organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o974-o975

5-(6-Amino-1,3-di­methyl-2,4-dioxo-1,2,3,4-tetra­hydropyrimidin-5-yl)-1,3-di­methyl-1H-chromeno[2,3-d]pyrim­idine-2,4(3H,5H)-dione 3.5-hydrate

aDepartment of Chemistry, National Institute of Technology-Agartala, Pin-799055, Tripura, India
*Correspondence e-mail: subrataorg@gmail.com

(Received 10 May 2013; accepted 20 May 2013; online 25 May 2013)

The title compound, C19H19N5O5·3.5H2O, crystallizes with 3.5 mol­ecules of water in the asymmetric unit, one of which lies on a mirror plane. One of the water mol­ecules links the mol­ecules, forming centrosymmetric dimers. These dimers are then linked through further N—H⋯O and O—H⋯O hydrogen bonding, leading to the observed three-dimensional structure.

Related literature

Many chromene derivatives occur in natural products, see: Hatakeyama et al. (1988[Hatakeyama, S., Ochi, N., Numata, H. & Takano, S. (1988). J. Chem. Soc. Chem. Commun. pp. 1022-1024.]). For the biological activity of functionalized chromenes, see: Brooks (1998[Brooks, G. T. (1998). Pestic. Sci. 22, 41-50.]); Valenti et al. (1993[Valenti, P., Da Re, P., Rampa, A., Montanari, P., Carrara, M. & Cima, L. (1993). Anticancer Drug. Des. 8, 349-360.]); Tang et al. (2007[Tang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437-o1438.]). For the use of 6-amino-uracil derivatives as precursors in the synthesis of biologically significant fused uracils, see: Shaw (1996[Shaw, G. (1996). Compherensive Heterocyclic Chemistry, edited by A. R. Katritzky & C. W. Rees, Vol. 7, pp. 397-429. Oxford: Pergamon Press.]). The fusion of a chromene unit to the uracil ring is found to increase the biological activity, see: Sabry et al. (2011[Sabry, N. M., Mohamed, H. M., Khattab, E. S. A. E. H., Motlaq, S. S. & El-Agrody, A. M. (2011). Eur. J. Med. Chem. 46, 765-772.]).

[Scheme 1]

Experimental

Crystal data
  • C19H19N5O5·3.5H2O

  • Mr = 460.45

  • Monoclinic, C 2/c

  • a = 29.993 (4) Å

  • b = 7.9105 (6) Å

  • c = 21.458 (3) Å

  • β = 119.860 (16)°

  • V = 4415.3 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.32 × 0.12 × 0.06 mm

Data collection
  • Oxford Diffraction Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.93, Tmax = 1.00

  • 9327 measured reflections

  • 4554 independent reflections

  • 2538 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.137

  • S = 0.98

  • 4554 reflections

  • 308 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6A⋯O6Wi 0.86 2.18 3.009 (3) 161
N6—H6B⋯O8W 0.86 2.09 2.905 (3) 158
O6W—H6WA⋯O1ii 0.85 2.01 2.830 (3) 162
O6W—H6WB⋯O7W 0.85 2.00 2.835 (3) 167
O7W—H7WA⋯O3iii 0.84 1.94 2.781 (3) 177
O7W—H7WB⋯O2 0.85 1.93 2.773 (3) 170
O8W—H8WA⋯O9W 0.85 1.99 2.838 (4) 177
O8W—H8WB⋯O6Wiv 0.85 2.01 2.840 (3) 164
O9W—H9W⋯O7W 0.85 1.93 2.772 (3) 170
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z+1]; (iii) -x+1, -y+2, -z+1; (iv) [-x+1, y-1, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: OLEX.SOLVE (Bourhis et al., 2013[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2013). In preparation.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Functionlized chromenes are of great interest as they have shown to possess antimicrobial, antitumoral, spasmolytic, anticoagulant and antianaphylactic characteristics (Brooks, 1998; Valenti et al., 1993; Tang et al., 2007). Many chromene derivatives also occur in various natural products (Hatakeyama et al., 1988). 6-Amino-uracil derivatives belong to nitrogen-containing heterocycles of pyrimidine family and are used as key precursors for the synthesis of numerous biologically significant fused uracils (Shaw, 1996). The fusion of chromene unit to uracil ring is found to increase biological activity (Sabry et al., 2011). In this context, the synthesis and crystal structure of the title compound are reported.

The molecules are held together through a tightly woven intermolecular hydrogen bonding network, utilizing the three and a half water molecules to establish the three-dimensional structure. The two short hydrogen bonds (D···A = 2.773 (3) and 2.781 (3) Å) show D—H···A angles of 170° and 177° respectively, which are close to the ideal 180°, yield to the formation of 'dimers' (Fig. 2), which are further strongly connected to another dimer (Fig. 3), eventually leading to layers utilizing the many hydrogen bonding interactions available to the system. Finally, these layers are held together by relatively weak C—H···O and N—H···O interactions (Fig. 4 & Fig. 5) so producing a complex three-dimensional structure.

Related literature top

Many chromene derivatives occur in natural products, see: Hatakeyama et al. (1988). For the biological activity of functionlized chromenes, see: Brooks (1998); Valenti et al. (1993); Tang et al. (2007). For the use of 6-amino-uracil derivatives as precusrors in the synthesis of biologically significant fused

uracils, see: Shaw (1996). The fusion of a chromene unit to the uracil ring is found to increase the biological activity, see: Sabry et al. (2011).

Experimental top

Distilled water (30 ml) was added to 6-amino-1,3-dimethyluracil (1 mmol) in a 100 ml round-bottomed flask and the mixture was stirred at room temperature until all the 6-amino- 1,3-dimethyluracil had dissolved. Salicylaldehyde (0.5 mmol) was added drop wise to the 6- amino-1,3-dimethyluracil solution with constant stirring and then after 4 h the product appeared as brown precipitate and stirring was continued for further 3 h so that all of the reactants were converted into product. The brown precipitate was filtered and recrystallized from distilled ethanol to yield white transparent crystals suitable for single-crystal X-ray diffraction (yield 93%; m.p. 520–522 K).

Refinement top

The structure was solved using the charge flipping method available from olex.solve (Bourhis et al., 2013) and was refined using the least squares refinement on F2 available from SHELXL2013 (Sheldrick, 2008). The solution and refinement process for this structure was unremarkable and all refinement details can be inferred from the cif file itself.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: OLEX.SOLVE (Bourhis et al., 2013); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. An overview of the title compound, showing the atom-numbering scheme. Symmetry-generated water molecules are shown in pink. The displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. The dimers formed by the short and geometrically most optimized hydrogen bonds.
[Figure 3] Fig. 3. 'Dimers of dimers' – the basic building blocks of the layers.
[Figure 4] Fig. 4. The layers as seen along the a axis.
[Figure 5] Fig. 5. The same arrangement as in Fig. 4, but rotated by 900 and now seen along the b axis.
5-(6-Amino-1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)-1,3-dimethyl-1H-chromeno[2,3-d]pyrimidine-2,4(3H,5H)-dione 3.5-hydrate top
Crystal data top
C19H19N5O5·3.5H2OZ = 8
Mr = 460.45F(000) = 1944
Monoclinic, C2/cDx = 1.385 Mg m3
a = 29.993 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.9105 (6) ŵ = 0.11 mm1
c = 21.458 (3) ÅT = 298 K
β = 119.860 (16)°Block, clear colourless
V = 4415.3 (10) Å30.32 × 0.12 × 0.06 mm
Data collection top
Oxford Diffraction Xcalibur (Eos, Gemini)
diffractometer
4554 independent reflections
Radiation source: Enhance (Mo) X-ray Source2538 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
Detector resolution: 16.1511 pixels mm-1θmax = 26.5°, θmin = 2.8°
ω scansh = 3736
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 95
Tmin = 0.93, Tmax = 1.00l = 2626
9327 measured reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.037P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.060(Δ/σ)max = 0.001
wR(F2) = 0.137Δρmax = 0.24 e Å3
S = 0.98Δρmin = 0.25 e Å3
4554 reflectionsExtinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
308 parametersExtinction coefficient: 0.0029 (2)
0 restraints
Crystal data top
C19H19N5O5·3.5H2OV = 4415.3 (10) Å3
Mr = 460.45Z = 8
Monoclinic, C2/cMo Kα radiation
a = 29.993 (4) ŵ = 0.11 mm1
b = 7.9105 (6) ÅT = 298 K
c = 21.458 (3) Å0.32 × 0.12 × 0.06 mm
β = 119.860 (16)°
Data collection top
Oxford Diffraction Xcalibur (Eos, Gemini)
diffractometer
4554 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
2538 reflections with I > 2σ(I)
Tmin = 0.93, Tmax = 1.00Rint = 0.069
9327 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 0.98Δρmax = 0.24 e Å3
4554 reflectionsΔρmin = 0.25 e Å3
308 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.20391 (8)1.0426 (2)0.41093 (10)0.0553 (6)
O20.36262 (7)0.8244 (2)0.56168 (9)0.0444 (5)
O30.51160 (8)0.8412 (3)0.44642 (10)0.0579 (6)
O40.34405 (7)0.6704 (2)0.34016 (8)0.0442 (5)
O50.24740 (6)0.5527 (2)0.34356 (8)0.0378 (5)
N10.28226 (8)0.9305 (3)0.48757 (10)0.0350 (5)
N20.22732 (8)0.8001 (3)0.37727 (10)0.0374 (6)
N30.42861 (9)0.7489 (3)0.39256 (11)0.0399 (6)
N40.48358 (8)0.7140 (3)0.51612 (10)0.0359 (6)
N60.45814 (8)0.5830 (3)0.58939 (10)0.0469 (7)
H6A0.43580.53370.59720.056*
H6B0.48910.59750.62400.056*
C10.23592 (11)0.9317 (4)0.42411 (14)0.0398 (7)
C20.26390 (10)0.6756 (3)0.39378 (12)0.0316 (6)
C30.31020 (9)0.6787 (3)0.45432 (12)0.0289 (6)
C40.32143 (10)0.8121 (3)0.50451 (12)0.0323 (6)
C50.47635 (11)0.7709 (3)0.45087 (14)0.0394 (7)
C60.44477 (10)0.6371 (3)0.52362 (12)0.0307 (6)
C70.39607 (9)0.6201 (3)0.46424 (11)0.0284 (6)
C80.38635 (11)0.6784 (3)0.39612 (12)0.0338 (6)
C90.35107 (9)0.5470 (3)0.46939 (11)0.0297 (6)
H90.36450.50810.51890.036*
C100.32640 (10)0.3965 (3)0.42059 (12)0.0294 (6)
C110.27754 (10)0.4047 (3)0.36074 (12)0.0307 (6)
C120.25456 (11)0.2707 (3)0.31460 (13)0.0418 (7)
H120.22170.28110.27510.050*
C130.28154 (13)0.1200 (4)0.32827 (14)0.0484 (8)
H130.26690.02840.29750.058*
C140.33003 (12)0.1059 (4)0.38743 (15)0.0466 (8)
H140.34800.00470.39660.056*
C150.35207 (11)0.2422 (3)0.43328 (13)0.0384 (7)
H150.38460.23060.47330.046*
C160.17779 (11)0.7988 (4)0.30914 (13)0.0573 (9)
H16A0.17950.71930.27660.086*
H16B0.17090.90960.28810.086*
H16C0.15080.76670.31840.086*
C170.29347 (11)1.0725 (3)0.53773 (14)0.0498 (8)
H17A0.31801.03700.58560.075*
H17B0.26231.10770.53630.075*
H17C0.30741.16510.52400.075*
C180.53408 (11)0.7462 (4)0.57937 (14)0.0517 (8)
H18A0.52960.80030.61590.078*
H18B0.55380.81840.56620.078*
H18C0.55190.64100.59740.078*
C190.41982 (13)0.8013 (4)0.32181 (13)0.0627 (10)
H19A0.39100.74040.28510.094*
H19B0.44990.77750.31830.094*
H19C0.41280.92040.31570.094*
O6W0.40247 (8)1.3900 (3)0.65089 (12)0.0588 (6)
H6WA0.37071.39370.63860.088*
H6WB0.41041.28910.64700.088*
O7W0.43622 (9)1.0753 (3)0.62611 (10)0.0552 (6)
H7WA0.45311.10060.60550.083*
H7WB0.41550.99490.60360.083*
O8W0.54970 (10)0.6130 (4)0.72984 (11)0.0811 (8)
H8WA0.53500.69630.73730.122*
H8WB0.55790.54010.76310.122*
O9W0.50000.8957 (5)0.75000.1228 (18)
H9W0.48270.96120.71460.184*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0445 (13)0.0462 (12)0.0788 (14)0.0148 (11)0.0333 (12)0.0016 (11)
O20.0366 (12)0.0490 (12)0.0398 (10)0.0016 (10)0.0131 (9)0.0123 (9)
O30.0455 (14)0.0749 (15)0.0645 (13)0.0121 (12)0.0357 (11)0.0036 (11)
O40.0348 (12)0.0556 (12)0.0329 (9)0.0022 (10)0.0098 (9)0.0056 (9)
O50.0291 (10)0.0419 (11)0.0321 (9)0.0001 (9)0.0075 (8)0.0069 (8)
N10.0314 (13)0.0298 (12)0.0480 (12)0.0017 (11)0.0229 (11)0.0050 (10)
N20.0227 (12)0.0441 (14)0.0399 (12)0.0061 (11)0.0114 (10)0.0007 (11)
N30.0388 (15)0.0482 (14)0.0377 (12)0.0051 (12)0.0229 (11)0.0031 (11)
N40.0251 (13)0.0444 (13)0.0371 (11)0.0000 (11)0.0146 (10)0.0003 (10)
N60.0248 (13)0.0726 (17)0.0309 (11)0.0112 (13)0.0044 (10)0.0060 (11)
C10.0354 (16)0.0398 (16)0.0509 (16)0.0040 (14)0.0266 (14)0.0040 (14)
C20.0241 (14)0.0342 (14)0.0349 (13)0.0023 (12)0.0134 (12)0.0023 (11)
C30.0232 (14)0.0298 (14)0.0326 (12)0.0032 (11)0.0131 (11)0.0041 (11)
C40.0302 (15)0.0366 (15)0.0333 (13)0.0059 (13)0.0181 (12)0.0033 (11)
C50.0329 (17)0.0404 (16)0.0521 (17)0.0039 (14)0.0268 (14)0.0025 (14)
C60.0263 (14)0.0345 (14)0.0327 (13)0.0023 (12)0.0158 (11)0.0005 (12)
C70.0222 (14)0.0303 (14)0.0312 (12)0.0054 (11)0.0121 (11)0.0025 (11)
C80.0340 (16)0.0348 (15)0.0313 (13)0.0019 (13)0.0153 (12)0.0010 (11)
C90.0246 (14)0.0342 (14)0.0260 (12)0.0001 (12)0.0094 (11)0.0015 (11)
C100.0302 (15)0.0307 (14)0.0333 (13)0.0038 (12)0.0204 (12)0.0032 (11)
C110.0312 (15)0.0337 (14)0.0284 (12)0.0008 (12)0.0157 (11)0.0024 (11)
C120.0442 (18)0.0456 (17)0.0338 (14)0.0154 (15)0.0182 (13)0.0104 (13)
C130.065 (2)0.0394 (17)0.0512 (17)0.0101 (17)0.0370 (17)0.0134 (14)
C140.060 (2)0.0339 (16)0.0600 (18)0.0009 (15)0.0404 (17)0.0045 (14)
C150.0395 (17)0.0361 (15)0.0443 (15)0.0054 (14)0.0243 (13)0.0037 (13)
C160.0357 (19)0.069 (2)0.0505 (17)0.0128 (17)0.0093 (15)0.0031 (16)
C170.057 (2)0.0424 (17)0.0625 (18)0.0016 (16)0.0394 (17)0.0147 (15)
C180.0275 (16)0.069 (2)0.0514 (17)0.0142 (16)0.0140 (14)0.0073 (16)
C190.073 (3)0.080 (2)0.0452 (16)0.018 (2)0.0366 (17)0.0045 (17)
O6W0.0444 (14)0.0660 (15)0.0617 (13)0.0016 (12)0.0231 (12)0.0009 (12)
O7W0.0469 (15)0.0627 (15)0.0571 (12)0.0127 (12)0.0267 (11)0.0025 (11)
O8W0.0576 (17)0.114 (2)0.0506 (13)0.0053 (16)0.0110 (12)0.0133 (14)
O9W0.157 (4)0.076 (3)0.060 (2)0.0000.002 (2)0.000
Geometric parameters (Å, º) top
O1—C11.225 (3)C10—C111.388 (3)
O2—C41.238 (3)C10—C151.396 (3)
O3—C51.240 (3)C11—C121.378 (3)
O4—C81.240 (3)C12—H120.9300
O5—C21.349 (3)C12—C131.388 (4)
O5—C111.411 (3)C13—H130.9300
N1—C11.379 (3)C13—C141.379 (4)
N1—C41.401 (3)C14—H140.9300
N1—C171.474 (3)C14—C151.385 (3)
N2—C11.379 (3)C15—H150.9300
N2—C21.383 (3)C16—H16A0.9600
N2—C161.477 (3)C16—H16B0.9600
N3—C51.365 (3)C16—H16C0.9600
N3—C81.421 (3)C17—H17A0.9600
N3—C191.465 (3)C17—H17B0.9600
N4—C51.381 (3)C17—H17C0.9600
N4—C61.392 (3)C18—H18A0.9600
N4—C181.468 (3)C18—H18B0.9600
N6—H6A0.8600C18—H18C0.9600
N6—H6B0.8600C19—H19A0.9600
N6—C61.331 (3)C19—H19B0.9600
C2—C31.349 (3)C19—H19C0.9600
C3—C41.424 (3)O6W—H6WA0.8524
C3—C91.516 (3)O6W—H6WB0.8486
C6—C71.386 (3)O7W—H7WA0.8449
C7—C81.418 (3)O7W—H7WB0.8516
C7—C91.522 (3)O8W—H8WA0.8524
C9—H90.9800O8W—H8WB0.8519
C9—C101.513 (3)O9W—H9W0.8500
C2—O5—C11117.17 (18)C11—C10—C9122.1 (2)
C1—N1—C4124.3 (2)C11—C10—C15116.6 (2)
C1—N1—C17117.8 (2)C15—C10—C9121.4 (2)
C4—N1—C17117.6 (2)C10—C11—O5121.6 (2)
C1—N2—C2121.0 (2)C12—C11—O5115.1 (2)
C1—N2—C16117.2 (2)C12—C11—C10123.3 (2)
C2—N2—C16121.8 (2)C11—C12—H12120.7
C5—N3—C8123.9 (2)C11—C12—C13118.6 (3)
C5—N3—C19118.6 (2)C13—C12—H12120.7
C8—N3—C19117.5 (2)C12—C13—H13120.0
C5—N4—C6122.8 (2)C14—C13—C12120.0 (3)
C5—N4—C18116.7 (2)C14—C13—H13120.0
C6—N4—C18120.4 (2)C13—C14—H14119.9
H6A—N6—H6B120.0C13—C14—C15120.2 (3)
C6—N6—H6A120.0C15—C14—H14119.9
C6—N6—H6B120.0C10—C15—H15119.3
O1—C1—N1121.4 (3)C14—C15—C10121.3 (3)
O1—C1—N2122.1 (3)C14—C15—H15119.3
N1—C1—N2116.4 (2)N2—C16—H16A109.5
O5—C2—N2112.3 (2)N2—C16—H16B109.5
O5—C2—C3125.1 (2)N2—C16—H16C109.5
C3—C2—N2122.6 (2)H16A—C16—H16B109.5
C2—C3—C4119.0 (2)H16A—C16—H16C109.5
C2—C3—C9121.9 (2)H16B—C16—H16C109.5
C4—C3—C9119.1 (2)N1—C17—H17A109.5
O2—C4—N1119.9 (2)N1—C17—H17B109.5
O2—C4—C3123.5 (2)N1—C17—H17C109.5
N1—C4—C3116.6 (2)H17A—C17—H17B109.5
O3—C5—N3122.2 (2)H17A—C17—H17C109.5
O3—C5—N4121.0 (3)H17B—C17—H17C109.5
N3—C5—N4116.8 (2)N4—C18—H18A109.5
N6—C6—N4115.8 (2)N4—C18—H18B109.5
N6—C6—C7124.5 (2)N4—C18—H18C109.5
C7—C6—N4119.7 (2)H18A—C18—H18B109.5
C6—C7—C8119.9 (2)H18A—C18—H18C109.5
C6—C7—C9122.5 (2)H18B—C18—H18C109.5
C8—C7—C9117.6 (2)N3—C19—H19A109.5
O4—C8—N3118.5 (2)N3—C19—H19B109.5
O4—C8—C7124.6 (3)N3—C19—H19C109.5
C7—C8—N3116.9 (2)H19A—C19—H19B109.5
C3—C9—C7112.1 (2)H19A—C19—H19C109.5
C3—C9—H9107.4H19B—C19—H19C109.5
C7—C9—H9107.4H6WA—O6W—H6WB109.1
C10—C9—C3109.15 (19)H7WA—O7W—H7WB109.8
C10—C9—C7113.24 (19)H8WA—O8W—H8WB109.1
C10—C9—H9107.4
O5—C2—C3—C4176.7 (2)C7—C9—C10—C1568.9 (3)
O5—C2—C3—C95.0 (4)C8—N3—C5—O3176.0 (2)
O5—C11—C12—C13179.4 (2)C8—N3—C5—N42.7 (4)
N2—C2—C3—C42.1 (4)C8—C7—C9—C365.0 (3)
N2—C2—C3—C9176.2 (2)C8—C7—C9—C1059.0 (3)
N4—C6—C7—C81.1 (4)C9—C3—C4—O22.4 (4)
N4—C6—C7—C9176.3 (2)C9—C3—C4—N1179.7 (2)
N6—C6—C7—C8178.3 (2)C9—C7—C8—O41.7 (4)
N6—C6—C7—C94.3 (4)C9—C7—C8—N3179.0 (2)
C1—N1—C4—O2177.3 (2)C9—C10—C11—O52.3 (4)
C1—N1—C4—C34.7 (4)C9—C10—C11—C12178.7 (2)
C1—N2—C2—O5176.3 (2)C9—C10—C15—C14178.2 (2)
C1—N2—C2—C32.6 (4)C10—C11—C12—C130.2 (4)
C2—O5—C11—C1011.2 (3)C11—O5—C2—N2168.9 (2)
C2—O5—C11—C12167.9 (2)C11—O5—C2—C310.0 (4)
C2—N2—C1—O1179.3 (2)C11—C10—C15—C141.2 (4)
C2—N2—C1—N10.5 (4)C11—C12—C13—C140.7 (4)
C2—C3—C4—O2179.3 (2)C12—C13—C14—C150.2 (4)
C2—C3—C4—N11.4 (4)C13—C14—C15—C100.8 (4)
C2—C3—C9—C7109.6 (3)C15—C10—C11—O5178.3 (2)
C2—C3—C9—C1016.7 (3)C15—C10—C11—C120.7 (4)
C3—C9—C10—C1115.2 (3)C16—N2—C1—O10.9 (4)
C3—C9—C10—C15165.5 (2)C16—N2—C1—N1179.7 (2)
C4—N1—C1—O1176.9 (2)C16—N2—C2—O54.0 (3)
C4—N1—C1—N24.3 (4)C16—N2—C2—C3177.1 (2)
C4—C3—C9—C768.7 (3)C17—N1—C1—O13.3 (4)
C4—C3—C9—C10165.0 (2)C17—N1—C1—N2177.9 (2)
C5—N3—C8—O4177.1 (2)C17—N1—C4—O23.7 (4)
C5—N3—C8—C73.5 (4)C17—N1—C4—C3178.4 (2)
C5—N4—C6—N6177.5 (2)C18—N4—C5—O32.0 (4)
C5—N4—C6—C72.0 (4)C18—N4—C5—N3176.7 (2)
C6—N4—C5—O3178.9 (3)C18—N4—C6—N65.8 (4)
C6—N4—C5—N30.1 (4)C18—N4—C6—C7174.7 (2)
C6—C7—C8—O4179.2 (2)C19—N3—C5—O33.7 (4)
C6—C7—C8—N31.5 (3)C19—N3—C5—N4177.6 (2)
C6—C7—C9—C3112.4 (3)C19—N3—C8—O42.5 (4)
C6—C7—C9—C10123.6 (2)C19—N3—C8—C7176.8 (2)
C7—C9—C10—C11110.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···O6Wi0.862.183.009 (3)161
N6—H6B···O8W0.862.092.905 (3)158
O6W—H6WA···O1ii0.852.012.830 (3)162
O6W—H6WB···O7W0.852.002.835 (3)167
O7W—H7WA···O3iii0.841.942.781 (3)177
O7W—H7WB···O20.851.932.773 (3)170
O8W—H8WA···O9W0.851.992.838 (4)177
O8W—H8WB···O6Wiv0.852.012.840 (3)164
O9W—H9W···O7W0.851.932.772 (3)170
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+5/2, z+1; (iii) x+1, y+2, z+1; (iv) x+1, y1, z+3/2.

Experimental details

Crystal data
Chemical formulaC19H19N5O5·3.5H2O
Mr460.45
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)29.993 (4), 7.9105 (6), 21.458 (3)
β (°) 119.860 (16)
V3)4415.3 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.32 × 0.12 × 0.06
Data collection
DiffractometerOxford Diffraction Xcalibur (Eos, Gemini)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.93, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
9327, 4554, 2538
Rint0.069
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.137, 0.98
No. of reflections4554
No. of parameters308
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.25

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), OLEX.SOLVE (Bourhis et al., 2013), SHELXL2013 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···O6Wi0.862.183.009 (3)161
N6—H6B···O8W0.862.092.905 (3)158
O6W—H6WA···O1ii0.852.012.830 (3)162
O6W—H6WB···O7W0.852.002.835 (3)167
O7W—H7WA···O3iii0.841.942.781 (3)177
O7W—H7WB···O20.851.932.773 (3)170
O8W—H8WA···O9W0.851.992.838 (4)177
O8W—H8WB···O6Wiv0.852.012.840 (3)164
O9W—H9W···O7W0.851.932.772 (3)170
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+5/2, z+1; (iii) x+1, y+2, z+1; (iv) x+1, y1, z+3/2.
 

Acknowledgements

Financial assistance from the Department of Biotechnology (DBT), Government of India (vide sanction NO BCIL/NER-BPMC/2012.1549) is gratefully acknowledged.

References

First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2013). In preparation.  Google Scholar
First citationBrooks, G. T. (1998). Pestic. Sci. 22, 41–50.  CrossRef Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHatakeyama, S., Ochi, N., Numata, H. & Takano, S. (1988). J. Chem. Soc. Chem. Commun. pp. 1022–1024.  Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSabry, N. M., Mohamed, H. M., Khattab, E. S. A. E. H., Motlaq, S. S. & El-Agrody, A. M. (2011). Eur. J. Med. Chem. 46, 765–772.  Web of Science CrossRef CAS PubMed Google Scholar
First citationShaw, G. (1996). Compherensive Heterocyclic Chemistry, edited by A. R. Katritzky & C. W. Rees, Vol. 7, pp. 397–429. Oxford: Pergamon Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437–o1438.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationValenti, P., Da Re, P., Rampa, A., Montanari, P., Carrara, M. & Cima, L. (1993). Anticancer Drug. Des. 8, 349–360.  CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o974-o975
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds