organic compounds
6-[3-(p-Tolylsulfonylamino)propyl]diquinothiazine†
aDepartment of Organic Chemistry, The Medical University of Silesia, ul. Jagiellońska 4, PL–41 200 Sosnowiec, Poland, bInstitute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, PL–01 224 Warsaw, Poland, and cFaculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University, ul. Wóycickiego 1/3, PL–01 938, Warszawa, Poland
*Correspondence e-mail: pluta@sum.edu.pl
In the title molecule {systematic name: N-[3-(diquino[3,2-b;2′,3′-e][1,4]thiazin-6-yl)propyl]-4-methylbenzenesulfonamide}, C28H24N4O2S2, the pentacyclic system is relatively planar [maximum deviation from the mean plane = 0.242 (1) Å]. The dihedral angle between two quinoline ring systems is 8.23 (2)° and that between the two halves of the 1,4-thiazine ring is 5.68 (3)°. The conformation adopted by the 3-(p-tolylsulfonylamino)propyl substituent allows for the formation of an intramolecular N—H⋯N hydrogen bond and places the benzene ring of this substituent above one of the quinoline fragments of the pentacyclic system. In the crystal, molecules are arranged via π–π stacking interactions into (0-11) layers [centroid–centroid distances = 3.981 (1)–4.320 (1) Å for the rings in the pentacyclic system and 3.645 (1) Å for the tolyl benzene rings]. In addition, molecules are involved in weak C—H⋯O, which connect the layers, and C—H⋯S hydrogen bonds. The title compound shows promising anticancer activity against renal cancer cell line UO-31.
Related literature
For the structures of heteropentacenes, see: Anthony (2006); Isaia et al. (2009); Yoshida et al. (1994). For recent literature on the biological activity of phenothiazines, see: Aaron et al. (2009); Pluta et al. (2011). For the synthesis and biological activity of 6-substituted diquinothiazines, see: Nowak et al. (2007); Jeleń & Pluta (2009); Pluta et al. (2010). For crystal structures of phenothiazines, see: Chu (1988). For information on azaphenothiazines, their nomenclature and synthesis, see: Pluta et al. (2009). For heteropentacenes with quinoline moieties containing nitrogen, sulfur, oxygen and selenium, see: Nowak et al. (2002); Pluta et al. (2000).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536813013950/gk2566sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813013950/gk2566Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813013950/gk2566Isup3.cml
The title compound was obtained in a few step synthesis as described by Jeleń et al. (2009) starting from the reactions of 6H-5,6,7-triaza-13-thiapentacene (II) with phthalimidopropyl bromide (followed by hydrolysis) or 5,7-diaza-6,13-dithiapentacene (III) with 1,3-diaminopropane to obtain aminopropyldiquinothiazine (IV). Compound (IV) was sulfonylated with p-toluenesulfonyl chloride. The title compound has melting point 439–440 K. X-ray quality crystals were grown from chloroform-ethanol mixture by slow evaporation.
All H atoms were treated as riding atoms in geometrically calculated positions, with d(C–H) = 0.95, 0.99 and 0.98 Å for aromatic, methylene and methyl hydrogens, respectively, except of the H atom in the N–H group of which positional parameters were refined freely, Uiso(H) = kUeq(C,N), where k = 1.5 for the methyl group and k = 1.2 otherwise.
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. Molecular structure with displacement ellipsoids shown at the 50% probability level. | |
Fig. 2. Related compounds. | |
Fig. 3. Structure of the (0 -1 1) layer: the π–π stacking interactions between pentacyclic systems are 3.589 (1) and 3.841 (1) Å [distance measured between r.m.s. planes of fully eclipsed and partially eclipsed benzene rings of pentacyclic systems, respectively] and 3.453 (1) Å between r.m.s. planes of benzene rings of toluene substituents. |
C28H24N4O2S2 | Z = 2 |
Mr = 512.63 | F(000) = 536 |
Triclinic, P1 | Dx = 1.441 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.3986 (3) Å | Cell parameters from 16661 reflections |
b = 10.3793 (3) Å | θ = 3.3–32.2° |
c = 12.6207 (3) Å | µ = 0.26 mm−1 |
α = 80.735 (2)° | T = 100 K |
β = 81.959 (2)° | Block, yellow |
γ = 77.999 (2)° | 0.39 × 0.34 × 0.23 mm |
V = 1181.30 (6) Å3 |
Agilent SuperNova Dual (Cu at zero, Eos) diffractometer | 7396 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 6770 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.015 |
Detector resolution: 16.2974 pixels mm-1 | θmax = 31.0°, θmin = 3.3° |
ω scans | h = −13→13 |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2012) and Clark & Reid (1995)] | k = −15→15 |
Tmin = 0.937, Tmax = 0.965 | l = −18→18 |
24091 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.093 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0463P)2 + 0.437P] where P = (Fo2 + 2Fc2)/3 |
7396 reflections | (Δ/σ)max = 0.002 |
329 parameters | Δρmax = 0.42 e Å−3 |
0 restraints | Δρmin = −0.40 e Å−3 |
C28H24N4O2S2 | γ = 77.999 (2)° |
Mr = 512.63 | V = 1181.30 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.3986 (3) Å | Mo Kα radiation |
b = 10.3793 (3) Å | µ = 0.26 mm−1 |
c = 12.6207 (3) Å | T = 100 K |
α = 80.735 (2)° | 0.39 × 0.34 × 0.23 mm |
β = 81.959 (2)° |
Agilent SuperNova Dual (Cu at zero, Eos) diffractometer | 7396 independent reflections |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2012) and Clark & Reid (1995)] | 6770 reflections with I > 2σ(I) |
Tmin = 0.937, Tmax = 0.965 | Rint = 0.015 |
24091 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.093 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.42 e Å−3 |
7396 reflections | Δρmin = −0.40 e Å−3 |
329 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.49893 (13) | 1.01160 (10) | 0.71760 (9) | 0.0272 (2) | |
H1 | 0.4759 | 1.0911 | 0.6691 | 0.033* | |
C2 | 0.55824 (14) | 1.01426 (11) | 0.81047 (10) | 0.0316 (2) | |
H2 | 0.5750 | 1.0958 | 0.8266 | 0.038* | |
C3 | 0.59430 (13) | 0.89597 (11) | 0.88211 (10) | 0.0284 (2) | |
H3 | 0.6354 | 0.8987 | 0.9462 | 0.034* | |
C4 | 0.57070 (11) | 0.77664 (10) | 0.86036 (8) | 0.02243 (18) | |
H4 | 0.5972 | 0.6975 | 0.9085 | 0.027* | |
C4A | 0.50694 (10) | 0.77236 (9) | 0.76632 (8) | 0.01797 (16) | |
N5 | 0.47657 (8) | 0.65388 (8) | 0.75030 (6) | 0.01707 (14) | |
C5A | 0.41609 (9) | 0.64626 (9) | 0.66422 (7) | 0.01604 (16) | |
N6 | 0.38838 (9) | 0.52185 (8) | 0.65386 (7) | 0.01928 (15) | |
C6A | 0.31384 (10) | 0.49652 (9) | 0.57300 (8) | 0.01871 (17) | |
N7 | 0.28831 (10) | 0.37503 (8) | 0.58262 (7) | 0.02115 (16) | |
C7A | 0.21392 (11) | 0.34230 (10) | 0.50797 (8) | 0.02097 (18) | |
C8 | 0.18288 (13) | 0.21269 (10) | 0.52247 (9) | 0.0270 (2) | |
H8 | 0.2161 | 0.1500 | 0.5816 | 0.032* | |
C9 | 0.10458 (14) | 0.17702 (11) | 0.45114 (10) | 0.0307 (2) | |
H9 | 0.0841 | 0.0897 | 0.4613 | 0.037* | |
C10 | 0.05463 (14) | 0.26913 (12) | 0.36322 (9) | 0.0301 (2) | |
H10 | −0.0011 | 0.2440 | 0.3154 | 0.036* | |
C11 | 0.08566 (12) | 0.39472 (11) | 0.34607 (9) | 0.0264 (2) | |
H11 | 0.0536 | 0.4555 | 0.2856 | 0.032* | |
C11A | 0.16556 (11) | 0.43355 (10) | 0.41872 (8) | 0.02102 (18) | |
C12 | 0.19770 (11) | 0.56268 (10) | 0.40906 (8) | 0.02207 (18) | |
H12 | 0.1697 | 0.6267 | 0.3492 | 0.026* | |
C12A | 0.26858 (11) | 0.59588 (9) | 0.48515 (8) | 0.01975 (17) | |
S13 | 0.30095 (3) | 0.75808 (3) | 0.46855 (2) | 0.02831 (7) | |
C13A | 0.37960 (10) | 0.76078 (9) | 0.58521 (7) | 0.01722 (16) | |
C14 | 0.40755 (10) | 0.87994 (9) | 0.60157 (8) | 0.01950 (17) | |
H14 | 0.3834 | 0.9565 | 0.5503 | 0.023* | |
C14A | 0.47201 (11) | 0.89058 (9) | 0.69388 (8) | 0.01988 (17) | |
C15 | 0.43639 (12) | 0.40812 (9) | 0.73615 (8) | 0.02281 (19) | |
H15A | 0.5134 | 0.4294 | 0.7728 | 0.027* | |
H15B | 0.4803 | 0.3295 | 0.6994 | 0.027* | |
C16 | 0.31325 (14) | 0.37268 (10) | 0.82111 (9) | 0.0278 (2) | |
H16A | 0.2456 | 0.3360 | 0.7859 | 0.033* | |
H16B | 0.3561 | 0.3015 | 0.8761 | 0.033* | |
C17 | 0.22489 (12) | 0.48651 (11) | 0.87824 (8) | 0.02409 (19) | |
H17A | 0.1897 | 0.5623 | 0.8239 | 0.029* | |
H17B | 0.1383 | 0.4578 | 0.9222 | 0.029* | |
S19 | 0.22842 (3) | 0.62938 (3) | 1.034198 (18) | 0.02204 (6) | |
O20 | 0.33837 (9) | 0.65975 (8) | 1.08936 (6) | 0.02723 (16) | |
O21 | 0.11287 (9) | 0.56819 (11) | 1.09446 (7) | 0.0372 (2) | |
C22 | 0.14699 (11) | 0.77850 (11) | 0.95968 (8) | 0.02354 (19) | |
C23 | 0.01915 (12) | 0.78269 (14) | 0.91344 (9) | 0.0304 (2) | |
H23 | −0.0268 | 0.7075 | 0.9245 | 0.036* | |
C24 | −0.03909 (13) | 0.89937 (15) | 0.85096 (9) | 0.0369 (3) | |
H24 | −0.1254 | 0.9030 | 0.8185 | 0.044* | |
C25 | 0.02520 (14) | 1.01107 (14) | 0.83459 (9) | 0.0362 (3) | |
C26 | 0.15136 (14) | 1.00516 (13) | 0.88263 (9) | 0.0333 (3) | |
H26 | 0.1959 | 1.0811 | 0.8730 | 0.040* | |
C27 | 0.21278 (12) | 0.88873 (11) | 0.94467 (9) | 0.0267 (2) | |
H27 | 0.2995 | 0.8849 | 0.9766 | 0.032* | |
C28 | −0.04257 (19) | 1.13661 (16) | 0.76733 (10) | 0.0514 (4) | |
H28A | −0.0395 | 1.1199 | 0.6927 | 0.077* | |
H28B | 0.0122 | 1.2069 | 0.7687 | 0.077* | |
H28C | −0.1445 | 1.1646 | 0.7969 | 0.077* | |
N18 | 0.31353 (9) | 0.52970 (8) | 0.94864 (7) | 0.01995 (15) | |
H18 | 0.3886 (16) | 0.5609 (14) | 0.9126 (12) | 0.024* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0354 (5) | 0.0178 (4) | 0.0308 (5) | −0.0121 (4) | −0.0060 (4) | 0.0007 (4) |
C2 | 0.0432 (6) | 0.0208 (5) | 0.0365 (6) | −0.0153 (4) | −0.0099 (5) | −0.0036 (4) |
C3 | 0.0364 (6) | 0.0247 (5) | 0.0287 (5) | −0.0130 (4) | −0.0091 (4) | −0.0036 (4) |
C4 | 0.0260 (4) | 0.0203 (4) | 0.0232 (4) | −0.0087 (4) | −0.0054 (4) | −0.0016 (3) |
C4A | 0.0181 (4) | 0.0161 (4) | 0.0200 (4) | −0.0056 (3) | −0.0007 (3) | −0.0017 (3) |
N5 | 0.0176 (3) | 0.0150 (3) | 0.0190 (3) | −0.0036 (3) | −0.0033 (3) | −0.0016 (3) |
C5A | 0.0156 (4) | 0.0133 (4) | 0.0186 (4) | −0.0022 (3) | −0.0027 (3) | −0.0006 (3) |
N6 | 0.0259 (4) | 0.0122 (3) | 0.0209 (4) | −0.0029 (3) | −0.0114 (3) | 0.0011 (3) |
C6A | 0.0212 (4) | 0.0156 (4) | 0.0197 (4) | −0.0018 (3) | −0.0078 (3) | −0.0010 (3) |
N7 | 0.0264 (4) | 0.0150 (3) | 0.0237 (4) | −0.0026 (3) | −0.0111 (3) | −0.0019 (3) |
C7A | 0.0241 (4) | 0.0182 (4) | 0.0219 (4) | −0.0021 (3) | −0.0083 (3) | −0.0040 (3) |
C8 | 0.0350 (5) | 0.0179 (4) | 0.0307 (5) | −0.0035 (4) | −0.0140 (4) | −0.0039 (4) |
C9 | 0.0391 (6) | 0.0228 (5) | 0.0351 (6) | −0.0074 (4) | −0.0132 (5) | −0.0083 (4) |
C10 | 0.0360 (6) | 0.0325 (6) | 0.0268 (5) | −0.0084 (5) | −0.0110 (4) | −0.0098 (4) |
C11 | 0.0310 (5) | 0.0312 (5) | 0.0197 (4) | −0.0075 (4) | −0.0088 (4) | −0.0040 (4) |
C11A | 0.0230 (4) | 0.0231 (4) | 0.0180 (4) | −0.0041 (3) | −0.0055 (3) | −0.0032 (3) |
C12 | 0.0249 (4) | 0.0227 (4) | 0.0187 (4) | −0.0048 (4) | −0.0076 (3) | 0.0018 (3) |
C12A | 0.0226 (4) | 0.0168 (4) | 0.0195 (4) | −0.0034 (3) | −0.0065 (3) | 0.0017 (3) |
S13 | 0.04278 (16) | 0.01844 (12) | 0.02660 (13) | −0.01033 (10) | −0.01874 (11) | 0.00722 (9) |
C13A | 0.0170 (4) | 0.0157 (4) | 0.0179 (4) | −0.0031 (3) | −0.0020 (3) | 0.0011 (3) |
C14 | 0.0209 (4) | 0.0157 (4) | 0.0208 (4) | −0.0053 (3) | −0.0008 (3) | 0.0020 (3) |
C14A | 0.0217 (4) | 0.0166 (4) | 0.0217 (4) | −0.0074 (3) | −0.0005 (3) | −0.0005 (3) |
C15 | 0.0339 (5) | 0.0117 (4) | 0.0240 (4) | −0.0009 (3) | −0.0167 (4) | 0.0013 (3) |
C16 | 0.0453 (6) | 0.0167 (4) | 0.0254 (5) | −0.0128 (4) | −0.0162 (4) | 0.0049 (4) |
C17 | 0.0271 (5) | 0.0251 (5) | 0.0229 (4) | −0.0127 (4) | −0.0096 (4) | 0.0044 (4) |
S19 | 0.01835 (11) | 0.03176 (13) | 0.01380 (10) | −0.00181 (9) | −0.00435 (8) | 0.00184 (8) |
O20 | 0.0256 (4) | 0.0342 (4) | 0.0215 (3) | 0.0027 (3) | −0.0122 (3) | −0.0053 (3) |
O21 | 0.0277 (4) | 0.0619 (6) | 0.0180 (3) | −0.0125 (4) | −0.0001 (3) | 0.0093 (4) |
C22 | 0.0180 (4) | 0.0338 (5) | 0.0146 (4) | 0.0056 (4) | −0.0031 (3) | −0.0036 (4) |
C23 | 0.0186 (4) | 0.0486 (7) | 0.0199 (4) | 0.0054 (4) | −0.0045 (4) | −0.0059 (4) |
C24 | 0.0257 (5) | 0.0564 (8) | 0.0206 (5) | 0.0174 (5) | −0.0085 (4) | −0.0093 (5) |
C25 | 0.0381 (6) | 0.0426 (7) | 0.0156 (4) | 0.0209 (5) | −0.0028 (4) | −0.0052 (4) |
C26 | 0.0376 (6) | 0.0310 (6) | 0.0231 (5) | 0.0113 (5) | −0.0010 (4) | −0.0044 (4) |
C27 | 0.0252 (5) | 0.0290 (5) | 0.0222 (4) | 0.0066 (4) | −0.0048 (4) | −0.0055 (4) |
C28 | 0.0593 (9) | 0.0539 (9) | 0.0213 (5) | 0.0314 (7) | −0.0067 (5) | −0.0004 (5) |
N18 | 0.0201 (4) | 0.0214 (4) | 0.0187 (4) | −0.0059 (3) | −0.0051 (3) | 0.0011 (3) |
C1—C2 | 1.3730 (16) | S13—C13A | 1.7440 (10) |
C1—C14A | 1.4163 (13) | C13A—C14 | 1.3689 (13) |
C1—H1 | 0.9500 | C14—C14A | 1.4152 (14) |
C2—C3 | 1.4124 (16) | C14—H14 | 0.9500 |
C2—H2 | 0.9500 | C15—C16 | 1.5256 (17) |
C3—C4 | 1.3782 (14) | C15—H15A | 0.9900 |
C3—H3 | 0.9500 | C15—H15B | 0.9900 |
C4—C4A | 1.4130 (13) | C16—C17 | 1.5179 (16) |
C4—H4 | 0.9500 | C16—H16A | 0.9900 |
C4A—N5 | 1.3699 (11) | C16—H16B | 0.9900 |
C4A—C14A | 1.4158 (13) | C17—N18 | 1.4748 (13) |
N5—C5A | 1.3149 (12) | C17—H17A | 0.9900 |
C5A—N6 | 1.3986 (11) | C17—H17B | 0.9900 |
C5A—C13A | 1.4384 (12) | S19—O20 | 1.4351 (8) |
N6—C6A | 1.4016 (12) | S19—O21 | 1.4357 (9) |
N6—C15 | 1.4800 (12) | S19—N18 | 1.6279 (9) |
C6A—N7 | 1.3156 (12) | S19—C22 | 1.7623 (11) |
C6A—C12A | 1.4335 (13) | C22—C27 | 1.3852 (17) |
N7—C7A | 1.3704 (12) | C22—C23 | 1.3974 (14) |
C7A—C11A | 1.4118 (14) | C23—C24 | 1.3877 (17) |
C7A—C8 | 1.4133 (14) | C23—H23 | 0.9500 |
C8—C9 | 1.3765 (15) | C24—C25 | 1.390 (2) |
C8—H8 | 0.9500 | C24—H24 | 0.9500 |
C9—C10 | 1.4082 (17) | C25—C26 | 1.3914 (19) |
C9—H9 | 0.9500 | C25—C28 | 1.5080 (17) |
C10—C11 | 1.3714 (16) | C26—C27 | 1.3923 (15) |
C10—H10 | 0.9500 | C26—H26 | 0.9500 |
C11—C11A | 1.4158 (13) | C27—H27 | 0.9500 |
C11—H11 | 0.9500 | C28—H28A | 0.9800 |
C11A—C12 | 1.4170 (14) | C28—H28B | 0.9800 |
C12—C12A | 1.3660 (13) | C28—H28C | 0.9800 |
C12—H12 | 0.9500 | N18—H18 | 0.876 (15) |
C12A—S13 | 1.7471 (10) | ||
C2—C1—C14A | 120.16 (10) | C14A—C14—H14 | 119.6 |
C2—C1—H1 | 119.9 | C14—C14A—C4A | 116.65 (8) |
C14A—C1—H1 | 119.9 | C14—C14A—C1 | 123.70 (9) |
C1—C2—C3 | 120.11 (10) | C4A—C14A—C1 | 119.63 (9) |
C1—C2—H2 | 119.9 | N6—C15—C16 | 113.75 (9) |
C3—C2—H2 | 119.9 | N6—C15—H15A | 108.8 |
C4—C3—C2 | 120.90 (10) | C16—C15—H15A | 108.8 |
C4—C3—H3 | 119.6 | N6—C15—H15B | 108.8 |
C2—C3—H3 | 119.6 | C16—C15—H15B | 108.8 |
C3—C4—C4A | 119.82 (10) | H15A—C15—H15B | 107.7 |
C3—C4—H4 | 120.1 | C17—C16—C15 | 115.55 (8) |
C4A—C4—H4 | 120.1 | C17—C16—H16A | 108.4 |
N5—C4A—C4 | 118.46 (8) | C15—C16—H16A | 108.4 |
N5—C4A—C14A | 122.16 (9) | C17—C16—H16B | 108.4 |
C4—C4A—C14A | 119.35 (8) | C15—C16—H16B | 108.4 |
C5A—N5—C4A | 120.21 (8) | H16A—C16—H16B | 107.5 |
N5—C5A—N6 | 116.71 (8) | N18—C17—C16 | 111.15 (9) |
N5—C5A—C13A | 121.40 (8) | N18—C17—H17A | 109.4 |
N6—C5A—C13A | 121.88 (8) | C16—C17—H17A | 109.4 |
C5A—N6—C6A | 125.03 (8) | N18—C17—H17B | 109.4 |
C5A—N6—C15 | 118.16 (8) | C16—C17—H17B | 109.4 |
C6A—N6—C15 | 116.78 (7) | H17A—C17—H17B | 108.0 |
N7—C6A—N6 | 115.61 (8) | O20—S19—O21 | 119.96 (5) |
N7—C6A—C12A | 121.93 (8) | O20—S19—N18 | 106.67 (5) |
N6—C6A—C12A | 122.46 (8) | O21—S19—N18 | 106.71 (6) |
C6A—N7—C7A | 119.45 (8) | O20—S19—C22 | 107.48 (5) |
N7—C7A—C11A | 122.50 (9) | O21—S19—C22 | 107.68 (5) |
N7—C7A—C8 | 118.34 (9) | N18—S19—C22 | 107.82 (4) |
C11A—C7A—C8 | 119.15 (9) | C27—C22—C23 | 120.77 (10) |
C9—C8—C7A | 120.19 (10) | C27—C22—S19 | 119.75 (8) |
C9—C8—H8 | 119.9 | C23—C22—S19 | 119.44 (9) |
C7A—C8—H8 | 119.9 | C24—C23—C22 | 118.36 (13) |
C8—C9—C10 | 120.41 (10) | C24—C23—H23 | 120.8 |
C8—C9—H9 | 119.8 | C22—C23—H23 | 120.8 |
C10—C9—H9 | 119.8 | C23—C24—C25 | 121.87 (11) |
C11—C10—C9 | 120.59 (10) | C23—C24—H24 | 119.1 |
C11—C10—H10 | 119.7 | C25—C24—H24 | 119.1 |
C9—C10—H10 | 119.7 | C24—C25—C26 | 118.76 (11) |
C10—C11—C11A | 119.87 (10) | C24—C25—C28 | 120.26 (13) |
C10—C11—H11 | 120.1 | C26—C25—C28 | 120.97 (15) |
C11A—C11—H11 | 120.1 | C25—C26—C27 | 120.43 (13) |
C7A—C11A—C11 | 119.76 (9) | C25—C26—H26 | 119.8 |
C7A—C11A—C12 | 116.77 (9) | C27—C26—H26 | 119.8 |
C11—C11A—C12 | 123.45 (9) | C22—C27—C26 | 119.80 (11) |
C12A—C12—C11A | 120.52 (9) | C22—C27—H27 | 120.1 |
C12A—C12—H12 | 119.7 | C26—C27—H27 | 120.1 |
C11A—C12—H12 | 119.7 | C25—C28—H28A | 109.5 |
C12—C12A—C6A | 118.79 (9) | C25—C28—H28B | 109.5 |
C12—C12A—S13 | 117.62 (7) | H28A—C28—H28B | 109.5 |
C6A—C12A—S13 | 123.58 (7) | C25—C28—H28C | 109.5 |
C13A—S13—C12A | 102.57 (4) | H28A—C28—H28C | 109.5 |
C14—C13A—C5A | 118.69 (8) | H28B—C28—H28C | 109.5 |
C14—C13A—S13 | 117.28 (7) | C17—N18—S19 | 117.64 (7) |
C5A—C13A—S13 | 124.04 (7) | C17—N18—H18 | 112.7 (9) |
C13A—C14—C14A | 120.87 (9) | S19—N18—H18 | 109.9 (9) |
C13A—C14—H14 | 119.6 | ||
C14A—C1—C2—C3 | 0.77 (19) | C6A—C12A—S13—C13A | −4.78 (10) |
C1—C2—C3—C4 | −0.06 (19) | N5—C5A—C13A—C14 | −0.73 (14) |
C2—C3—C4—C4A | −1.26 (17) | N6—C5A—C13A—C14 | 178.87 (8) |
C3—C4—C4A—N5 | −176.04 (10) | N5—C5A—C13A—S13 | 179.35 (7) |
C3—C4—C4A—C14A | 1.85 (15) | N6—C5A—C13A—S13 | −1.05 (13) |
C4—C4A—N5—C5A | 179.42 (9) | C12A—S13—C13A—C14 | −174.70 (8) |
C14A—C4A—N5—C5A | 1.59 (14) | C12A—S13—C13A—C5A | 5.22 (9) |
C4A—N5—C5A—N6 | −179.91 (8) | C5A—C13A—C14—C14A | 0.45 (14) |
C4A—N5—C5A—C13A | −0.29 (13) | S13—C13A—C14—C14A | −179.63 (7) |
N5—C5A—N6—C6A | 174.38 (9) | C13A—C14—C14A—C4A | 0.75 (14) |
C13A—C5A—N6—C6A | −5.24 (15) | C13A—C14—C14A—C1 | −177.64 (10) |
N5—C5A—N6—C15 | −3.43 (13) | N5—C4A—C14A—C14 | −1.80 (14) |
C13A—C5A—N6—C15 | 176.96 (9) | C4—C4A—C14A—C14 | −179.61 (9) |
C5A—N6—C6A—N7 | −174.51 (9) | N5—C4A—C14A—C1 | 176.66 (9) |
C15—N6—C6A—N7 | 3.32 (13) | C4—C4A—C14A—C1 | −1.14 (14) |
C5A—N6—C6A—C12A | 5.71 (15) | C2—C1—C14A—C14 | 178.19 (11) |
C15—N6—C6A—C12A | −176.46 (9) | C2—C1—C14A—C4A | −0.16 (16) |
N6—C6A—N7—C7A | 178.97 (9) | C5A—N6—C15—C16 | 100.99 (10) |
C12A—C6A—N7—C7A | −1.25 (15) | C6A—N6—C15—C16 | −76.99 (11) |
C6A—N7—C7A—C11A | 1.42 (15) | N6—C15—C16—C17 | −53.22 (11) |
C6A—N7—C7A—C8 | −177.56 (10) | C15—C16—C17—N18 | −68.56 (11) |
N7—C7A—C8—C9 | 178.05 (11) | O20—S19—C22—C27 | 13.31 (10) |
C11A—C7A—C8—C9 | −0.96 (17) | O21—S19—C22—C27 | 143.85 (9) |
C7A—C8—C9—C10 | −0.04 (19) | N18—S19—C22—C27 | −101.35 (9) |
C8—C9—C10—C11 | 1.32 (19) | O20—S19—C22—C23 | −168.77 (8) |
C9—C10—C11—C11A | −1.55 (18) | O21—S19—C22—C23 | −38.23 (10) |
N7—C7A—C11A—C11 | −178.25 (10) | N18—S19—C22—C23 | 76.58 (9) |
C8—C7A—C11A—C11 | 0.72 (15) | C27—C22—C23—C24 | 0.85 (15) |
N7—C7A—C11A—C12 | 0.08 (15) | S19—C22—C23—C24 | −177.05 (8) |
C8—C7A—C11A—C12 | 179.05 (10) | C22—C23—C24—C25 | −0.71 (16) |
C10—C11—C11A—C7A | 0.53 (16) | C23—C24—C25—C26 | −0.14 (17) |
C10—C11—C11A—C12 | −177.68 (11) | C23—C24—C25—C28 | −179.19 (10) |
C7A—C11A—C12—C12A | −1.76 (15) | C24—C25—C26—C27 | 0.86 (16) |
C11—C11A—C12—C12A | 176.50 (10) | C28—C25—C26—C27 | 179.91 (10) |
C11A—C12—C12A—C6A | 1.94 (15) | C23—C22—C27—C26 | −0.16 (16) |
C11A—C12—C12A—S13 | −178.82 (8) | S19—C22—C27—C26 | 177.74 (8) |
N7—C6A—C12A—C12 | −0.41 (15) | C25—C26—C27—C22 | −0.72 (16) |
N6—C6A—C12A—C12 | 179.35 (9) | C16—C17—N18—S19 | −167.83 (7) |
N7—C6A—C12A—S13 | −179.61 (8) | O20—S19—N18—C17 | −177.97 (7) |
N6—C6A—C12A—S13 | 0.16 (14) | O21—S19—N18—C17 | 52.66 (8) |
C12—C12A—S13—C13A | 176.02 (8) | C22—S19—N18—C17 | −62.78 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
N18—H18···N5 | 0.876 (14) | 2.243 (15) | 2.9973 (12) | 144.1 (12) |
C15—H15A···O20i | 0.99 | 2.33 | 3.1641 (12) | 141 |
C11—H11···O21ii | 0.95 | 2.55 | 3.3933 (13) | 149 |
C15—H15B···S13iii | 0.99 | 2.86 | 3.6912 (11) | 142 |
C17—H17B···O21iv | 0.99 | 2.47 | 3.3013 (13) | 141 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x, y, z−1; (iii) −x+1, −y+1, −z+1; (iv) −x, −y+1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C28H24N4O2S2 |
Mr | 512.63 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 9.3986 (3), 10.3793 (3), 12.6207 (3) |
α, β, γ (°) | 80.735 (2), 81.959 (2), 77.999 (2) |
V (Å3) | 1181.30 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.26 |
Crystal size (mm) | 0.39 × 0.34 × 0.23 |
Data collection | |
Diffractometer | Agilent SuperNova Dual (Cu at zero, Eos) diffractometer |
Absorption correction | Analytical [CrysAlis PRO (Agilent, 2012) and Clark & Reid (1995)] |
Tmin, Tmax | 0.937, 0.965 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 24091, 7396, 6770 |
Rint | 0.015 |
(sin θ/λ)max (Å−1) | 0.725 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.093, 1.04 |
No. of reflections | 7396 |
No. of parameters | 329 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.42, −0.40 |
Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2008), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N18—H18···N5 | 0.876 (14) | 2.243 (15) | 2.9973 (12) | 144.1 (12) |
C15—H15A···O20i | 0.99 | 2.33 | 3.1641 (12) | 141 |
C11—H11···O21ii | 0.95 | 2.55 | 3.3933 (13) | 149 |
C15—H15B···S13iii | 0.99 | 2.86 | 3.6912 (11) | 142 |
C17—H17B···O21iv | 0.99 | 2.47 | 3.3013 (13) | 141 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x, y, z−1; (iii) −x+1, −y+1, −z+1; (iv) −x, −y+1, −z+2. |
Footnotes
†Part CXXXVII in the series of `Azinyl Sulfides'.
Acknowledgements
The work was supported by the Medical University of Silesia (grant KNW-1–006/P/2/0).
References
Aaron, J. J., Gaye Seye, M. D., Trajkovska, S. & Motohashi, N. (2009). Top. Heterocycl. Chem. 16, 153–231. CrossRef CAS Google Scholar
Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Anthony, J. E. (2006). Chem. Rev. 106, 5028–5048. Web of Science CrossRef PubMed CAS Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Chu, S. S. C. (1988). Phenothiazines and 1,4-Benzothiazines – Chemical and Biological Aspects, edited by R. R. Gupta, pp. 475–526. Amsterdam: Elsevier. Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Isaia, F., Aragoni, M. C., Arca, M., Demartin, F., Devillanova, F. A., Ennas, G., Garau, A., Lippolis, V., Mancini, A. & Verani, G. (2009). Eur. J. Inorg. Chem. pp. 3667–3672. Web of Science CSD CrossRef Google Scholar
Jeleń, M. & Pluta, K. (2009). Heterocycles, 78, 2325–2336. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nowak, M., Pluta, K. & Suwińska, K. (2002). New J. Chem. 26, 1216–1220. Web of Science CSD CrossRef CAS Google Scholar
Nowak, M., Pluta, K., Suwińska, K. & Straver, L. (2007). J. Heterocycl. Chem. 44, 543–550. CrossRef CAS Google Scholar
Pluta, K., Jeleń, M., Morak-Młodawska, B., Zimecki, M., Artym, J. & Kocięba, M. (2010). Pharmacol. Rep. 62, 319–332. Web of Science CrossRef CAS PubMed Google Scholar
Pluta, K., Morak-Młodawska, B. & Jeleń, M. (2009). J. Heterocycl. Chem. 46, 355–391. Web of Science CrossRef CAS Google Scholar
Pluta, K., Morak-Młodawska, B. & Jeleń, M. (2011). Eur. J. Med. Chem. 46, 3179–3189. Web of Science CrossRef CAS PubMed Google Scholar
Pluta, K., Nowak, M. & Suwińska, K. (2000). J. Chem. Crystallogr. 30, 479–482. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yoshida, S., Kozawa, K., Sato, N. & Uchida, T. (1994). Bull. Chem. Soc. Jpn, 67, 2017–2023. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Heteropentacenes, mainly aza-, thia- and azathiapentacenes, are considered as polyheterocyclic donor molecules to form organic semiconductors (Anthony, 2006). We obtained heteropentacenes containing nitrogen, sulfur, oxygen and selenium via the annulation reactions (Nowak et al., 2002). One of this type was 6H-5,6,7-triaza-13-thiapentacene (II, Figure 2) which can be regarded as a new modified phenothiazine system, pentacyclic diquinothiazine, where two quinoline rings were incorporated in the ring system instead of benzene rings. This compound was further transformed by introduction of 6-alkyl, aryl, heteroaryl and aminoalkyl substituents at the thiazine nitrogen atoms. It is well known that neuroleptic phenothiazines have tricyclic dibenzothiazine ring system and the aminoalkyl substituent at the thiazine nitrogen atom in position 10. All these compounds are folded and have the central thiazine ring in a boat conformation with the aminoalkyl group in the equatorial position. 6-Substituted diquinothiazines with the aminoalkyl groups and their acyl and sulfonyl derivatives exhibit promising anticancer activities against the cell lines of 9 types of human cancer: leukemia, melanoma, non-small cell lung cancer, colon cancer, CNS cancer, ovarian cancer, renal cancer, prostate cancer and breast cancer (Pluta et al., 2010). None of phenothiazines or azaphenothiazine with the p-tolylsulfonylaminopropyl substituent have been examined by X-ray crystallography so far. The title compound (I) was obtained in a few step synthesis starting from the reactions of heteropentacenes, 6H-5,6,7-triaza-13-thiapentacene (II) and 5,7-diaza-6,13-dithiapentacene (III), with appropriate reagents (see Experimental). The structure of the title compound was assigned by spectroscopic (1H NMR and MS) analysis. The diquinothiazine structure of C2v symmetry shows a lack of the Smiles rearrangement during thiazine ring closure (Jeleń & Pluta, 2009). X-ray analysis fully confirmed this structure as 6-[3(p-tolylsulfonylamino)propyl]diquino[3,2 - b;2',3'-e][1,4]thiazine. All the classical neuroleptic phenothiazines are folded along the N–S axis with the dihedral angle of 134.0–153.6° and with the aminoalkyl group in equatorial positions (Chu, 1988). The title molecule is close to planar with the dihedral angle between the quinoline rings of 171.77 (2)° and the angle between two halves of the thiazine ring of 174.32 (3)°. The S13···N6–C15 angle is 176.70 (6)°. The endocyclic bond angles at heteroatoms in the central ring (C12A–S13–C13A and C5A–N6–C6A) are quite large, 102.56 (4)° and 125.04 (8)° in accord with the thiazine ring flat conformation. It is interesting that the planarity of the triazathiapentacene system is dependent on the substituent nature at the thiazine nitrogen atom. When the substituent was an electron-donating group (phenyl in compound IV; Pluta et al., 2000), the ring system was folded, when electron-deficient ( p-nitrophenyl group in compound V; Nowak et al., 2007) the system was almost planar. The bonds around the sulfur atom S19 of the sulfonamide group show a distortion from tetrahedral geometry. Whereas the O22—S19—O21 bond angle is 119.98 (5)°, three other O–S19–X (N18 or C22) bond angles are 106.68 (4)–107.48 (5)°. The bonds around thiazine N6 and sulfonamide N18 atoms show planar and pyramidal arrangement, respectively, as shown by the sum bond angles (359.97 (8)° and 340.25 (9)°, repectively). The p-tolylsulfonylaminopropyl substituent is not coplanar with pentacyclic ring system and shows unexpectedly U-conformation with the benzene ring placed over the pentacene system, with the dihedral angle between the C22–C26 and N6/C5A/C6A/C12A/C13A/S13 planes of 30.15 (3)°. The torsion angles including the propyl group (C15–C16–C17) show the synclinal/synclinal arrangement of the carbon chain. The torsion angles involving the sulfonamide group (C17–N18–S19–C22) show antiperiplanar/synclinal/synclinal arrangement. There is intramolecular N18–H18···N5 hydrogen bond which stabilizes the U shape of the p-tolylsulfonylaminopropyl substituent. Three intermolecular C–H···O hydrogen bonds involving the sulfonamide group and one C–H···S hydrogen bond involving the thiazine sulfur atom exist in the crystal. The molecules which are related via centers of symmetry at 0,1/2,1/2 and 1/2,1/2,1/2 stack in ribbons along the a direction via π–π interactions of the pentacyclic systems. The ribbons are further arranged into (0 -1 1) layers via another π–π interactions between benzene rings of toluene substituents (Figure 3). Layers are glued together by the mentioned above C–H···O hydrogen bonds between aromatic carbon atoms of pentacyclic systems of one layer and sulfonamide oxygen atoms of the neighbouring layer.
The title compound shows promising anticancer activity against renal cancer cell line UO-31.