organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2-[(1,3-Benzo­thia­zol-2-yl)meth­­oxy]-5-bromo­phen­yl}(phen­yl)methanone

aDepartment of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa, and bEquipe Chimie du Solide et Matériaux, UMR 6226 Institut des Sciences, Université de Rennes 1, Campus de Beaulieu, Avenue du Général Leclerc, 35042 Rennes Cedex, France
*Correspondence e-mail: katharigattav@dut.ac.za, nksusa@gmail.com

(Received 12 May 2013; accepted 21 May 2013; online 31 May 2013)

In the title compound, C21H14BrNO2S, the dihedral angle between the planes of the benzo­thia­zole and phenyl­methanone groups is 63.4 (2)°. In the crystal, pairs of C—H⋯N hydrogen bonds link the mol­ecules to form inversion dimers, which are further linked by C—H⋯O inter­actions into chains along the c axis. C—H⋯π and ππ inter­actions [centroid–centroid distance = 3.863 (1) Å] further stabilize the mol­ecular assembly.

Related literature

For background to the applications of benzo­thia­zole derivatives, see: Kelarev et al. (2003[Kelarev, V. I., Kobrakov, K. I. & Rybina, I. I. (2003). Chem. Heterocycl. Compd, 39, 1267-1306.]); Rana et al. (2007[Rana, A., Siddiqui, N. & Khan, S. A. (2007). Indian J. Pharm. Sci. 69, 10-17.]); Telvekar et al. (2012[Telvekar, V. N., Bairwa, V. K., Satardekar, K. & Bellubi, A. (2012). Bioorg. Med. Chem. Lett. 22, 148-155.]); Saeed et al. (2010[Saeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010). Eur. J. Med. Chem. 45, 1323-1331.]).

[Scheme 1]

Experimental

Crystal data
  • C21H14BrNO2S

  • Mr = 424.30

  • Monoclinic, P 21 /n

  • a = 15.1475 (6) Å

  • b = 7.6501 (3) Å

  • c = 15.8339 (6) Å

  • β = 102.105 (3)°

  • V = 1794.03 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.42 mm−1

  • T = 292 K

  • 0.23 × 0.21 × 0.18 mm

Data collection
  • Oxford Diffraction Xcalibur (Eos, Nova) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.606, Tmax = 0.670

  • 19116 measured reflections

  • 3525 independent reflections

  • 1971 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.120

  • S = 0.98

  • 3525 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the S1/C1/C6/N1/C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21⋯N1i 0.93 2.55 3.398 (6) 152
C5—H5⋯O2ii 0.93 2.61 3.505 (6) 161
C20—H20⋯Cg1iii 0.93 2.68 3.459 (4) 142
Symmetry codes: (i) -x, -y+1, -z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x, y+1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Substituted benzothiazole derivatives have been reported to exhibit various pharmacological properties such as analgesic, antibacterial, antifungal, antidepressant, antitumor, antihypertensive, anthelmintic, and herbicidal activity (Kelarev et al., 2003). However, the variety of biological features of new benzothiazole derivatives is of great scientific interest (Telvekar et al., 2012; Saeed et al., 2010). Here, we report the single-crystal structure of the title compound.

The title compound prefers the conformation with the dihedral angle 63.4 (2)° between the planes of benzothiazole and phenylmethanone group (Fig. 1). The weak C—H···N hydrogen bonds lead to dimer formation, whereas C—H···O hydrogen bonds connect the molecules into infinite chains (Fig. 2a), which leads to formation of layers parallel to (-101). Further, the C—H···π interactions involving the five membered ring S1/C1/C6/N1/C7 and ππ [Cg2···Cg3 = 3.863 (1) Å, Cg2 is the centroid of the six membered ring C9—C14 and Cg3 is the centroid of the six membered ring C16—C21] stabilize the criss-cross molecular assembly (Fig 2 b).

Related literature top

For background to the applications of benzothiazole derivatives, see: Kelarev et al. (2003); Rana et al. (2007); Telvekar et al. (2012); Saeed et al. (2010).

Experimental top

To a mixture of (2-chloromethyl)benzo[d]thiazole (1 mmol) and (5-bromo-2-hydroxyphenyl)(phenyl)methanone (1 mmol) in dry THF, dry potassium carbonate (1 mmol) was added and the reaction mixture was stirred at room temperature for 14 h. The reaction mixture was concentrated to remove the solvent, diluted with ethyl acetate, washed with water, brine solution and dried over anhydrous sodium sulfate. The organic layer was concentrated to yield a residue which was purified by column chromatography using ethyl acetate and n-hexane as eluent (7:3, Rf = 0.71) to afford the product in 77% as a white solid (m. p. 407 (2) K). Suitable crystals for single-crystal X-ray study were obtained from acetonitrile solvent using slow evaporation technique at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with Uiso(H)= 1.2 Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. Molecular structure shows the atom labelling scheme with displacement ellipsoids for non-H atoms at 30% probability level, hydrogen atoms are arbitrary circles.
[Figure 2] Fig. 2. (a) The dimer formation (C—H···N bonds) and their interaction by C—H···O hydrogen bonds. (b) additional C—H···π and ππ interactions stabilize the criss-cross molecular assembly; view along the c axis.
{2-[(1,3-Benzothiazol-2-yl)methoxy]-5-bromophenyl}(phenyl)methanone top
Crystal data top
C21H14BrNO2SF(000) = 856
Mr = 424.30Dx = 1.571 Mg m3
Monoclinic, P21/nMelting point: 407(2) K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.7107 Å
a = 15.1475 (6) ÅCell parameters from 350 reflections
b = 7.6501 (3) Åθ = 1.0–28.0°
c = 15.8339 (6) ŵ = 2.42 mm1
β = 102.105 (3)°T = 292 K
V = 1794.03 (12) Å3Block, colourless
Z = 40.23 × 0.21 × 0.18 mm
Data collection top
Oxford Diffraction Xcalibur (Eos, Nova)
diffractometer
3525 independent reflections
Radiation source: Mova (Mo) X-ray Source1971 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.088
Detector resolution: 16.0839 pixels mm-1θmax = 26.0°, θmin = 2.6°
ω scansh = 1818
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 99
Tmin = 0.606, Tmax = 0.670l = 1919
19116 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0408P)2]
where P = (Fo2 + 2Fc2)/3
3525 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C21H14BrNO2SV = 1794.03 (12) Å3
Mr = 424.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.1475 (6) ŵ = 2.42 mm1
b = 7.6501 (3) ÅT = 292 K
c = 15.8339 (6) Å0.23 × 0.21 × 0.18 mm
β = 102.105 (3)°
Data collection top
Oxford Diffraction Xcalibur (Eos, Nova)
diffractometer
3525 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1971 reflections with I > 2σ(I)
Tmin = 0.606, Tmax = 0.670Rint = 0.088
19116 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 0.98Δρmax = 0.34 e Å3
3525 reflectionsΔρmin = 0.32 e Å3
235 parameters
Special details top

Experimental. CrysAlisPro (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.47887 (4)0.70720 (7)0.07925 (3)0.0671 (2)
S10.04002 (8)0.33280 (15)0.17148 (7)0.0513 (3)
O10.1169 (2)0.4165 (4)0.11024 (17)0.0499 (8)
N10.0810 (2)0.1671 (4)0.0260 (2)0.0410 (9)
O20.2746 (2)0.5691 (4)0.31997 (18)0.0587 (9)
C60.1521 (3)0.1423 (5)0.0671 (3)0.0389 (10)
C150.2206 (3)0.5983 (5)0.2529 (3)0.0395 (10)
C80.0664 (3)0.3039 (5)0.0468 (3)0.0424 (11)
H8A0.10040.19810.04230.051*
H8B0.05390.36140.00900.051*
C160.1297 (3)0.6683 (5)0.2544 (2)0.0351 (10)
C210.0809 (3)0.7618 (5)0.1858 (3)0.0396 (11)
H210.10310.77500.13570.048*
C90.1982 (3)0.4790 (5)0.0998 (3)0.0397 (10)
C70.0190 (3)0.2608 (5)0.0734 (2)0.0379 (10)
C140.2497 (3)0.5708 (5)0.1688 (2)0.0368 (10)
C120.3650 (3)0.6114 (5)0.0873 (3)0.0443 (11)
C40.2920 (3)0.0222 (6)0.0832 (4)0.0662 (14)
H40.34320.04450.06210.079*
C50.2287 (3)0.0427 (6)0.0339 (3)0.0535 (12)
H50.23640.00860.02040.064*
C180.0136 (3)0.7221 (6)0.3328 (3)0.0554 (13)
H180.00900.70880.38270.066*
C20.2067 (3)0.1994 (6)0.1977 (3)0.0600 (14)
H20.19980.25200.25170.072*
C200.0003 (3)0.8356 (5)0.1912 (3)0.0507 (12)
H200.03250.89960.14490.061*
C10.1411 (3)0.2200 (5)0.1478 (3)0.0438 (11)
C190.0345 (3)0.8158 (6)0.2644 (3)0.0560 (13)
H190.08980.86530.26760.067*
C110.3151 (3)0.5212 (6)0.0191 (3)0.0494 (12)
H110.33650.50580.03130.059*
C170.0947 (3)0.6485 (6)0.3280 (3)0.0472 (12)
H170.12660.58460.37450.057*
C100.2324 (3)0.4533 (5)0.0261 (3)0.0470 (12)
H100.19900.38920.01950.056*
C130.3333 (3)0.6361 (5)0.1623 (3)0.0436 (11)
H130.36820.69670.20840.052*
C30.2813 (4)0.0995 (7)0.1649 (4)0.0688 (15)
H30.32520.08300.19720.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0546 (4)0.0762 (4)0.0768 (4)0.0116 (3)0.0282 (3)0.0030 (3)
S10.0522 (8)0.0533 (8)0.0482 (7)0.0063 (6)0.0098 (6)0.0133 (6)
O10.045 (2)0.055 (2)0.0503 (19)0.0147 (16)0.0117 (15)0.0175 (15)
N10.038 (2)0.043 (2)0.038 (2)0.0021 (18)0.0004 (18)0.0006 (17)
O20.050 (2)0.079 (2)0.0432 (19)0.0160 (18)0.0014 (16)0.0005 (17)
C60.036 (3)0.034 (2)0.042 (3)0.005 (2)0.001 (2)0.000 (2)
C150.041 (3)0.034 (2)0.040 (3)0.006 (2)0.001 (2)0.001 (2)
C80.045 (3)0.040 (3)0.042 (3)0.003 (2)0.007 (2)0.006 (2)
C160.033 (3)0.034 (2)0.036 (2)0.004 (2)0.002 (2)0.0054 (19)
C210.044 (3)0.030 (2)0.044 (3)0.001 (2)0.006 (2)0.004 (2)
C90.035 (3)0.039 (3)0.045 (3)0.002 (2)0.009 (2)0.003 (2)
C70.037 (3)0.037 (2)0.038 (3)0.007 (2)0.004 (2)0.004 (2)
C140.036 (3)0.040 (3)0.034 (2)0.003 (2)0.0060 (19)0.001 (2)
C120.042 (3)0.038 (3)0.055 (3)0.005 (2)0.014 (2)0.002 (2)
C40.040 (3)0.059 (3)0.097 (4)0.002 (3)0.010 (3)0.008 (3)
C50.038 (3)0.052 (3)0.065 (3)0.003 (2)0.001 (2)0.004 (2)
C180.047 (3)0.081 (4)0.043 (3)0.002 (3)0.019 (2)0.006 (3)
C20.058 (4)0.062 (3)0.064 (3)0.006 (3)0.020 (3)0.003 (3)
C200.053 (3)0.036 (3)0.059 (3)0.005 (2)0.002 (3)0.001 (2)
C10.044 (3)0.037 (3)0.048 (3)0.004 (2)0.004 (2)0.006 (2)
C190.039 (3)0.057 (3)0.072 (4)0.000 (3)0.011 (3)0.011 (3)
C110.053 (3)0.053 (3)0.044 (3)0.006 (3)0.016 (2)0.003 (2)
C170.051 (3)0.053 (3)0.037 (3)0.001 (2)0.007 (2)0.003 (2)
C100.049 (3)0.043 (3)0.046 (3)0.003 (2)0.006 (2)0.012 (2)
C130.041 (3)0.041 (3)0.047 (3)0.002 (2)0.005 (2)0.002 (2)
C30.059 (4)0.062 (4)0.094 (4)0.005 (3)0.034 (3)0.005 (3)
Geometric parameters (Å, º) top
Br1—C121.903 (4)C12—C111.368 (6)
S1—C11.729 (5)C12—C131.383 (5)
S1—C71.739 (4)C4—C51.366 (6)
O1—C91.363 (4)C4—C31.399 (6)
O1—C81.418 (4)C4—H40.9300
N1—C71.289 (5)C5—H50.9300
N1—C61.382 (5)C18—C171.367 (6)
O2—C151.218 (4)C18—C191.374 (6)
C6—C11.388 (6)C18—H180.9300
C6—C51.395 (5)C2—C31.373 (6)
C15—C161.482 (5)C2—C11.401 (6)
C15—C141.502 (5)C2—H20.9300
C8—C71.480 (5)C20—C191.372 (6)
C8—H8A0.9700C20—H200.9300
C8—H8B0.9700C19—H190.9300
C16—C211.379 (5)C11—C101.382 (5)
C16—C171.387 (5)C11—H110.9300
C21—C201.373 (6)C17—H170.9300
C21—H210.9300C10—H100.9300
C9—C101.385 (5)C13—H130.9300
C9—C141.393 (5)C3—H30.9300
C14—C131.386 (5)
C1—S1—C788.2 (2)C3—C4—H4119.3
C9—O1—C8119.5 (3)C4—C5—C6118.4 (5)
C7—N1—C6110.3 (3)C4—C5—H5120.8
N1—C6—C1114.8 (4)C6—C5—H5120.8
N1—C6—C5124.5 (4)C17—C18—C19120.3 (4)
C1—C6—C5120.6 (4)C17—C18—H18119.8
O2—C15—C16120.6 (4)C19—C18—H18119.8
O2—C15—C14118.6 (4)C3—C2—C1118.2 (5)
C16—C15—C14120.8 (4)C3—C2—H2120.9
O1—C8—C7107.9 (3)C1—C2—H2120.9
O1—C8—H8A110.1C19—C20—C21120.6 (4)
C7—C8—H8A110.1C19—C20—H20119.7
O1—C8—H8B110.1C21—C20—H20119.7
C7—C8—H8B110.1C6—C1—C2120.6 (4)
H8A—C8—H8B108.4C6—C1—S1110.0 (3)
C21—C16—C17118.8 (4)C2—C1—S1129.4 (4)
C21—C16—C15121.4 (4)C20—C19—C18119.5 (5)
C17—C16—C15119.7 (4)C20—C19—H19120.3
C20—C21—C16120.3 (4)C18—C19—H19120.3
C20—C21—H21119.9C12—C11—C10119.1 (4)
C16—C21—H21119.9C12—C11—H11120.5
O1—C9—C10124.0 (4)C10—C11—H11120.5
O1—C9—C14116.9 (4)C18—C17—C16120.5 (4)
C10—C9—C14119.0 (4)C18—C17—H17119.7
N1—C7—C8122.1 (4)C16—C17—H17119.7
N1—C7—S1116.6 (3)C11—C10—C9121.3 (4)
C8—C7—S1121.2 (3)C11—C10—H10119.3
C13—C14—C9119.6 (4)C9—C10—H10119.3
C13—C14—C15117.3 (4)C12—C13—C14120.1 (4)
C9—C14—C15123.1 (4)C12—C13—H13119.9
C11—C12—C13120.8 (4)C14—C13—H13119.9
C11—C12—Br1120.0 (3)C2—C3—C4120.8 (5)
C13—C12—Br1119.2 (3)C2—C3—H3119.6
C5—C4—C3121.3 (5)C4—C3—H3119.6
C5—C4—H4119.3
C7—N1—C6—C10.4 (5)C1—C6—C5—C40.6 (6)
C7—N1—C6—C5178.1 (4)C16—C21—C20—C190.7 (6)
C9—O1—C8—C7178.5 (3)N1—C6—C1—C2177.6 (4)
O2—C15—C16—C21155.4 (4)C5—C6—C1—C20.2 (6)
C14—C15—C16—C2121.3 (6)N1—C6—C1—S11.8 (4)
O2—C15—C16—C1720.9 (6)C5—C6—C1—S1179.5 (3)
C14—C15—C16—C17162.4 (4)C3—C2—C1—C60.5 (7)
C17—C16—C21—C200.9 (6)C3—C2—C1—S1178.7 (4)
C15—C16—C21—C20175.5 (4)C7—S1—C1—C61.9 (3)
C8—O1—C9—C106.4 (6)C7—S1—C1—C2177.4 (4)
C8—O1—C9—C14172.2 (4)C21—C20—C19—C180.5 (7)
C6—N1—C7—C8178.2 (4)C17—C18—C19—C200.4 (7)
C6—N1—C7—S11.2 (4)C13—C12—C11—C100.5 (6)
O1—C8—C7—N1176.5 (4)Br1—C12—C11—C10179.7 (3)
O1—C8—C7—S14.2 (5)C19—C18—C17—C160.5 (7)
C1—S1—C7—N11.8 (3)C21—C16—C17—C180.7 (6)
C1—S1—C7—C8177.5 (3)C15—C16—C17—C18175.7 (4)
O1—C9—C14—C13179.4 (4)C12—C11—C10—C91.8 (6)
C10—C9—C14—C130.7 (6)O1—C9—C10—C11179.5 (4)
O1—C9—C14—C151.6 (6)C14—C9—C10—C111.9 (6)
C10—C9—C14—C15177.1 (4)C11—C12—C13—C140.6 (6)
O2—C15—C14—C1345.6 (5)Br1—C12—C13—C14178.6 (3)
C16—C15—C14—C13131.2 (4)C9—C14—C13—C120.5 (6)
O2—C15—C14—C9132.2 (4)C15—C14—C13—C12178.4 (4)
C16—C15—C14—C950.9 (6)C1—C2—C3—C40.7 (7)
C3—C4—C5—C60.4 (7)C5—C4—C3—C20.3 (8)
N1—C6—C5—C4176.9 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S1/C1/C6/N1/C7 ring.
D—H···AD—HH···AD···AD—H···A
C21—H21···N1i0.932.553.398 (6)152
C5—H5···O2ii0.932.613.505 (6)161
C20—H20···Cg1iii0.932.683.459 (4)142
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+1/2, z1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC21H14BrNO2S
Mr424.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)292
a, b, c (Å)15.1475 (6), 7.6501 (3), 15.8339 (6)
β (°) 102.105 (3)
V3)1794.03 (12)
Z4
Radiation typeMo Kα
µ (mm1)2.42
Crystal size (mm)0.23 × 0.21 × 0.18
Data collection
DiffractometerOxford Diffraction Xcalibur (Eos, Nova)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.606, 0.670
No. of measured, independent and
observed [I > 2σ(I)] reflections
19116, 3525, 1971
Rint0.088
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.120, 0.98
No. of reflections3525
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.32

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S1/C1/C6/N1/C7 ring.
D—H···AD—HH···AD···AD—H···A
C21—H21···N1i0.932.553.398 (6)152
C5—H5···O2ii0.932.613.505 (6)161
C20—H20···Cg1iii0.932.683.459 (4)142
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+1/2, z1/2; (iii) x, y+1, z.
 

Acknowledgements

We are thankful to SSCU, IISc, India for the Oxford Diffraction facility funded under DST–FIST (Level II) and Durban University of Technology for facilities. KNV thanks the NRF South Africa for a DST/NRF Innovation Postdoctoral Fellowship.

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKelarev, V. I., Kobrakov, K. I. & Rybina, I. I. (2003). Chem. Heterocycl. Compd, 39, 1267–1306.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRana, A., Siddiqui, N. & Khan, S. A. (2007). Indian J. Pharm. Sci. 69, 10–17.  CAS Google Scholar
First citationSaeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010). Eur. J. Med. Chem. 45, 1323–1331.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTelvekar, V. N., Bairwa, V. K., Satardekar, K. & Bellubi, A. (2012). Bioorg. Med. Chem. Lett. 22, 148–155.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds