metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages m317-m318

catena-Poly[[[di­aqua­bis­­[1,2-bis­­(pyridin-4-yl)diazene]copper(II)]-μ-1,2-bis­­(pyridin-4-yl)diazene] bis­­(perchlorate)]

aEscuela de Química, Centro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, 2060 San José, Costa Rica, and bCentro de Investigaciones Químicas, Universidad Autónoma del Estado de Hidalgo, km. 4.5 Carretera Pachuca-Tulancingo, Col. Carboneras, Mineral de la Reforma, Hidalgo, CP 42184, Mexico
*Correspondence e-mail: cristian.campos@ucr.ac.cr

(Received 12 October 2012; accepted 5 May 2013; online 15 May 2013)

In the title compound, {[Cu(C10H8N4)3(H2O)2](ClO4)2}n, the coordination environment of the cationic CuII atom is distorted octa­hedral, formed by pairs of symmetry-equivalent 1,2-bis­(pyridin-4-yl)diazene ligands, bridging 1,2-bis­(pyridin-4-yl)diazene ligands and two non-equivalent water mol­ecules. The 1,2-bis­(pyridin-4-yl)diazene mol­ecules form polymeric chains parallel to [-101] via azo bonds which are situated about inversion centres. Since the CuII atom is situated on a twofold rotation axis, the monomeric unit has point symmetry 2. The perchlorate anions are disordered in a 0.536 (9):0.464 (9) ratio and are acceptors of water H atoms in medium–strong O—H⋯O hydrogen bonds with graph set R44(12). The water mol­ecules, which are coordinated to the CuII atom and are hydrogen-bonded to the perchlorate anions, form columns parallel to [010]. A ππ inter­action [centroid–centroid distance = 3.913 (2) Å] occurs between pyridine rings, and weak C—H⋯O inter­actions also occur.

Related literature

For the synthesis of trans-4,4′-azobispyridine, see: Brown & Granneman (1975[Brown, E. V. & Granneman, G. R. (1975). J. Am. Chem. Soc. 97, 621-627.]). For the synthesis and structures of other polymers with CuI or CuII and trans-4,4′-azobispyridine, see: He et al. (2000[He, C., Zhang, B.-G., Duan, C.-Y., Li, J.-H. & Meng, Q.-J. (2000). Eur. J. Inorg. Chem. pp. 2549-2554.]); Kondo et al. (2006[Kondo, A., Noguchi, H., Kajiro, H., Carlucci, L., Mercandelli, P., Proserpio, D. M., Tanaka, H., Kaneko, K. & Kanoh, H. (2006). J. Phys. Chem. B, 110, 25565-25567.]); Marinescu et al. (2010[Marinescu, G., Marin, G., Madalan, A. M., Vezeanu, A., Tiseanu, C. & Andruh, M. (2010). Cryst. Growth Des. 10, 2096-2103.]). For compounds with trans-4,4′-azobispyridine with other cations, including one with ZnII, see: Noro et al. (2005[Noro, S.-I., Kitagawa, S., Nakamura, T. & Wada, T. (2005). Inorg. Chem. 44, 3960-3971.]). For categorization of hydrogen bonds, see: Gilli & Gilli (2009[Gilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond. Outline of a Comprehensive Hydrogen Bond Theory. International Union of Crystallography. Oxford Science Publications, p. 61. New York, Oxford: Oxford University Press, Inc.]). For a description of the Cambridge Crystallographic Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For the Hirshfeld test, see: Hirshfeld (1976[Hirshfeld, F. L. (1976). Acta Cryst. A32, 239-244.]); Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C10H8N4)3(H2O)2](ClO4)2

  • Mr = 851.29

  • Monoclinic, C 2/c

  • a = 20.5028 (6) Å

  • b = 9.5882 (4) Å

  • c = 18.7797 (6) Å

  • β = 96.629 (3)°

  • V = 3667.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 293 K

  • 0.38 × 0.37 × 0.29 mm

Data collection
  • Oxford Diffraction Xcalibur Gemini diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) and Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.951, Tmax = 0.965

  • 27735 measured reflections

  • 3738 independent reflections

  • 2902 reflections with I > 3σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.106

  • S = 2.67

  • 3738 reflections

  • 373 parameters

  • 22 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1o2⋯O1bi 0.86 (3) 2.14 (3) 2.913 (12) 150 (3)
O2—H1o2⋯O3ai 0.86 (3) 1.77 (3) 2.589 (10) 158 (3)
O1—H1o1⋯O2aii 0.86 (3) 2.21 (3) 2.969 (13) 147 (3)
O1—H1o1⋯O3bii 0.86 (3) 2.20 (3) 3.010 (11) 157 (3)
C5—H1C5⋯O1biii 0.93 2.51 3.346 (11) 149
C13—H1c13⋯O3biv 0.93 2.36 2.973 (11) 123
Symmetry codes: (i) [-x+1, y-1, -z+{\script{3\over 2}}]; (ii) [-x+1, y, -z+{\script{3\over 2}}]; (iii) x, y-1, z; (iv) [x, -y+1, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2000. Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).; software used to prepare material for publication: JANA2006 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In our studies of new inclusion-coordination compounds with cyclodextrins, we have employed Cu(II) coordination compounds with 1,2-bis(pyridin-4-yl)diazene (Brown & Granneman, 1975). However, we obtained as a side product the title structure which is a new polymer formed by Cu(II) and 1,2-bis(pyridin-4-yl)diazene (Azpy), namely [Cu(C10N4H8)3(H2O)2]2n+]n.2n(ClO4)- (Fig. 1). It is important to point out that the title structure is a product of a side reaction with no more than 5% yield. Water which was present in the reaction media allowed the crystallization of a polymeric structure with one-dimensional fishbone-type chain architecture (Fig. 2).

The polymeric motif present in the title structure is isomorphous to that of Zn-1D polymeric motif [Zn(C10N4H8)3(OH2)2]n2n+ which is present in catena-((µ2-1,2-bis(pyridin-4-yl)diazene-N,N')-diaqua-bis(1,2-bis(pyridin-4-yl)diazene-N)-zinc bis(hexafluorophosphate) bis(1,2-bis(pyridin-4-yl)diazene) tetrahydrate) (Noro et al., 2005). However, this polymeric motif in the Zn-compound is partly disodered in the position which corresponds to the bond N6—N6i (symmetry code i: -x + 3/2, -y + 1/2, 1 - z) in the title molecule (see below).

There are also known another related compounds that contain Cu(II), Azpy, water and other ligands in their metal coordination sphere such as tosylate (Kondo et al., 2006) or molecules resulting from condensation reactions between 2,6-diformil-p-cresol with 1,3-diaminopropane and 2-aminoethyl-pyridine (Marinescu et al. 2010). Specifically [Cu(C10N4H8)2(H2O)2]2n+n (He et al. 2000), which is present in catena-(bis(µ2-trans-4,4'-azopyridine-N,N')-copper dinitrate dihydrate, is a related 2-D motif, in which the Cu(II) is present in an octahedral enviroment: in its axial positions there are two water molecules, while in the equatorial plane is occupied by four Azpy ligands, this motif is also present in the title structure.

In the title compound, [Cu(C10N4H8)3(H2O)2]2n+]n.2n(ClO4)-, the cation Cu(II) is situated on the two fold-axis in the site 4e. The symmetry independent atoms are shown in Fig. 1. The coordination sphere of Cu(II) is octahedral and it is formed by pairs of the symmetry equivalent bis(1,2-bis(pyridin-4-yl)diazene, 1,2-bis(pyridin-4-yl)diazene and two non equivalent water molecules.

The 1,2-bis(pyridin-4-yl)diazene molecules form polymeric chains via azo-bonds formed between the symmetry equivalents of N6. These azo-bonds are situated about the inversion centres in 4d sites. These chains are parallel to (-1 0 1) (Fig. 2).

The perchlorate molecules are disordered and are acceptors of the water hydrogen bonds of a moderate strength. [For categorization of the hydrogen bonds, see Gilli & Gilli (2009).] The water molecules which are coordinated to Cu(II) form together with the perchlorates columns which are parallel to the monoclinic axis b (Fig. 3). The pertinent graph set motifs of the H atoms which are donated to the disordered perchlorate O atoms are R44(12).

It is of interest that the bond length N3—N4 measures 1.209 (4) which is considerably longer than 1.166 (4) Å which is the distance between N6—N6i (symmetry code i: -x + 3/2, -y + 1/2, -z + 2). This seems to be quite a large difference. On the other hand the adjacent bond-lengths C7—N3 and C10—N4 measure 1.448 (4) and 1.463 (4) Å while C15—N6 is 1.483 (3) Å long. The Cambridge Crystallographic Database (Allen, 2002; version CSD 5.33 with 586977 hits) has yielded 43 fragments of Caryl—NN—Caryl where N atoms are acyclic and are bonded just to two other atoms. The majority of the hits yielded NN distances between 1.23–1.26 Å while the corresponding C—N distances were in the range 1.40–1.44 Å. There were other four hits with NN distances between 1.17–1.19 Å while the corresponding C—C distances were between 1.47–1.51 Å. There is an indirect proportion between the C—N and NN distances in the given fragment. Thus the present result is in accordance with the previous observations. However, it is worthwhile stressing that the pairs of atoms N3-C7, N6-C15 and C2-C15 are in disagreement with the Hirshfeld test (Hirshfeld, 1009) as indicate the alerts generated by PLATON (Spek, 2009).

Another interesting point are unequal Cu—Owater bond lengths: Cu—O1 and Cu—O1 are 2.403 (3) and 2.522 (3) Å despite of the fact that equatorial Cu—N1 and Cu—N2 are almost the same 2.035 (2) and 2.036 (2) Å. A search in the Cambridge Crystallographic Database (Allen, 2002; version CSD 5.33 with 586977 hits) has shown that such structures are found relatively rarely.

There is also present a π-electron ring···π-electron ring interaction in the structure (Fig. 4). It takes place between the rings N2//C5..C6//C7//C8//C9 and the symmetry equivalent of N5//C12//C11//C10//C14 related by the operation 3/2 - x, 1/2 - y, 1 - z. The distance between the pertinent centroids is 3.913 (2) Å (Spek, 2009). Moreover, there are also weak C—H···O interactions in the structure (see Table 1).

Related literature top

For the synthesis of trans-4,4'-azobispyridine, see: Brown & Granneman (1975). For the synthesis and structures of other polymers with CuI or CuII and trans-4,4'-azobispyridine, see: He et al. (2000); Kondo et al. (2006); Marinescu et al. (2010). For compounds with trans-4,4'-azobispyridine with other cations, including one with an isomorphous ZnII polymeric motif, see: Noro et al. (2005). For the categorization of the hydrogen bonds, see: Gilli & Gilli (2009). For a description of the Cambridge Crystallographic Database, see: Allen (2002). For the Hirshfeld test, see: Hirshfeld (1976); Spek (2009).

Experimental top

Trans-4,4'-azobispiridine was prepared according to literature method (Brown & Granneman, 1975). β-Cyclodextrin (1 mmol) was dissolved in 60 ml of water, trans-4,4'-azobispiridine (1 mmol) was added to this solution and the mixture was heated kept at 40 °C for 5 h approximately while stirring. After this time, the volume decreased to 44.0 ml. Then the solution was left to cool down to room temperature without stirring. An aliquot of 4.2 ml of 0.049 M aqueous solution of Cu(ClO4).6H2O (corresponding to 0.21 mmol of Cu(ClO4).6H2O) was slowly added without stirring to 22 ml of 0.0005 M β-cyclodextrin: trans-4,4'-azobispiridine water solution. Adding of Cu(ClO4).6H2O was stopped when precipitation of a violet powder appeared. Dark prismatic violet crystals suitable for X-ray analysis were obtained letting the solution to stand for three weeks. The longest dimensions of the obtained crystals varied between 0.2 - 0.5 mm. IR (KBr, cm-1): 3337 (m), 3099 (m), 1609 (m), 1589 (m), 1566 (w), 1413 (m), 1224 (w), 1098 (s), 845 (m), 622 (m), 571 (m), 624 (w).)

Refinement top

All the H atoms were discernible in the difference electron density map. The H atoms attached to the aryl carbons have been treated in the riding atom approximation with C—H =0.95 Å and Uiso(Haryl)=1.2Ueq(Caryl). Since both water molecules are situated on the crystallographic twofold axis only one symmetry independent water hydrogen is pertinent to each oxygen. Each of these H atoms have been restrained to the water O atoms by the distance restraint 0.860 (1) Å while Uiso(Hwater oxygen)=1.5Ueq(Owater oxygen).

The O atoms of the perchlorate turned out to be disordered. The perchorate O atoms' electron density has been modelled by a split model in two positions with the constrained occupation of each of them. (The occupational parameters turned out to equal to 0.464 (9) and 0.536 (9).) The Cl—O distances were restrained to 1.440 (1) Å. The angles O—Cl—O were restrained to 109.47 (1)°.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: OLEX2 (Dolomanov et al., 2009) and DIAMOND (Brandenburg, 2010).; software used to prepare material for publication: JANA2006 (Petříček et al., 2006) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of the title structure of catena-Poly[[[diaquabis[1,2-bis(pyridin-4-yl)diazene]copper(II)]-µ-1,2-bis(pyridin-4-yl)diazene] bis(perchlorate)] with the atomic labelling scheme. The displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. The cationic polymeric motif in crystal packing of the compound catena-Poly[[[diaquabis[1,2-bis(pyridin-4-yl)diazene]copper(II)]-µ-1,2-bis(pyridin-4-yl)diazene] bis(perchlorate)]. Symmetry codes (i) = -x + 1, y, z + 3/2; (ii) = -x + 3/2, -y + 1/2, -z + 2.
[Figure 3] Fig. 3. The intermolecular hydrogen bonds (O-H···O) donated by the water hydrogen atoms and accepted by the perchlorate O atoms. Symmetry codes: i: x, 1 + y, z; ii: 1 - x, y, 3/2 - z; iii: 1 - x, 1 - y, 3/2 - z. (See also Table 1).
[Figure 4] Fig. 4. π-electron-ring—π-electron ring interaction between the rings N2//C5//C6//C7//C8//C9 (Cg1) and N5'//C13'//C14'//C10'//C11'//C12' (Cg2'). The primed atoms are related by the operation 3/2 - x, 1/2 - y, 1 - z.
catena-Poly[[[diaquabis[1,2-bis(pyridin-4-yl)diazene]copper(II)]-µ-1,2-bis(pyridin-4-yl)diazene] bis(perchlorate)] top
Crystal data top
[Cu(C10H8N4)3(H2O)2](ClO4)2F(000) = 1740
Mr = 851.29Dx = 1.541 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 10880 reflections
a = 20.5028 (6) Åθ = 3.1–26.3°
b = 9.5882 (4) ŵ = 0.81 mm1
c = 18.7797 (6) ÅT = 293 K
β = 96.629 (3)°Prism, violet
V = 3667.1 (2) Å30.38 × 0.37 × 0.29 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Gemini
diffractometer
3738 independent reflections
Radiation source: X-ray tube2902 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 26.4°, θmin = 3.1°
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2009) and Clark & Reid (1995)]
h = 2525
Tmin = 0.951, Tmax = 0.965k = 1111
27735 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.043Secondary atom site location: difference Fourier map
wR(F2) = 0.106Hydrogen site location: difference Fourier map
S = 2.67H atoms treated by a mixture of independent and constrained refinement
3738 reflectionsWeighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
373 parameters(Δ/σ)max = 0.044
22 restraintsΔρmax = 0.76 e Å3
57 constraintsΔρmin = 0.47 e Å3
Crystal data top
[Cu(C10H8N4)3(H2O)2](ClO4)2V = 3667.1 (2) Å3
Mr = 851.29Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.5028 (6) ŵ = 0.81 mm1
b = 9.5882 (4) ÅT = 293 K
c = 18.7797 (6) Å0.38 × 0.37 × 0.29 mm
β = 96.629 (3)°
Data collection top
Oxford Diffraction Xcalibur Gemini
diffractometer
3738 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2009) and Clark & Reid (1995)]
2902 reflections with I > 3σ(I)
Tmin = 0.951, Tmax = 0.965Rint = 0.026
27735 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04322 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 2.67Δρmax = 0.76 e Å3
3738 reflectionsΔρmin = 0.47 e Å3
373 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.50.24717 (4)0.750.03398 (14)
Cl0.54953 (8)0.75644 (13)0.60764 (6)0.0956 (5)
N20.56205 (9)0.25720 (18)0.67295 (10)0.0359 (6)
N10.57826 (9)0.24420 (19)0.82723 (10)0.0378 (6)
C150.68446 (12)0.2241 (3)0.93132 (15)0.0513 (9)
C10.58515 (12)0.3335 (3)0.88204 (12)0.0457 (8)
H1c10.5536120.4024150.8846130.0548*
C20.63800 (13)0.3267 (3)0.93548 (13)0.0531 (9)
H1c20.6418960.3900840.9732130.0637*
N30.67222 (12)0.3481 (3)0.50343 (13)0.0614 (9)
C50.55314 (11)0.1796 (3)0.61320 (12)0.0431 (8)
H1c50.5219180.1088410.6105310.0517*
N60.74448 (13)0.2009 (3)0.98199 (13)0.0652 (10)
C60.58805 (13)0.1996 (3)0.55559 (14)0.0503 (9)
H1c60.5807470.1440850.5148570.0604*
C90.60886 (11)0.3549 (3)0.67708 (13)0.0463 (9)
H1c90.616850.4068850.7189930.0556*
C40.62437 (11)0.1462 (3)0.82472 (13)0.0525 (9)
H1c40.6203450.0846690.78620.063*
N40.66166 (12)0.2783 (3)0.44975 (14)0.0626 (9)
C110.74683 (13)0.4261 (3)0.39990 (14)0.0571 (10)
H1c110.7622090.461140.4448940.0685*
C70.63456 (12)0.3057 (3)0.56043 (14)0.0485 (9)
C100.69675 (13)0.3311 (3)0.39178 (14)0.0525 (10)
C80.64559 (12)0.3817 (3)0.62202 (14)0.0534 (10)
H1c80.6776260.4507580.6266480.064*
C30.67725 (12)0.1318 (3)0.87591 (14)0.0605 (11)
H1c30.7075480.0605080.8728580.0726*
N50.75455 (13)0.4230 (3)0.27360 (13)0.0724 (11)
C120.77402 (15)0.4687 (3)0.33930 (17)0.0666 (12)
H1c120.808040.5333350.3450320.0799*
C130.70650 (17)0.3312 (4)0.26799 (16)0.0761 (13)
H1c130.691990.297560.2224560.0913*
C140.67590 (16)0.2808 (3)0.32486 (16)0.0681 (12)
H1c140.6423930.2151450.3177540.0817*
O20.50.0034 (3)0.750.0688 (12)
O10.50.5102 (3)0.750.0725 (12)
H1o20.4866 (17)0.055 (3)0.7829 (14)0.1033*
H1o10.4862 (18)0.567 (3)0.7805 (16)0.1088*
O1a0.5232 (6)0.8609 (9)0.5573 (5)0.161 (7)0.464 (9)
O2a0.5038 (5)0.6425 (9)0.6076 (7)0.238 (11)0.464 (9)
O3a0.5602 (4)0.8164 (12)0.6783 (3)0.195 (5)0.464 (9)
O4a0.6109 (2)0.7059 (14)0.5874 (5)0.188 (6)0.464 (9)
O1b0.4963 (4)0.8525 (11)0.6130 (6)0.148 (4)0.536 (9)
O2b0.5246 (5)0.6320 (6)0.5712 (6)0.115 (4)0.536 (9)
O3b0.5796 (6)0.7209 (11)0.6784 (3)0.195 (6)0.536 (9)
O4b0.5976 (5)0.8204 (13)0.5679 (6)0.314 (13)0.536 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0240 (2)0.0517 (3)0.0246 (2)00.00415 (14)0
Cl0.1544 (12)0.0710 (8)0.0605 (6)0.0011 (9)0.0092 (7)0.0064 (6)
N20.0294 (9)0.0468 (12)0.0306 (10)0.0027 (8)0.0006 (8)0.0010 (9)
N10.0280 (9)0.0549 (12)0.0288 (10)0.0006 (9)0.0047 (8)0.0017 (9)
C150.0304 (13)0.074 (2)0.0460 (15)0.0075 (12)0.0122 (11)0.0231 (14)
C10.0436 (14)0.0534 (16)0.0369 (13)0.0036 (12)0.0084 (11)0.0011 (12)
C20.0629 (17)0.0571 (17)0.0352 (14)0.0217 (14)0.0115 (12)0.0011 (12)
N30.0730 (16)0.0581 (15)0.0559 (15)0.0015 (12)0.0198 (13)0.0023 (12)
C50.0411 (13)0.0502 (15)0.0374 (14)0.0062 (11)0.0025 (11)0.0021 (12)
N60.0789 (17)0.0660 (18)0.0487 (15)0.0019 (15)0.0011 (13)0.0060 (11)
C60.0518 (15)0.0614 (17)0.0381 (14)0.0020 (13)0.0065 (12)0.0049 (13)
C90.0402 (13)0.0532 (16)0.0455 (15)0.0074 (12)0.0049 (11)0.0033 (12)
C40.0367 (13)0.079 (2)0.0399 (14)0.0137 (13)0.0047 (11)0.0051 (13)
N40.0620 (16)0.0761 (18)0.0512 (15)0.0010 (12)0.0131 (12)0.0004 (13)
C110.0693 (18)0.0577 (17)0.0465 (16)0.0105 (15)0.0160 (14)0.0007 (13)
C70.0470 (15)0.0539 (15)0.0472 (16)0.0044 (13)0.0167 (12)0.0134 (13)
C100.0548 (16)0.0570 (18)0.0488 (16)0.0103 (13)0.0197 (13)0.0080 (13)
C80.0500 (15)0.0526 (17)0.0596 (17)0.0114 (12)0.0149 (13)0.0005 (13)
C30.0384 (14)0.090 (2)0.0498 (16)0.0141 (14)0.0076 (12)0.0025 (16)
N50.0883 (19)0.0797 (19)0.0543 (16)0.0033 (16)0.0298 (14)0.0107 (14)
C120.0715 (19)0.0575 (19)0.075 (2)0.0012 (15)0.0260 (17)0.0043 (16)
C130.092 (2)0.093 (3)0.0451 (18)0.001 (2)0.0146 (17)0.0001 (17)
C140.068 (2)0.084 (2)0.0537 (19)0.0058 (16)0.0123 (15)0.0019 (16)
O20.093 (2)0.0504 (18)0.065 (2)00.0167 (17)0
O10.089 (2)0.0526 (19)0.078 (2)00.0163 (17)0
O1a0.281 (17)0.078 (7)0.097 (9)0.032 (9)0.083 (10)0.037 (7)
O2a0.35 (2)0.111 (12)0.283 (19)0.030 (12)0.177 (17)0.059 (10)
O3a0.328 (12)0.178 (10)0.077 (6)0.159 (9)0.012 (6)0.026 (6)
O4a0.253 (8)0.214 (14)0.116 (7)0.122 (9)0.096 (7)0.020 (6)
O1b0.232 (9)0.091 (5)0.095 (7)0.042 (6)0.086 (6)0.032 (5)
O2b0.112 (5)0.066 (5)0.177 (10)0.016 (4)0.051 (7)0.032 (6)
O3b0.309 (15)0.148 (9)0.115 (7)0.023 (9)0.029 (8)0.006 (6)
O4b0.57 (3)0.157 (13)0.270 (19)0.102 (17)0.26 (2)0.088 (12)
Geometric parameters (Å, º) top
Cu1—N22.0364 (19)N4—C101.463 (4)
Cu1—N2i2.0364 (19)C11—H1c110.93
Cu1—N12.0350 (17)C11—C101.368 (4)
Cu1—N1i2.0350 (17)C11—C121.385 (4)
Cu1—O22.403 (3)C7—C81.363 (4)
Cu1—O12.522 (3)C10—C141.368 (4)
N2—C51.341 (3)C8—H1c80.93
N2—C91.337 (3)C3—H1c30.93
N1—C11.334 (3)N5—C121.327 (4)
N1—C41.337 (3)N5—C131.316 (5)
C15—C21.378 (4)C12—H1c120.93
C15—N61.483 (3)C13—H1c130.93
C15—C31.361 (4)C13—C141.386 (5)
C1—H1c10.93C14—H1c140.93
C1—C21.391 (3)O2—H1o20.86 (3)
C2—H1c20.93O2—H1o2i0.86 (3)
N3—N41.209 (4)O1—H1o10.86 (3)
N3—C71.448 (4)O1—H1o1i0.86 (3)
C5—H1c50.93Cl—O1a1.439 (9)
C5—C61.378 (4)Cl—O2a1.440 (10)
N6—N6ii1.166 (4)Cl—O3a1.439 (7)
C6—H1c60.93Cl—O4a1.440 (7)
C6—C71.390 (4)Cl—O1b1.440 (10)
C9—H1c90.93Cl—O2b1.440 (8)
C9—C81.372 (4)Cl—O3b1.440 (6)
C4—H1c40.93Cl—O4b1.440 (11)
C4—C31.370 (3)
N2—Cu1—N2i174.58 (7)N3—N4—C10111.9 (2)
N2—Cu1—N190.07 (7)H1c11—C11—C10120.8874
N2—Cu1—N1i90.01 (7)H1c11—C11—C12120.8893
N2—Cu1—O292.71 (5)C10—C11—C12118.2 (3)
N2—Cu1—O187.29 (5)N3—C7—C6125.3 (2)
N2i—Cu1—N190.01 (7)N3—C7—C8115.3 (2)
N2i—Cu1—N1i90.07 (7)C6—C7—C8119.4 (3)
N2i—Cu1—O292.71 (5)N4—C10—C11125.1 (2)
N2i—Cu1—O187.29 (5)N4—C10—C14115.7 (3)
N1—Cu1—N1i178.40 (8)C11—C10—C14119.2 (3)
N1—Cu1—O289.20 (5)C9—C8—C7119.2 (2)
N1—Cu1—O190.80 (5)C9—C8—H1c8120.3901
N1i—Cu1—O289.20 (5)C7—C8—H1c8120.3912
N1i—Cu1—O190.80 (5)C15—C3—C4118.6 (3)
O2—Cu1—O1180.0 (5)C15—C3—H1c3120.7243
C5—N2—C9117.7 (2)C4—C3—H1c3120.7229
C1—N1—C4117.74 (19)C12—N5—C13115.9 (3)
C2—C15—N6126.8 (2)C11—C12—N5124.1 (3)
C2—C15—C3119.5 (2)C11—C12—H1c12117.969
N6—C15—C3113.7 (2)N5—C12—H1c12117.9667
N1—C1—H1c1118.9506N5—C13—H1c13117.5416
N1—C1—C2122.1 (2)N5—C13—C14124.9 (3)
H1c1—C1—C2118.9493H1c13—C13—C14117.5406
C15—C2—C1118.6 (2)C10—C14—C13117.6 (3)
C15—C2—H1c2120.7066C10—C14—H1c14121.1841
C1—C2—H1c2120.7056C13—C14—H1c14121.1852
N4—N3—C7113.7 (2)H1o2—O2—H1o2i110 (3)
N2—C5—H1c5118.4381H1o1—O1—H1o1i102 (3)
N2—C5—C6123.1 (2)O1a—Cl—O2a109.5 (6)
H1c5—C5—C6118.4384O1a—Cl—O3a109.5 (6)
C15—N6—N6ii110.0 (2)O1a—Cl—O4a109.5 (7)
C5—C6—H1c6121.132O2a—Cl—O3a109.5 (6)
C5—C6—C7117.7 (2)O2a—Cl—O4a109.5 (6)
H1c6—C6—C7121.1303O3a—Cl—O4a109.5 (5)
N2—C9—H1c9118.6589O1b—Cl—O2b109.5 (6)
N2—C9—C8122.7 (2)O1b—Cl—O3b109.5 (6)
H1c9—C9—C8118.6588O1b—Cl—O4b109.5 (6)
N1—C4—H1c4118.2663O2b—Cl—O3b109.5 (6)
N1—C4—C3123.5 (2)O2b—Cl—O4b109.5 (7)
H1c4—C4—C3118.2675O3b—Cl—O4b109.5 (6)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+3/2, y+1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1o2···O1biii0.86 (3)2.14 (3)2.913 (12)150 (3)
O2—H1o2···O3aiii0.86 (3)1.77 (3)2.589 (10)158 (3)
O1—H1o1···O2ai0.86 (3)2.21 (3)2.969 (13)147 (3)
O1—H1o1···O3bi0.86 (3)2.20 (3)3.010 (11)157 (3)
C5—H1C5···O1biv0.932.513.346 (11)149
C13—H1c13···O3bv0.932.362.973 (11)123
Symmetry codes: (i) x+1, y, z+3/2; (iii) x+1, y1, z+3/2; (iv) x, y1, z; (v) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C10H8N4)3(H2O)2](ClO4)2
Mr851.29
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)20.5028 (6), 9.5882 (4), 18.7797 (6)
β (°) 96.629 (3)
V3)3667.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.38 × 0.37 × 0.29
Data collection
DiffractometerOxford Diffraction Xcalibur Gemini
diffractometer
Absorption correctionAnalytical
[CrysAlis PRO (Oxford Diffraction, 2009) and Clark & Reid (1995)]
Tmin, Tmax0.951, 0.965
No. of measured, independent and
observed [I > 3σ(I)] reflections
27735, 3738, 2902
Rint0.026
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.106, 2.67
No. of reflections3738
No. of parameters373
No. of restraints22
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.76, 0.47

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and DIAMOND (Brandenburg, 2010)., JANA2006 (Petříček et al., 2006) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1o2···O1bi0.86 (3)2.14 (3)2.913 (12)150 (3)
O2—H1o2···O3ai0.86 (3)1.77 (3)2.589 (10)158 (3)
O1—H1o1···O2aii0.86 (3)2.21 (3)2.969 (13)147 (3)
O1—H1o1···O3bii0.86 (3)2.20 (3)3.010 (11)157 (3)
C5—H1C5···O1biii0.932.513.346 (11)149
C13—H1c13···O3biv0.932.362.973 (11)123
Symmetry codes: (i) x+1, y1, z+3/2; (ii) x+1, y, z+3/2; (iii) x, y1, z; (iv) x, y+1, z1/2.
 

Acknowledgements

The Universidad de Costa Rica is thanked for financial support through research project No. 804-B0–094.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, E. V. & Granneman, G. R. (1975). J. Am. Chem. Soc. 97, 621–627.  CrossRef CAS Web of Science Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond. Outline of a Comprehensive Hydrogen Bond Theory. International Union of Crystallography. Oxford Science Publications, p. 61. New York, Oxford: Oxford University Press, Inc.  Google Scholar
First citationHe, C., Zhang, B.-G., Duan, C.-Y., Li, J.-H. & Meng, Q.-J. (2000). Eur. J. Inorg. Chem. pp. 2549–2554.  CrossRef Google Scholar
First citationHirshfeld, F. L. (1976). Acta Cryst. A32, 239–244.  CrossRef IUCr Journals Web of Science Google Scholar
First citationKondo, A., Noguchi, H., Kajiro, H., Carlucci, L., Mercandelli, P., Proserpio, D. M., Tanaka, H., Kaneko, K. & Kanoh, H. (2006). J. Phys. Chem. B, 110, 25565–25567.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMarinescu, G., Marin, G., Madalan, A. M., Vezeanu, A., Tiseanu, C. & Andruh, M. (2010). Cryst. Growth Des. 10, 2096–2103.  Web of Science CSD CrossRef CAS Google Scholar
First citationNoro, S.-I., Kitagawa, S., Nakamura, T. & Wada, T. (2005). Inorg. Chem. 44, 3960–3971.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2000. Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages m317-m318
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds