organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(Adamantan-1-yl)-2-(4-fluoro­phen­yl)quinoline

aDepartment of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Nám. T. G. Masaryka 275, Zlín, 762 72, Czech Republic, and bDepartment of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno-Bohunice, 625 00, Czech Republic
*Correspondence e-mail: rvicha@ft.utb.cz

(Received 18 March 2013; accepted 6 May 2013; online 15 May 2013)

In the mol­ecule of the title compound, C25H24FN, the dihedral angle between the best planes of the quinoline fragment (rings A and B) and the benzene ring (C) is 9.51 (4)°. In the crystal, mol­ecules are linked into centrosymmetric dimers via pairs of weak C—H⋯F inter­actions. The mol­ecules are stacked into chains along the a axis by weak off-set ππ inter­actions between the A and C rings of translation-related mol­ecules with a centroid–centroid distance of 3.6440 (2) Å.

Related literature

For the preparation and spectroscopic properties of the title compound, see: Kozubková et al. (2012[Kozubková, Z., Rouchal, M., Nečas, M. & Vícha, R. (2012). Helv. Chim. Acta, 95, 1003-1017.]). For related structures, see: Kozubková et al. (2012[Kozubková, Z., Rouchal, M., Nečas, M. & Vícha, R. (2012). Helv. Chim. Acta, 95, 1003-1017.]); Prabhuswamy et al. (2012[Prabhuswamy, M., Swaroop, T. R., Madan Kumar, S., Rangappa, K. S. & Lokanath, N. K. (2012). Acta Cryst. E68, o3250.]). For the biological activity of related compounds, see: Nayyar et al. (2009[Nayyar, A., Patel, S. R., Shaikh, M., Coutinho, E. & Jain, R. (2009). Eur. J. Med. Chem. 44, 2017-2029.]).

[Scheme 1]

Experimental

Crystal data
  • C25H24FN

  • Mr = 357.45

  • Triclinic, [P \overline 1]

  • a = 6.4604 (3) Å

  • b = 10.9964 (4) Å

  • c = 12.9074 (5) Å

  • α = 93.205 (3)°

  • β = 96.446 (3)°

  • γ = 100.507 (3)°

  • V = 893.14 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 120 K

  • 0.60 × 0.40 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.971, Tmax = 1.000

  • 9490 measured reflections

  • 3142 independent reflections

  • 2445 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.099

  • S = 1.08

  • 3142 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯F1i 0.95 2.61 3.2955 (12) 129
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Quinoline and its derivatives are very important compounds whose structures occur in a variety of natural alkaloids and therapeutics with interesting biological activities. As an example, derivatives of 4-(1-adamantyl)quinoline-2-carboxylic acid have been recently described as potent antituberculosis agents (Nayyar et al., 2009). The title compound was prepared as a part of our research aimed at the examination of novel convenient synthetic procedures toward 4-(1-adamantyl)quinoline derivatives (Kozubková et al., 2012).

The molecule of the title compound consists of three motifs – quinoline and benzene rings and adamantane cage (Figure 1). The quinoline and benzene rings are essentially planar with the respective r.m.s. deviations of 0.0303 and 0.0052 Å and the respective maximum deviations of -0.0477 (12) Å for C1 and 0.0067 (12) Å for C13. The dihedral angle between the planes of these rings is 9.51 (4)°. The adamantane cage consist of free fused cyclohexane rings in classical chairs conformations with C—C—C angles in the range 105.68 (10)–111.83 (11)°. The torsion angles describing the mutual orientation of the benzene, quinoline and adamantane moieties C2–C1–C10–C15 and C4–C3–C16–C17 are -10.62 (19) and 66.77 (15)°, respectively. Although the quinoline ring is essentially planar, it is markedly deformed in plane as it is usual for similar quinoline rings substituted with bulky adamantane at position 4 (Kozubková et al., 2012). The most affected valence angles N1–C9–C8, C2–C3–C4, N1–C9–C4 and C3–C4–C5 are 115.82 (11), 115.91 (11), 124.06 (12) and 125.91 (12)°, respectively. The packing of the molecules in the crystal is stabilized by a weak C—H···F interaction (Table 1, Figure 2). In addition, a weak ππ interaction (Figure 2) is observed between the benzene ring (C10–C15) and quinoline ring (C1–C9, N1), with the shortest centroid-to-centroid distance of 3.6440 (2) Å. Distances of C14, C15, and Cg1 from best plane of adjacent quinoline ring are -3.2742 (13), -3.2448 (13), and -3.4517 (13) Å.

Related literature top

For the preparation and spectroscopic properties of the title compound, see: Kozubková et al. (2012). For related structures, see: Kozubková et al. (2012); Prabhuswamy et al. (2012). For the biological activity of related compounds, see: Nayyar et al. (2009).

Experimental top

The title compound was prepared via a Friedländer reaction from the corresponding 1-adamantyl aminophenyl ketone and 4-fluoroacetophenone as it has been described previously (Kozubková et al., 2012). A single-crystal usable for X-ray analysis was obtained by slow spontaneous evaporation from deuterochloloform at room temperature.

Refinement top

All H atoms were placed at calculated positions and were refined as riding with their Uiso set to 1.2Ueq of the respective carrier atoms. C—H distances are 0.9500 Å for aromatic H atoms, 0.9900 Å for H atoms of secondary carbon atoms and 1.0000 Å for H atoms of tertiary carbon atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the asymmetric unit with atoms represented as 50% probability ellipsoids. H-atoms are shown as small spheres at arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound showing the intermolecular ππ and C–H···F interactions as dotted lines. H-atoms have been omitted for clarity (except for those participating in H-bonds). Cg1 and Cg2 are the respective centers of gravity of the C10–C15 and C1–C4,C9,N1 rings. Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x - 1, y, z.
4-(Adamantan-1-yl)-2-(4-fluorophenyl)quinoline top
Crystal data top
C25H24FNZ = 2
Mr = 357.45F(000) = 380
Triclinic, P1Dx = 1.329 Mg m3
Hall symbol: -P 1Melting point: 435 K
a = 6.4604 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9964 (4) ÅCell parameters from 5109 reflections
c = 12.9074 (5) Åθ = 3.2–27.2°
α = 93.205 (3)°µ = 0.08 mm1
β = 96.446 (3)°T = 120 K
γ = 100.507 (3)°Block, colourless
V = 893.14 (6) Å30.60 × 0.40 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
3142 independent reflections
Radiation source: Enhance (Mo) X-ray Source2445 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 8.4353 pixels mm-1θmax = 25.0°, θmin = 3.2°
ω scanh = 77
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 813
Tmin = 0.971, Tmax = 1.000l = 1515
9490 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0613P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.099(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.20 e Å3
3142 reflectionsΔρmin = 0.19 e Å3
244 parameters
Crystal data top
C25H24FNγ = 100.507 (3)°
Mr = 357.45V = 893.14 (6) Å3
Triclinic, P1Z = 2
a = 6.4604 (3) ÅMo Kα radiation
b = 10.9964 (4) ŵ = 0.08 mm1
c = 12.9074 (5) ÅT = 120 K
α = 93.205 (3)°0.60 × 0.40 × 0.20 mm
β = 96.446 (3)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
3142 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2445 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 1.000Rint = 0.015
9490 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.08Δρmax = 0.20 e Å3
3142 reflectionsΔρmin = 0.19 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.34394 (12)0.33553 (7)0.56712 (6)0.0332 (2)
N11.06928 (16)0.26583 (10)0.29611 (8)0.0214 (3)
C10.92455 (19)0.17633 (12)0.32331 (9)0.0198 (3)
C20.91382 (19)0.05025 (12)0.29032 (9)0.0200 (3)
H20.80440.01010.31100.024*
C31.05410 (19)0.01109 (12)0.22984 (9)0.0187 (3)
C41.21873 (19)0.10663 (12)0.20249 (9)0.0194 (3)
C51.39056 (19)0.08736 (13)0.14764 (9)0.0213 (3)
H51.40010.00520.12470.026*
C61.5421 (2)0.18375 (13)0.12701 (9)0.0243 (3)
H61.65460.16740.09020.029*
C71.5339 (2)0.30672 (13)0.15946 (10)0.0261 (3)
H71.63920.37330.14410.031*
C81.3735 (2)0.32951 (13)0.21319 (10)0.0244 (3)
H81.36780.41260.23510.029*
C91.21530 (19)0.23188 (12)0.23691 (9)0.0202 (3)
C100.77164 (19)0.21533 (12)0.39064 (9)0.0195 (3)
C110.8057 (2)0.33784 (12)0.43399 (10)0.0236 (3)
H110.92880.39440.42180.028*
C120.6640 (2)0.37833 (13)0.49428 (10)0.0250 (3)
H120.68890.46150.52400.030*
C130.4865 (2)0.29515 (13)0.51007 (9)0.0236 (3)
C140.4466 (2)0.17378 (13)0.47036 (9)0.0237 (3)
H140.32310.11810.48340.028*
C150.59069 (19)0.13429 (12)0.41086 (9)0.0216 (3)
H150.56580.05030.38320.026*
C161.03604 (19)0.12759 (12)0.19886 (9)0.0180 (3)
C171.22648 (19)0.17477 (12)0.25635 (9)0.0197 (3)
H17A1.36070.12640.23830.024*
H17B1.22600.16210.33290.024*
C181.2147 (2)0.31265 (12)0.22571 (9)0.0218 (3)
H181.34110.34030.26200.026*
C191.0124 (2)0.38832 (12)0.25789 (9)0.0230 (3)
H19A1.00500.47760.23900.028*
H19B1.01310.37630.33450.028*
C200.82066 (19)0.34565 (12)0.20168 (9)0.0214 (3)
H200.68790.39380.22350.026*
C210.83436 (19)0.20723 (12)0.23111 (9)0.0203 (3)
H21A0.83460.19380.30760.024*
H21B0.70760.18040.19630.024*
C221.0223 (2)0.15445 (12)0.07863 (9)0.0207 (3)
H22A0.89240.13070.04410.025*
H22B1.14630.10390.05280.025*
C231.0176 (2)0.29224 (12)0.05047 (9)0.0220 (3)
H231.01640.30670.02680.026*
C240.8172 (2)0.36869 (13)0.08344 (9)0.0238 (3)
H24A0.81130.45790.06480.029*
H24B0.69010.34440.04650.029*
C251.2133 (2)0.33189 (13)0.10712 (9)0.0235 (3)
H25A1.21100.42040.08710.028*
H25B1.34370.28220.08620.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0378 (5)0.0358 (5)0.0331 (4)0.0163 (4)0.0192 (4)0.0045 (4)
N10.0203 (6)0.0218 (7)0.0228 (5)0.0056 (5)0.0024 (4)0.0036 (5)
C10.0184 (7)0.0214 (8)0.0192 (6)0.0043 (6)0.0010 (5)0.0032 (6)
C20.0183 (6)0.0196 (8)0.0221 (6)0.0028 (6)0.0040 (5)0.0026 (6)
C30.0176 (6)0.0214 (8)0.0165 (6)0.0034 (6)0.0001 (5)0.0022 (5)
C40.0194 (6)0.0233 (8)0.0154 (6)0.0043 (6)0.0000 (5)0.0031 (5)
C50.0212 (7)0.0244 (8)0.0180 (6)0.0034 (6)0.0026 (5)0.0015 (5)
C60.0208 (7)0.0325 (9)0.0195 (6)0.0029 (6)0.0051 (5)0.0041 (6)
C70.0235 (7)0.0271 (9)0.0265 (7)0.0007 (6)0.0051 (6)0.0076 (6)
C80.0270 (7)0.0185 (8)0.0271 (7)0.0020 (6)0.0035 (6)0.0049 (6)
C90.0192 (6)0.0230 (8)0.0187 (6)0.0048 (6)0.0008 (5)0.0041 (6)
C100.0204 (7)0.0202 (8)0.0186 (6)0.0065 (6)0.0007 (5)0.0017 (5)
C110.0229 (7)0.0218 (8)0.0261 (7)0.0034 (6)0.0035 (5)0.0022 (6)
C120.0309 (8)0.0217 (8)0.0235 (7)0.0087 (6)0.0036 (6)0.0004 (6)
C130.0268 (7)0.0306 (9)0.0179 (6)0.0139 (7)0.0068 (5)0.0040 (6)
C140.0226 (7)0.0268 (9)0.0230 (6)0.0052 (6)0.0056 (5)0.0062 (6)
C150.0230 (7)0.0202 (8)0.0219 (6)0.0056 (6)0.0020 (5)0.0012 (6)
C160.0172 (6)0.0187 (8)0.0183 (6)0.0033 (6)0.0044 (5)0.0010 (5)
C170.0174 (6)0.0236 (8)0.0179 (6)0.0033 (6)0.0030 (5)0.0003 (5)
C180.0220 (7)0.0229 (8)0.0222 (6)0.0086 (6)0.0029 (5)0.0013 (6)
C190.0313 (7)0.0183 (8)0.0212 (6)0.0068 (6)0.0075 (5)0.0008 (6)
C200.0194 (7)0.0209 (8)0.0236 (6)0.0006 (6)0.0077 (5)0.0005 (6)
C210.0178 (6)0.0224 (8)0.0212 (6)0.0043 (6)0.0048 (5)0.0005 (6)
C220.0188 (6)0.0249 (8)0.0179 (6)0.0022 (6)0.0026 (5)0.0023 (5)
C230.0247 (7)0.0253 (8)0.0155 (6)0.0033 (6)0.0043 (5)0.0023 (5)
C240.0230 (7)0.0240 (8)0.0227 (7)0.0017 (6)0.0019 (5)0.0026 (6)
C250.0238 (7)0.0222 (8)0.0256 (7)0.0052 (6)0.0076 (5)0.0018 (6)
Geometric parameters (Å, º) top
F1—C131.3610 (14)C15—H150.9500
N1—C11.3201 (16)C16—C211.5441 (16)
N1—C91.3681 (16)C16—C171.5506 (16)
C1—C21.4144 (17)C16—C221.5530 (15)
C1—C101.4901 (17)C17—C181.5313 (17)
C2—C31.3710 (16)C17—H17A0.9900
C2—H20.9500C17—H17B0.9900
C3—C41.4414 (17)C18—C191.5287 (17)
C3—C161.5348 (17)C18—C251.5322 (16)
C4—C51.4227 (17)C18—H181.0000
C4—C91.4282 (18)C19—C201.5262 (17)
C5—C61.3654 (18)C19—H19A0.9900
C5—H50.9500C19—H19B0.9900
C6—C71.4051 (18)C20—C241.5300 (16)
C6—H60.9500C20—C211.5322 (17)
C7—C81.3617 (18)C20—H201.0000
C7—H70.9500C21—H21A0.9900
C8—C91.4134 (18)C21—H21B0.9900
C8—H80.9500C22—C231.5324 (17)
C10—C151.3941 (17)C22—H22A0.9900
C10—C111.3986 (18)C22—H22B0.9900
C11—C121.3826 (17)C23—C241.5264 (17)
C11—H110.9500C23—C251.5337 (17)
C12—C131.3727 (19)C23—H231.0000
C12—H120.9500C24—H24A0.9900
C13—C141.3708 (18)C24—H24B0.9900
C14—C151.3838 (17)C25—H25A0.9900
C14—H140.9500C25—H25B0.9900
C1—N1—C9117.34 (11)C18—C17—H17A109.5
N1—C1—C2122.11 (11)C16—C17—H17A109.5
N1—C1—C10116.32 (12)C18—C17—H17B109.5
C2—C1—C10121.57 (11)C16—C17—H17B109.5
C3—C2—C1123.02 (12)H17A—C17—H17B108.1
C3—C2—H2118.5C19—C18—C17109.63 (10)
C1—C2—H2118.5C19—C18—C25109.72 (10)
C2—C3—C4115.91 (12)C17—C18—C25109.25 (10)
C2—C3—C16120.26 (11)C19—C18—H18109.4
C4—C3—C16123.79 (11)C17—C18—H18109.4
C5—C4—C9116.54 (12)C25—C18—H18109.4
C5—C4—C3125.90 (12)C20—C19—C18108.95 (10)
C9—C4—C3117.51 (11)C20—C19—H19A109.9
C6—C5—C4121.80 (13)C18—C19—H19A109.9
C6—C5—H5119.1C20—C19—H19B109.9
C4—C5—H5119.1C18—C19—H19B109.9
C5—C6—C7120.96 (12)H19A—C19—H19B108.3
C5—C6—H6119.5C19—C20—C24109.41 (10)
C7—C6—H6119.5C19—C20—C21109.41 (10)
C8—C7—C6119.30 (13)C24—C20—C21110.10 (10)
C8—C7—H7120.4C19—C20—H20109.3
C6—C7—H7120.4C24—C20—H20109.3
C7—C8—C9121.27 (13)C21—C20—H20109.3
C7—C8—H8119.4C20—C21—C16111.83 (10)
C9—C8—H8119.4C20—C21—H21A109.3
N1—C9—C8115.81 (12)C16—C21—H21A109.3
N1—C9—C4124.04 (12)C20—C21—H21B109.3
C8—C9—C4120.11 (11)C16—C21—H21B109.3
C15—C10—C11117.95 (12)H21A—C21—H21B107.9
C15—C10—C1122.31 (12)C23—C22—C16110.71 (10)
C11—C10—C1119.73 (11)C23—C22—H22A109.5
C12—C11—C10121.36 (12)C16—C22—H22A109.5
C12—C11—H11119.3C23—C22—H22B109.5
C10—C11—H11119.3C16—C22—H22B109.5
C13—C12—C11118.23 (13)H22A—C22—H22B108.1
C13—C12—H12120.9C24—C23—C22109.06 (10)
C11—C12—H12120.9C24—C23—C25109.39 (10)
F1—C13—C14118.85 (12)C22—C23—C25110.17 (10)
F1—C13—C12118.38 (12)C24—C23—H23109.4
C14—C13—C12122.77 (12)C22—C23—H23109.4
C13—C14—C15118.37 (12)C25—C23—H23109.4
C13—C14—H14120.8C23—C24—C20108.93 (10)
C15—C14—H14120.8C23—C24—H24A109.9
C14—C15—C10121.32 (13)C20—C24—H24A109.9
C14—C15—H15119.3C23—C24—H24B109.9
C10—C15—H15119.3C20—C24—H24B109.9
C3—C16—C21112.40 (10)H24A—C24—H24B108.3
C3—C16—C17109.61 (10)C18—C25—C23109.93 (10)
C21—C16—C17106.18 (10)C18—C25—H25A109.7
C3—C16—C22111.85 (10)C23—C25—H25A109.7
C21—C16—C22105.68 (10)C18—C25—H25B109.7
C17—C16—C22110.94 (10)C23—C25—H25B109.7
C18—C17—C16110.84 (10)H25A—C25—H25B108.2
C9—N1—C1—C22.15 (17)C11—C10—C15—C141.14 (18)
C9—N1—C1—C10178.09 (10)C1—C10—C15—C14177.50 (11)
N1—C1—C2—C31.36 (18)C2—C3—C16—C217.19 (15)
C10—C1—C2—C3178.88 (11)C4—C3—C16—C21175.40 (10)
C1—C2—C3—C41.05 (17)C2—C3—C16—C17110.64 (12)
C1—C2—C3—C16178.66 (10)C4—C3—C16—C1766.78 (13)
C2—C3—C4—C5174.85 (11)C2—C3—C16—C22125.88 (12)
C16—C3—C4—C52.67 (18)C4—C3—C16—C2256.70 (14)
C2—C3—C4—C92.43 (15)C3—C16—C17—C18179.14 (9)
C16—C3—C4—C9179.94 (10)C21—C16—C17—C1859.23 (12)
C9—C4—C5—C61.31 (17)C22—C16—C17—C1855.13 (13)
C3—C4—C5—C6178.61 (11)C16—C17—C18—C1961.68 (12)
C4—C5—C6—C70.01 (18)C16—C17—C18—C2558.58 (12)
C5—C6—C7—C80.69 (18)C17—C18—C19—C2060.25 (12)
C6—C7—C8—C90.01 (18)C25—C18—C19—C2059.73 (13)
C1—N1—C9—C8177.26 (10)C18—C19—C20—C2461.41 (13)
C1—N1—C9—C40.59 (17)C18—C19—C20—C2159.29 (12)
C7—C8—C9—N1176.56 (11)C19—C20—C21—C1660.65 (12)
C7—C8—C9—C41.39 (18)C24—C20—C21—C1659.63 (13)
C5—C4—C9—N1175.79 (10)C3—C16—C21—C20178.86 (9)
C3—C4—C9—N11.74 (17)C17—C16—C21—C2059.02 (12)
C5—C4—C9—C81.98 (16)C22—C16—C21—C2058.88 (12)
C3—C4—C9—C8179.51 (10)C3—C16—C22—C23176.68 (10)
N1—C1—C10—C15169.13 (10)C21—C16—C22—C2360.71 (12)
C2—C1—C10—C1510.64 (18)C17—C16—C22—C2353.95 (13)
N1—C1—C10—C119.49 (16)C16—C22—C23—C2463.30 (12)
C2—C1—C10—C11170.75 (10)C16—C22—C23—C2556.77 (13)
C15—C10—C11—C120.61 (18)C22—C23—C24—C2060.27 (13)
C1—C10—C11—C12178.06 (11)C25—C23—C24—C2060.28 (14)
C10—C11—C12—C130.57 (19)C19—C20—C24—C2361.85 (14)
C11—C12—C13—F1178.33 (11)C21—C20—C24—C2358.43 (13)
C11—C12—C13—C141.30 (19)C19—C18—C25—C2358.80 (14)
F1—C13—C14—C15178.84 (11)C17—C18—C25—C2361.41 (13)
C12—C13—C14—C150.79 (19)C24—C23—C25—C1859.05 (14)
C13—C14—C15—C100.47 (18)C22—C23—C25—C1860.83 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···F1i0.952.613.2955 (12)129
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC25H24FN
Mr357.45
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)6.4604 (3), 10.9964 (4), 12.9074 (5)
α, β, γ (°)93.205 (3), 96.446 (3), 100.507 (3)
V3)893.14 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.60 × 0.40 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.971, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9490, 3142, 2445
Rint0.015
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.099, 1.08
No. of reflections3142
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.19

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···F1i0.952.613.2955 (12)129.2
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The financial support of this work by the Inter­nal Founding Agency of Tomas Bata University in Zlin (project No. IGA/FT/2013/008) is gratefully acknowledged.

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKozubková, Z., Rouchal, M., Nečas, M. & Vícha, R. (2012). Helv. Chim. Acta, 95, 1003–1017.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNayyar, A., Patel, S. R., Shaikh, M., Coutinho, E. & Jain, R. (2009). Eur. J. Med. Chem. 44, 2017–2029.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPrabhuswamy, M., Swaroop, T. R., Madan Kumar, S., Rangappa, K. S. & Lokanath, N. K. (2012). Acta Cryst. E68, o3250.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds