). For a description of the Cambridge Strcutural Database, see: Allen (2002).

Experimental top

To a slurry of [FcP(S)(µ-S)]2 (56 mg, 0.10 mmol) and 17% NH3.H2O (0.2 ml) in THF (10 ml) was added the grey solid [RuHCl(CO)(PPh3)3] (188 mg, 0.20 mmol). The mixture was stirred at room temperature overnight and the brown solution was obtained. The solvent was removed in vacuo and the residue was recrystallized from CH2Cl2/hexane to give yellow crystalline solids of [{FcP(O)S2}Ru(CO)(H2O)(PPh3)2].CH2Cl2 in five days at room temperature. Yield: 68 mg, 0.065 mmol, 32% (based on Ru). Anal. Calcd. for C47H41O3P3S2FeRu.(CH2Cl2): C, 54.76; H, 4.12%. Found: C, 54.72; H, 4.08%.

Refinement top

The structure was solved by direct methods and refined by full-matrix least-squares procedure based on F2. All C Hydrogen atoms were placed in geometrically idealized positions and refined isotropically with a riding model for C-sp2 [C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C)] and C-sp3 [C—H = 0.97 Å and with Uiso(H) = 1.5Ueq(C)].

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Two complex molecules are connected by intermolecular O—H···O(P) hydrogen bonds (dashed lines), forming a dimeric arrangement.
Aquacarbonyl(ferrocenyldithiophosphonato-κ2S,S')bis(triphenylphosphane-κP)ruthenium(II) dichloromethane monosolvate top
Crystal data top
[FeRu(C5H5)(C5H4OPS2)(CO)(C18H15P)2(H2O)]·CH2Cl2Z = 2
Mr = 1052.67F(000) = 1072
Triclinic, P1Dx = 1.535 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.1493 (9) ÅCell parameters from 6761 reflections
b = 14.2208 (11) Åθ = 2.4–25.7°
c = 14.7100 (11) ŵ = 1.01 mm1
α = 101.811 (1)°T = 296 K
β = 98.278 (1)°Block, yellow
γ = 109.759 (1)°0.24 × 0.15 × 0.08 mm
V = 2277.7 (3) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
10536 independent reflections
Radiation source: fine-focus sealed tube8221 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
phi and ω scansθmax = 27.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1515
Tmin = 0.794, Tmax = 0.924k = 1818
32262 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0853P)2 + 2.0442P]
where P = (Fo2 + 2Fc2)/3
10536 reflections(Δ/σ)max = 0.001
549 parametersΔρmax = 3.98 e Å3
2 restraintsΔρmin = 0.67 e Å3
Crystal data top
[FeRu(C5H5)(C5H4OPS2)(CO)(C18H15P)2(H2O)]·CH2Cl2γ = 109.759 (1)°
Mr = 1052.67V = 2277.7 (3) Å3
Triclinic, P1Z = 2
a = 12.1493 (9) ÅMo Kα radiation
b = 14.2208 (11) ŵ = 1.01 mm1
c = 14.7100 (11) ÅT = 296 K
α = 101.811 (1)°0.24 × 0.15 × 0.08 mm
β = 98.278 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
10536 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
8221 reflections with I > 2σ(I)
Tmin = 0.794, Tmax = 0.924Rint = 0.039
32262 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0542 restraints
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 3.98 e Å3
10536 reflectionsΔρmin = 0.67 e Å3
549 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.57682 (3)0.84933 (2)0.60821 (2)0.02666 (10)
Fe10.34922 (7)0.55279 (5)0.22580 (5)0.04881 (18)
O30.5232 (3)0.9764 (2)0.5934 (2)0.0406 (7)
H1S0.541 (4)1.0333 (16)0.632 (2)0.029 (11)*
H2S0.460 (3)0.962 (5)0.555 (4)0.09 (2)*
S10.40195 (9)0.74574 (8)0.47898 (7)0.0361 (2)
S20.66350 (9)0.87473 (8)0.47088 (7)0.0378 (2)
P10.49822 (9)0.78762 (7)0.38051 (7)0.0305 (2)
P20.44859 (9)0.80208 (7)0.71339 (7)0.0299 (2)
P30.76866 (9)0.97232 (8)0.70618 (7)0.0306 (2)
O10.4530 (3)0.8442 (2)0.3179 (2)0.0418 (7)
O20.6390 (3)0.6647 (2)0.6043 (3)0.0588 (9)
C10.5005 (4)0.6752 (3)0.3034 (3)0.0354 (8)
C20.5009 (5)0.5821 (4)0.3236 (3)0.0514 (12)
H20.50420.56880.38310.062*
C30.4953 (5)0.5126 (4)0.2371 (4)0.0593 (13)
H30.49510.44610.23040.071*
C40.4899 (5)0.5611 (4)0.1627 (4)0.0629 (14)
H40.48480.53210.09880.075*
C50.4937 (5)0.6615 (3)0.2028 (3)0.0495 (11)
H50.49200.71040.16980.059*
C60.2098 (7)0.5002 (9)0.2869 (7)0.109 (3)
H60.21790.49860.35030.131*
C70.2044 (7)0.4244 (6)0.2133 (8)0.107 (3)
H70.20620.36070.21830.128*
C80.1960 (6)0.4522 (6)0.1304 (6)0.093 (2)
H80.19150.41170.07060.111*
C90.1952 (7)0.5517 (8)0.1503 (8)0.114 (3)
H90.19160.59100.10740.136*
C100.2012 (6)0.5817 (7)0.2517 (8)0.112 (3)
H100.19950.64350.28650.135*
C110.3794 (3)0.8935 (3)0.7572 (3)0.0352 (8)
C120.3908 (4)0.9360 (3)0.8534 (3)0.0473 (10)
H120.43390.91710.89910.057*
C130.3380 (5)1.0067 (4)0.8819 (4)0.0642 (14)
H130.34551.03440.94660.077*
C140.2758 (5)1.0353 (4)0.8160 (5)0.0689 (17)
H140.24151.08320.83560.083*
C150.2630 (5)0.9939 (4)0.7202 (5)0.0608 (14)
H150.21991.01370.67530.073*
C160.3142 (4)0.9226 (4)0.6904 (4)0.0479 (11)
H160.30480.89420.62550.058*
C200.6172 (3)0.7368 (3)0.6083 (3)0.0349 (8)
C210.3166 (4)0.6803 (3)0.6583 (3)0.0378 (9)
C220.3325 (4)0.5913 (3)0.6148 (3)0.0485 (11)
H220.40940.59500.61030.058*
C230.2363 (5)0.4970 (4)0.5777 (4)0.0632 (14)
H230.24850.43800.54830.076*
C240.1235 (5)0.4914 (4)0.5847 (5)0.0755 (18)
H240.05850.42840.55930.091*
C250.1053 (5)0.5774 (5)0.6287 (5)0.0790 (19)
H250.02850.57220.63490.095*
C260.2008 (4)0.6723 (4)0.6642 (4)0.0592 (13)
H260.18740.73110.69220.071*
C310.5046 (4)0.7699 (3)0.8209 (3)0.0344 (8)
C320.4262 (4)0.7171 (3)0.8702 (3)0.0430 (10)
H320.34400.69930.84960.052*
C330.4688 (5)0.6907 (4)0.9492 (3)0.0532 (12)
H330.41540.65590.98180.064*
C340.5900 (5)0.7156 (4)0.9800 (3)0.0547 (12)
H340.61870.69751.03320.066*
C350.6690 (5)0.7675 (4)0.9317 (3)0.0531 (12)
H350.75110.78430.95220.064*
C360.6264 (4)0.7946 (3)0.8530 (3)0.0420 (9)
H360.68030.83000.82100.050*
C410.8587 (3)1.0592 (3)0.6437 (3)0.0332 (8)
C420.8153 (4)1.1299 (3)0.6144 (3)0.0447 (10)
H420.74271.13150.62620.054*
C430.8791 (4)1.1975 (3)0.5681 (4)0.0500 (11)
H430.84901.24410.54850.060*
C440.9874 (5)1.1962 (4)0.5508 (4)0.0587 (13)
H441.03031.24160.51940.070*
C451.0315 (5)1.1275 (4)0.5800 (5)0.0682 (16)
H451.10481.12700.56910.082*
C460.9668 (5)1.0587 (4)0.6261 (4)0.0563 (13)
H460.99691.01200.64520.068*
C510.8706 (3)0.9121 (3)0.7488 (3)0.0367 (9)
C520.8946 (4)0.8419 (3)0.6820 (3)0.0413 (9)
H520.86000.82740.61750.050*
C530.9693 (4)0.7934 (4)0.7102 (4)0.0519 (12)
H530.98580.74750.66460.062*
C541.0187 (5)0.8123 (4)0.8038 (4)0.0593 (13)
H541.06890.77930.82230.071*
C550.9948 (5)0.8805 (4)0.8720 (4)0.0607 (14)
H551.02750.89230.93640.073*
C560.9218 (4)0.9312 (4)0.8444 (3)0.0490 (11)
H560.90720.97820.89020.059*
C610.7790 (4)1.0714 (3)0.8121 (3)0.0356 (8)
C620.6762 (4)1.0715 (3)0.8422 (3)0.0453 (10)
H620.60191.02030.80940.054*
C630.6843 (5)1.1488 (4)0.9222 (4)0.0610 (14)
H630.61541.14770.94320.073*
C640.7919 (5)1.2250 (4)0.9693 (4)0.0605 (14)
H640.79631.27621.02190.073*
C650.8950 (5)1.2269 (4)0.9395 (4)0.0604 (13)
H650.96881.27890.97250.072*
C660.8888 (4)1.1513 (4)0.8603 (3)0.0508 (11)
H660.95811.15400.83920.061*
C1S0.8456 (18)0.6112 (13)0.2091 (9)0.264 (11)
H1S10.78200.57910.23900.317*
H1S20.91740.65050.25970.317*
Cl1S0.8099 (3)0.6917 (4)0.1639 (4)0.2144 (19)
Cl2S0.8735 (4)0.5084 (4)0.1346 (4)0.2133 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.02830 (16)0.02926 (16)0.02479 (16)0.01314 (12)0.00753 (12)0.00756 (11)
Fe10.0577 (4)0.0377 (3)0.0416 (4)0.0124 (3)0.0055 (3)0.0049 (3)
O30.0535 (19)0.0318 (15)0.0399 (17)0.0233 (14)0.0068 (15)0.0077 (13)
S10.0323 (5)0.0421 (5)0.0291 (5)0.0102 (4)0.0071 (4)0.0061 (4)
S20.0344 (5)0.0441 (5)0.0301 (5)0.0086 (4)0.0113 (4)0.0077 (4)
P10.0372 (5)0.0279 (4)0.0271 (5)0.0140 (4)0.0073 (4)0.0060 (4)
P20.0315 (5)0.0345 (5)0.0289 (5)0.0156 (4)0.0109 (4)0.0116 (4)
P30.0287 (5)0.0366 (5)0.0280 (5)0.0145 (4)0.0065 (4)0.0087 (4)
O10.0580 (19)0.0330 (14)0.0340 (15)0.0203 (13)0.0051 (13)0.0071 (12)
O20.055 (2)0.0425 (17)0.087 (3)0.0301 (16)0.0137 (19)0.0167 (17)
C10.040 (2)0.0319 (19)0.033 (2)0.0151 (16)0.0078 (17)0.0031 (15)
C20.072 (3)0.048 (2)0.046 (3)0.037 (2)0.012 (2)0.015 (2)
C30.083 (4)0.042 (2)0.058 (3)0.035 (3)0.018 (3)0.004 (2)
C40.087 (4)0.048 (3)0.048 (3)0.024 (3)0.029 (3)0.002 (2)
C50.067 (3)0.041 (2)0.039 (2)0.018 (2)0.021 (2)0.0084 (19)
C60.061 (4)0.141 (8)0.102 (7)0.005 (5)0.030 (4)0.033 (6)
C70.084 (5)0.066 (4)0.134 (8)0.008 (4)0.017 (5)0.021 (5)
C80.077 (5)0.082 (5)0.078 (5)0.016 (4)0.013 (4)0.019 (4)
C90.073 (5)0.122 (7)0.142 (8)0.034 (5)0.019 (5)0.065 (6)
C100.044 (3)0.105 (6)0.143 (8)0.024 (4)0.002 (4)0.038 (6)
C110.0313 (19)0.0363 (19)0.043 (2)0.0152 (16)0.0177 (17)0.0122 (17)
C120.049 (3)0.049 (2)0.046 (3)0.023 (2)0.016 (2)0.006 (2)
C130.067 (3)0.055 (3)0.073 (4)0.032 (3)0.027 (3)0.001 (3)
C140.065 (3)0.047 (3)0.114 (5)0.037 (3)0.042 (4)0.021 (3)
C150.054 (3)0.067 (3)0.092 (4)0.040 (3)0.034 (3)0.046 (3)
C160.046 (3)0.055 (3)0.057 (3)0.027 (2)0.022 (2)0.027 (2)
C200.0305 (19)0.0347 (19)0.038 (2)0.0132 (16)0.0042 (17)0.0090 (16)
C210.039 (2)0.039 (2)0.034 (2)0.0123 (17)0.0093 (17)0.0130 (17)
C220.051 (3)0.042 (2)0.053 (3)0.017 (2)0.016 (2)0.013 (2)
C230.071 (4)0.034 (2)0.070 (4)0.011 (2)0.006 (3)0.007 (2)
C240.056 (3)0.044 (3)0.102 (5)0.001 (2)0.006 (3)0.014 (3)
C250.038 (3)0.059 (3)0.125 (6)0.009 (2)0.009 (3)0.017 (4)
C260.043 (3)0.049 (3)0.083 (4)0.016 (2)0.012 (3)0.014 (3)
C310.045 (2)0.0371 (19)0.0268 (19)0.0196 (17)0.0129 (17)0.0112 (15)
C320.051 (3)0.053 (2)0.034 (2)0.023 (2)0.020 (2)0.0179 (19)
C330.076 (4)0.054 (3)0.041 (3)0.028 (3)0.028 (2)0.024 (2)
C340.078 (4)0.060 (3)0.036 (2)0.034 (3)0.011 (2)0.021 (2)
C350.054 (3)0.066 (3)0.045 (3)0.028 (2)0.007 (2)0.022 (2)
C360.043 (2)0.051 (2)0.036 (2)0.0176 (19)0.0098 (19)0.0195 (19)
C410.0304 (19)0.0360 (19)0.032 (2)0.0111 (15)0.0083 (16)0.0085 (16)
C420.039 (2)0.048 (2)0.054 (3)0.0187 (19)0.013 (2)0.021 (2)
C430.053 (3)0.042 (2)0.058 (3)0.017 (2)0.013 (2)0.021 (2)
C440.074 (4)0.047 (3)0.063 (3)0.018 (2)0.037 (3)0.023 (2)
C450.065 (3)0.066 (3)0.106 (5)0.037 (3)0.058 (3)0.042 (3)
C460.054 (3)0.056 (3)0.082 (4)0.032 (2)0.036 (3)0.036 (3)
C510.032 (2)0.045 (2)0.040 (2)0.0177 (17)0.0098 (17)0.0185 (18)
C520.038 (2)0.049 (2)0.042 (2)0.0217 (19)0.0088 (19)0.0153 (19)
C530.045 (3)0.058 (3)0.066 (3)0.031 (2)0.019 (2)0.023 (2)
C540.050 (3)0.069 (3)0.075 (4)0.035 (3)0.012 (3)0.036 (3)
C550.055 (3)0.079 (4)0.050 (3)0.028 (3)0.002 (2)0.029 (3)
C560.049 (3)0.062 (3)0.041 (2)0.027 (2)0.005 (2)0.018 (2)
C610.042 (2)0.038 (2)0.0287 (19)0.0179 (17)0.0078 (17)0.0077 (16)
C620.046 (2)0.044 (2)0.043 (2)0.0159 (19)0.015 (2)0.0040 (19)
C630.067 (3)0.059 (3)0.057 (3)0.024 (3)0.031 (3)0.002 (2)
C640.084 (4)0.053 (3)0.041 (3)0.029 (3)0.012 (3)0.001 (2)
C650.059 (3)0.053 (3)0.048 (3)0.010 (2)0.004 (2)0.000 (2)
C660.041 (2)0.052 (3)0.046 (3)0.011 (2)0.004 (2)0.000 (2)
C1S0.42 (3)0.192 (14)0.090 (9)0.012 (16)0.011 (12)0.071 (10)
Cl1S0.0880 (19)0.266 (5)0.281 (5)0.041 (2)0.017 (2)0.122 (4)
Cl2S0.175 (3)0.190 (4)0.221 (4)0.019 (3)0.041 (3)0.034 (3)
Geometric parameters (Å, º) top
Ru1—C201.826 (4)C21—C221.385 (6)
Ru1—O32.157 (3)C21—C261.389 (6)
Ru1—P22.3842 (10)C22—C231.385 (7)
Ru1—P32.4110 (10)C22—H220.9300
Ru1—S12.4232 (10)C23—C241.366 (8)
Ru1—S22.4443 (10)C23—H230.9300
Fe1—C72.015 (7)C24—C251.365 (8)
Fe1—C62.023 (7)C24—H240.9300
Fe1—C92.027 (7)C25—C261.386 (7)
Fe1—C82.027 (6)C25—H250.9300
Fe1—C22.028 (5)C26—H260.9300
Fe1—C12.033 (4)C31—C361.384 (6)
Fe1—C52.033 (5)C31—C321.392 (6)
Fe1—C32.035 (5)C32—C331.376 (6)
Fe1—C42.040 (5)C32—H320.9300
Fe1—C102.045 (7)C33—C341.374 (8)
O3—H1S0.824 (10)C33—H330.9300
O3—H2S0.818 (10)C34—C351.380 (7)
S1—P12.0472 (14)C34—H340.9300
S2—P12.0517 (14)C35—C361.379 (6)
P1—O11.502 (3)C35—H350.9300
P1—C11.772 (4)C36—H360.9300
P2—C111.834 (4)C41—C461.376 (6)
P2—C311.836 (4)C41—C421.394 (5)
P2—C211.844 (4)C42—C431.381 (6)
P3—C611.831 (4)C42—H420.9300
P3—C511.837 (4)C43—C441.381 (7)
P3—C411.846 (4)C43—H430.9300
O2—C201.136 (5)C44—C451.373 (7)
C1—C21.417 (6)C44—H440.9300
C1—C51.439 (6)C45—C461.393 (7)
C2—C31.421 (6)C45—H450.9300
C2—H20.9300C46—H460.9300
C3—C41.412 (7)C51—C561.384 (6)
C3—H30.9300C51—C521.388 (6)
C4—C51.410 (6)C52—C531.379 (6)
C4—H40.9300C52—H520.9300
C5—H50.9300C53—C541.354 (7)
C6—C71.339 (12)C53—H530.9300
C6—C101.391 (12)C54—C551.381 (8)
C6—H60.9300C54—H540.9300
C7—C81.358 (11)C55—C561.385 (6)
C7—H70.9300C55—H550.9300
C8—C91.388 (11)C56—H560.9300
C8—H80.9300C61—C621.384 (6)
C9—C101.449 (12)C61—C661.395 (6)
C9—H90.9300C62—C631.403 (6)
C10—H100.9300C62—H620.9300
C11—C121.387 (6)C63—C641.355 (8)
C11—C161.388 (6)C63—H630.9300
C12—C131.393 (6)C64—C651.379 (8)
C12—H120.9300C64—H640.9300
C13—C141.355 (8)C65—C661.387 (7)
C13—H130.9300C65—H650.9300
C14—C151.376 (8)C66—H660.9300
C14—H140.9300C1S—Cl1S1.582 (16)
C15—C161.391 (6)C1S—Cl2S1.80 (2)
C15—H150.9300C1S—H1S10.9700
C16—H160.9300C1S—H1S20.9700
C20—Ru1—O3174.49 (15)C9—C8—H8125.9
C20—Ru1—P290.26 (13)Fe1—C8—H8125.7
O3—Ru1—P292.66 (9)C8—C9—C10105.8 (8)
C20—Ru1—P394.08 (12)C8—C9—Fe170.0 (4)
O3—Ru1—P389.54 (9)C10—C9—Fe169.8 (4)
P2—Ru1—P3106.97 (4)C8—C9—H9127.1
C20—Ru1—S191.03 (13)C10—C9—H9127.1
O3—Ru1—S184.48 (9)Fe1—C9—H9124.7
P2—Ru1—S186.51 (4)C6—C10—C9106.7 (7)
P3—Ru1—S1165.53 (4)C6—C10—Fe169.1 (4)
C20—Ru1—S290.95 (13)C9—C10—Fe168.5 (4)
O3—Ru1—S285.10 (9)C6—C10—H10126.7
P2—Ru1—S2166.20 (4)C9—C10—H10126.7
P3—Ru1—S286.65 (3)Fe1—C10—H10127.3
S1—Ru1—S279.73 (4)C12—C11—C16118.7 (4)
C7—Fe1—C638.7 (3)C12—C11—P2123.2 (3)
C7—Fe1—C966.7 (4)C16—C11—P2118.0 (3)
C6—Fe1—C968.5 (4)C11—C12—C13120.3 (5)
C7—Fe1—C839.3 (3)C11—C12—H12119.8
C6—Fe1—C866.7 (4)C13—C12—H12119.8
C9—Fe1—C840.0 (3)C14—C13—C12120.3 (5)
C7—Fe1—C2118.0 (3)C14—C13—H13119.8
C6—Fe1—C2106.7 (3)C12—C13—H13119.8
C9—Fe1—C2166.5 (4)C13—C14—C15120.3 (5)
C8—Fe1—C2151.0 (3)C13—C14—H14119.8
C7—Fe1—C1152.2 (3)C15—C14—H14119.8
C6—Fe1—C1119.6 (3)C14—C15—C16120.1 (5)
C9—Fe1—C1129.5 (3)C14—C15—H15119.9
C8—Fe1—C1167.3 (3)C16—C15—H15119.9
C2—Fe1—C140.84 (17)C11—C16—C15120.1 (5)
C7—Fe1—C5164.7 (3)C11—C16—H16119.9
C6—Fe1—C5155.7 (4)C15—C16—H16119.9
C9—Fe1—C5109.9 (3)O2—C20—Ru1176.9 (4)
C8—Fe1—C5128.6 (3)C22—C21—C26118.0 (4)
C2—Fe1—C569.0 (2)C22—C21—P2119.7 (3)
C1—Fe1—C541.46 (17)C26—C21—P2122.2 (3)
C7—Fe1—C3107.4 (3)C23—C22—C21121.4 (5)
C6—Fe1—C3125.1 (4)C23—C22—H22119.3
C9—Fe1—C3152.2 (4)C21—C22—H22119.3
C8—Fe1—C3117.9 (3)C24—C23—C22119.4 (5)
C2—Fe1—C340.93 (19)C24—C23—H23120.3
C1—Fe1—C368.67 (18)C22—C23—H23120.3
C5—Fe1—C368.2 (2)C23—C24—C25120.6 (5)
C7—Fe1—C4126.8 (3)C23—C24—H24119.7
C6—Fe1—C4162.2 (4)C25—C24—H24119.7
C9—Fe1—C4119.5 (4)C24—C25—C26120.2 (5)
C8—Fe1—C4108.2 (3)C24—C25—H25119.9
C2—Fe1—C469.0 (2)C26—C25—H25119.9
C1—Fe1—C469.13 (18)C25—C26—C21120.4 (5)
C5—Fe1—C440.51 (18)C25—C26—H26119.8
C3—Fe1—C440.6 (2)C21—C26—H26119.8
C7—Fe1—C1065.9 (4)C36—C31—C32118.2 (4)
C6—Fe1—C1040.0 (4)C36—C31—P2120.5 (3)
C9—Fe1—C1041.7 (4)C32—C31—P2121.2 (3)
C8—Fe1—C1067.5 (3)C33—C32—C31120.9 (5)
C2—Fe1—C10126.7 (3)C33—C32—H32119.6
C1—Fe1—C10109.5 (2)C31—C32—H32119.6
C5—Fe1—C10122.4 (3)C34—C33—C32120.2 (5)
C3—Fe1—C10163.0 (4)C34—C33—H33119.9
C4—Fe1—C10156.0 (4)C32—C33—H33119.9
Ru1—O3—H1S130 (3)C33—C34—C35119.8 (4)
Ru1—O3—H2S116 (5)C33—C34—H34120.1
H1S—O3—H2S110 (5)C35—C34—H34120.1
P1—S1—Ru190.85 (5)C36—C35—C34120.1 (5)
P1—S2—Ru190.15 (4)C36—C35—H35120.0
O1—P1—C1106.63 (18)C34—C35—H35120.0
O1—P1—S1116.18 (13)C35—C36—C31120.9 (4)
C1—P1—S1109.51 (14)C35—C36—H36119.5
O1—P1—S2114.15 (13)C31—C36—H36119.5
C1—P1—S2111.17 (14)C46—C41—C42118.7 (4)
S1—P1—S299.14 (6)C46—C41—P3123.4 (3)
C11—P2—C31103.93 (18)C42—C41—P3117.9 (3)
C11—P2—C21102.26 (19)C43—C42—C41120.7 (4)
C31—P2—C2198.52 (18)C43—C42—H42119.7
C11—P2—Ru1116.26 (13)C41—C42—H42119.7
C31—P2—Ru1119.75 (13)C42—C43—C44120.1 (4)
C21—P2—Ru1113.37 (13)C42—C43—H43120.0
C61—P3—C51104.19 (19)C44—C43—H43120.0
C61—P3—C4198.26 (18)C45—C44—C43119.7 (4)
C51—P3—C41102.50 (18)C45—C44—H44120.1
C61—P3—Ru1121.33 (14)C43—C44—H44120.1
C51—P3—Ru1113.93 (14)C44—C45—C46120.2 (5)
C41—P3—Ru1114.01 (13)C44—C45—H45119.9
C2—C1—C5107.2 (4)C46—C45—H45119.9
C2—C1—P1129.1 (3)C41—C46—C45120.6 (4)
C5—C1—P1123.5 (3)C41—C46—H46119.7
C2—C1—Fe169.4 (3)C45—C46—H46119.7
C5—C1—Fe169.3 (2)C56—C51—C52118.5 (4)
P1—C1—Fe1123.3 (2)C56—C51—P3123.2 (3)
C1—C2—C3107.9 (4)C52—C51—P3118.3 (3)
C1—C2—Fe169.8 (3)C53—C52—C51120.7 (4)
C3—C2—Fe169.8 (3)C53—C52—H52119.7
C1—C2—H2126.0C51—C52—H52119.7
C3—C2—H2126.0C54—C53—C52120.4 (5)
Fe1—C2—H2125.9C54—C53—H53119.8
C4—C3—C2108.7 (4)C52—C53—H53119.8
C4—C3—Fe169.9 (3)C53—C54—C55120.2 (4)
C2—C3—Fe169.3 (3)C53—C54—H54119.9
C4—C3—H3125.6C55—C54—H54119.9
C2—C3—H3125.6C54—C55—C56119.9 (5)
Fe1—C3—H3126.8C54—C55—H55120.1
C5—C4—C3107.8 (4)C56—C55—H55120.1
C5—C4—Fe169.5 (3)C51—C56—C55120.3 (5)
C3—C4—Fe169.6 (3)C51—C56—H56119.8
C5—C4—H4126.1C55—C56—H56119.8
C3—C4—H4126.1C62—C61—C66118.8 (4)
Fe1—C4—H4126.4C62—C61—P3120.2 (3)
C4—C5—C1108.4 (4)C66—C61—P3120.9 (3)
C4—C5—Fe170.0 (3)C61—C62—C63120.0 (4)
C1—C5—Fe169.3 (2)C61—C62—H62120.0
C4—C5—H5125.8C63—C62—H62120.0
C1—C5—H5125.8C64—C63—C62120.5 (5)
Fe1—C5—H5126.5C64—C63—H63119.8
C7—C6—C10107.9 (9)C62—C63—H63119.8
C7—C6—Fe170.3 (5)C63—C64—C65120.3 (5)
C10—C6—Fe170.9 (5)C63—C64—H64119.8
C7—C6—H6126.0C65—C64—H64119.8
C10—C6—H6126.0C64—C65—C66120.0 (5)
Fe1—C6—H6124.4C64—C65—H65120.0
C6—C7—C8111.4 (8)C66—C65—H65120.0
C6—C7—Fe170.9 (4)C65—C66—C61120.3 (5)
C8—C7—Fe170.8 (4)C65—C66—H66119.8
C6—C7—H7124.3C61—C66—H66119.8
C8—C7—H7124.3Cl1S—C1S—Cl2S119.8 (8)
Fe1—C7—H7125.5Cl1S—C1S—H1S1107.4
C7—C8—C9108.1 (8)Cl2S—C1S—H1S1107.4
C7—C8—Fe169.9 (4)Cl1S—C1S—H1S2107.4
C9—C8—Fe170.0 (4)Cl2S—C1S—H1S2107.4
C7—C8—H8125.9H1S1—C1S—H1S2106.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1S···O1i0.82 (1)1.72 (2)2.515 (4)162 (4)
O3—H2S···O3i0.82 (1)2.52 (6)2.980 (6)117 (5)
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[FeRu(C5H5)(C5H4OPS2)(CO)(C18H15P)2(H2O)]·CH2Cl2
Mr1052.67
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)12.1493 (9), 14.2208 (11), 14.7100 (11)
α, β, γ (°)101.811 (1), 98.278 (1), 109.759 (1)
V3)2277.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.24 × 0.15 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.794, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
32262, 10536, 8221
Rint0.039
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.154, 1.05
No. of reflections10536
No. of parameters549
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)3.98, 0.67

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1S···O1i0.824 (10)1.720 (17)2.515 (4)162 (4)
O3—H2S···O3i0.818 (10)2.52 (6)2.980 (6)117 (5)
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

This project was supported by the Natural Science Foundation of China (20771003).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationForeman, M. R. St J., Slawin, A. M. Z. & Woollins, J. D. (1996). J. Chem. Soc. Dalton Trans. pp. 3653–3657.  CSD CrossRef Web of Science Google Scholar
First citationGray, I. P., Milton, H. L., Slawin, A. M. Z. & Woollins, J. D. (2003). Dalton Trans. pp. 3450–3457.  Web of Science CSD CrossRef Google Scholar
First citationGray, I. P., Slawin, A. M. Z. & Woollins, J. D. (2004). Dalton Trans. pp. 2477–2486.  Web of Science CSD CrossRef Google Scholar
First citationHaiduc, I. (2001). J. Organomet. Chem. 623, 29–42.  Web of Science CrossRef CAS Google Scholar
First citationLiu, X., Zhang, Q. F. & Leung, W. H. (2005). J. Coord. Chem. 58, 1299–1305.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Gőttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThomas, C. M., Neels, A., Stoeckli-Evans, H. & Sűss-Fink, G. (2001). J. Organomet. Chem. 633, 85–90.  Web of Science CSD CrossRef CAS Google Scholar
First citationVan Zyl, W. E. (2010). Comments Inorg. Chem. 31, 13–45.  Web of Science CrossRef CAS Google Scholar
First citationWang, X. Y., Li, Y., Ma, Q. & Zhang, Q. F. (2010). Organometallics, 29, 2752–2760.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, Q. F., Chim, J. L. C., Lai, W., Wong, W. T. & Leung, W. H. (2001). Inorg. Chem. 40, 2470–2471.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds