organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o936-o937

3-{[5-(4-Chloro­phen­yl)-3-methyl-1H-pyrazol-1-yl]meth­yl}-4-m-tolyl-1H-1,2,4-triazole-5(4H)-thione

aDepartment of Chemistry, Government College University, Lahore 54000, Pakistan, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, El-Minia, Egypt, dPharmaceutical Chemistry Department, Faculty of Pharmacy, Al Azhar University, Egypt, and eFaculty of Pharmacy, Pharmaceutical Chemistry Department, Cairo University, Cairo, Egypt
*Correspondence e-mail: maqsood.ahmed@gcu.edu.pk

(Received 10 February 2013; accepted 16 May 2013; online 22 May 2013)

In the title compound, C20H18ClN5S, the toluene and triazole rings are oriented almost perpendicular to each other, making a dihedral angle of 89.97 (9)°, whereas the dihedral angle between cholorophenyl and pyrazole rings is 54.57 (11)°. In the crystal, pairs of N—H⋯N hydrogen bonds link the mol­ecules into inversion dimers. Weaker C—H⋯S and C—H⋯Cl inter­actions are also present.

Related literature

For medicinal applications of 1, 2, 4-triazoles, see: Lipinski (1983[Lipinski, Ch. A. (1983). J. Med. Chem. 26, 1-6.]); Ram & Vlietinck (1988[Ram, V. J. & Vlietinck, A. J. (1988). J. Heterocycl. Chem. 25, 253-256.]); Akahoshi et al. (1998[Akahoshi, F., Takeda, S., Okada, T., Kajii, M., Nishimura, H., Sugiura, M., Inoue, Y., Fukaya, C., Naito, Y., Imagawa, T. & Nakamura, N. (1998). J. Med. Chem. 41, 2985-2993.]); Young et al. (2001[Young, C. K., Ho, K. S., Ghilsoo, N., Hong, S. J., Hoon, K. S., Il, Ch. K., Hyup, K. J. & Deok-Chan, H. (2001). J. Antibiot. 54, 460-462.]); Ouyang et al. (2005[Ouyang, X., et al. (2005). Bioorg. Med. Chem. Lett. 15, 5154-5159.]); Dolzhenko et al. (2007[Dolzhenko, A. V., Dolzhenko, A. V. & Chui, W.-K. (2007). Heterocycles, 71, 429-436.]). For general background to the coordination chemistry of triazoles, see: Mishra et al. (1989[Mishra, L., Ram, V. J. & Kushwaha, D. S. (1989). Transition Met. Chem. 14, 384-386.]); Klingele & Brooker (2003[Klingele, M. H. & Brooker, S. (2003). Coord. Chem. Rev. 241, 119-132.]); Beckmann & Brooker (2003[Beckmann, U. & Brooker, S. (2003). Coord. Chem. Rev. 245, 17-29.]); Ferrer et al. (2004[Ferrer, S., Ballesteros, R., Sambartolome, A., Gonzales, M., Alzuet, G., Borras, J. & Liu, M. (2004). J. Inorg. Biochem. 98, 1436-1446.]); Castineiras & Garcia-Santos (2008[Castineiras, A. & Garcia-Santos, I. (2008). Z. Anorg. Allg. Chem. 634, 2907-2916.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18ClN5S

  • Mr = 395.90

  • Monoclinic, P 21 /n

  • a = 8.328 (5) Å

  • b = 16.407 (5) Å

  • c = 14.759 (5) Å

  • β = 99.509 (5)°

  • V = 1988.9 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 296 K

  • 0.61 × 0.53 × 0.52 mm

Data collection
  • Bruker APEXII CCD detector diffractometer

  • Absorption correction: analytical {SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.833, Tmax = 0.855

  • 38237 measured reflections

  • 3914 independent reflections

  • 3207 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.112

  • S = 1.04

  • 3914 reflections

  • 250 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—HN4⋯N1i 0.88 (2) 2.02 (2) 2.888 (2) 166 (2)
C6—H6⋯S1ii 0.93 3.00 3.790 (3) 144
C20—H14⋯Cl1iii 0.93 2.98 3.537 (4) 120
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

1, 2, 4-Triazole compounds are used as reagents and ligands for the synthesis of biologically active compounds (Lipinski, 1983; Ram & Vlietinck, 1988; Akahoshi et al., 1998; Young et al., 2001; Ouyang et al., 2005; Dolzhenko et al., 2007) and metal complexes (Klingele & Brooker 2003; Beckmann & Brooker 2003; Mishra et al., 1989; Ferrer et al., 2004; Castineiras & Garcia-Santos, 2008). Further to our study on synthesis of bioactive heterocyclic compounds we herein report the synthesis and crystal structure of the title compound.

There is one molecule in the asymmetric unit and four molecules in the unit cell. 1, 2, 4 Triazole ring is oriented almost perpendicular to the toluene ring and the torsion angle between the two rings is 92.6 (2) ° as calculated on the basis of C13—N3—C14—C20 atoms. The diazole ring and the adjacent cholorobenzene ring adopt a twisted geometry and the torsion angle between them is -127.2 (2) ° as calculated using C3—C4—C7—N2 atoms. The molecular assembly is mainly built upon a reciprocal pair of intermolecular N4—H4···N1 type hydrogen bonds between two adjacent molecules which result in the formation of a molecular dimer. The D—H···A distance in each case is 2.02 Å. There are also some C—H···π interactions, a C—H···S interaction and a C—H···Cl interaction which help to stabilize the molecular assembly. The S1 atom accepts the H6 atom from C6 to form a C—H···S type weaker hydrogen bond at a distance of 2.998 Å with a D—H···A angle of 143.87°. Similarly the Cl1 atom accepts the H14 atom from C20 to form a C—H···Cl type weaker hydrogen bond at a distance of 2.978 Å with a D—H···A angle of 120.0°.

Related literature top

For medicinal applications of 1, 2, 4-triazoles, see: Lipinski (1983); Ram & Vlietinck (1988); Akahoshi et al. (1998); Young et al. (2001); Ouyang et al. (2005); Dolzhenko et al. (2007). For general background to the coordination chemistry of triazoles, see: Mishra et al. (1989); Klingele & Brooker (2003); Beckmann & Brooker (2003); Ferrer et al. (2004); Castineiras & Garcia-Santos (2008).

Experimental top

A solution of 2 N sodium hydroxide solution (2 ml) was added in dropwise to a solution of 5 mmol (2.07 g) 2-{[5-(4-chlorophenyl)-3-methyl-1H-pyrazol-1-yl]acetyl}-N-(3-methylphenyl)hydrazinecarbothioamide in 50 ml e thanol. The reaction mixture was then refluxed for 7 h, cooled and filtered. The filtrate was acidified with 2 N hydrochloric acid. The separated solid was collected, washed, and crystallized from ethanol in an excellent yield (92%). Single crystals suitable for X-ray diffraction were obtained from slow evaporation solution of the title compound in ethanol at room temperature (M.p. 433–435 K).

Refinement top

The methyl group H atoms were geometrically placed at idealized positions and refined using a riding model with d(C—H) = 0.96 Å and Uiso= 1.5Ueq(C). The H atom on N atom was located in the difference map and was refined isotropically. All other H atoms bound to C were located in the difference map but were refined using a riding model with d(C—H) = 0.93 Å for aromatic and 0.97 Å for CH2 group with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. An ORTEPIII diagram of the molecule showing atom numbering scheme and thermal ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. A view of the molecular packing along b axis.
[Figure 3] Fig. 3. A dimer of molecules formed by the intermolecular N—H···N type hydrogen bonds. The H atoms not involved in any interaction have been omitted for the reason of clarity. [Symmetry code: (i) 2-x, 1-y, 1-z.]
[Figure 4] Fig. 4. A view of the molecular packing showing weak intermolecular C—H···π and C—H···S interactions. [Symmetry codes: (i) 1-x, -y, 1-z; (ii) 1/2;+x, 1/2-y, 1/2+z.]
3-{[5-(4-Chlorophenyl)-3-methyl-1H-pyrazol-1-yl]methyl}-4-m-tolyl-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C20H18ClN5SF(000) = 824
Mr = 395.90Dx = 1.322 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 143 reflections
a = 8.328 (5) Åθ = 1.9–26.5°
b = 16.407 (5) ŵ = 0.31 mm1
c = 14.759 (5) ÅT = 296 K
β = 99.509 (5)°Block, colourless
V = 1988.9 (15) Å30.61 × 0.53 × 0.52 mm
Z = 4
Data collection top
Bruker APEXII CCD detector
diffractometer
3914 independent reflections
Radiation source: fine-focus sealed tube3207 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and ϕ scansθmax = 26.0°, θmin = 1.9°
Absorption correction: analytical
{SADABS; Bruker, 2009)
h = 1010
Tmin = 0.833, Tmax = 0.855k = 2020
38237 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0474P)2 + 0.8662P]
where P = (Fo2 + 2Fc2)/3
3914 reflections(Δ/σ)max = 0.008
250 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C20H18ClN5SV = 1988.9 (15) Å3
Mr = 395.90Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.328 (5) ŵ = 0.31 mm1
b = 16.407 (5) ÅT = 296 K
c = 14.759 (5) Å0.61 × 0.53 × 0.52 mm
β = 99.509 (5)°
Data collection top
Bruker APEXII CCD detector
diffractometer
3914 independent reflections
Absorption correction: analytical
{SADABS; Bruker, 2009)
3207 reflections with I > 2σ(I)
Tmin = 0.833, Tmax = 0.855Rint = 0.031
38237 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.23 e Å3
3914 reflectionsΔρmin = 0.26 e Å3
250 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.89331 (8)0.45028 (4)0.23277 (4)0.0738 (2)
Cl10.87201 (11)0.10903 (4)0.56431 (6)0.1018 (3)
N20.83576 (17)0.30784 (8)0.58288 (10)0.0420 (3)
N30.91296 (16)0.36199 (8)0.39136 (10)0.0402 (3)
N10.76919 (18)0.38104 (9)0.59822 (10)0.0460 (3)
N41.08074 (19)0.46017 (9)0.40066 (11)0.0474 (4)
N51.10761 (18)0.42403 (9)0.48545 (11)0.0468 (4)
C121.00462 (19)0.36448 (10)0.47753 (11)0.0396 (4)
C140.78212 (19)0.30653 (10)0.35998 (11)0.0388 (4)
C150.6269 (2)0.32639 (10)0.37306 (12)0.0438 (4)
H190.60800.37580.40030.053*
C40.7762 (2)0.15886 (10)0.58340 (12)0.0453 (4)
C130.9620 (2)0.42534 (10)0.34117 (13)0.0457 (4)
C110.9930 (2)0.30522 (11)0.55227 (12)0.0457 (4)
H11A1.01120.25070.53070.055*
H11B1.07800.31680.60400.055*
C200.8140 (2)0.23434 (11)0.31944 (13)0.0492 (4)
H140.91870.22190.30970.059*
C90.6232 (2)0.36378 (11)0.61886 (13)0.0506 (4)
C160.4988 (2)0.27320 (12)0.34583 (13)0.0491 (4)
C180.5317 (2)0.20020 (12)0.30670 (13)0.0548 (5)
H160.44740.16340.28890.066*
C70.7349 (2)0.24523 (10)0.59382 (12)0.0445 (4)
C60.9473 (3)0.04243 (13)0.62598 (15)0.0643 (6)
H61.04060.01950.65970.077*
C80.5974 (2)0.27957 (11)0.61661 (14)0.0529 (5)
H80.50500.25230.62830.063*
C50.9165 (3)0.12459 (12)0.63229 (13)0.0564 (5)
H50.99070.15740.66980.068*
C190.6871 (3)0.18060 (12)0.29343 (14)0.0574 (5)
H150.70660.13100.26680.069*
C30.6710 (2)0.10971 (11)0.52508 (14)0.0551 (5)
H30.57750.13210.49100.066*
C20.7034 (3)0.02772 (12)0.51691 (16)0.0640 (6)
H20.63420.00490.47630.077*
C10.8389 (3)0.00466 (12)0.56953 (16)0.0605 (5)
C170.3290 (3)0.29548 (17)0.3590 (2)0.0794 (7)
H17A0.25540.25250.33570.119*
H17B0.29660.34500.32640.119*
H17C0.32660.30320.42320.119*
C100.5133 (3)0.43051 (14)0.64055 (19)0.0749 (7)
H10A0.57130.48130.64530.112*
H10B0.47760.41890.69780.112*
H10C0.42060.43410.59250.112*
HN41.130 (2)0.5065 (14)0.3917 (14)0.056 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0868 (4)0.0712 (4)0.0609 (3)0.0027 (3)0.0045 (3)0.0243 (3)
Cl10.1391 (7)0.0416 (3)0.1352 (7)0.0167 (3)0.0533 (5)0.0124 (3)
N20.0469 (8)0.0364 (7)0.0430 (8)0.0039 (6)0.0086 (6)0.0001 (6)
N30.0405 (7)0.0361 (7)0.0437 (7)0.0015 (6)0.0060 (6)0.0015 (6)
N10.0528 (9)0.0380 (7)0.0480 (8)0.0046 (6)0.0106 (7)0.0024 (6)
N40.0500 (8)0.0369 (8)0.0580 (9)0.0073 (7)0.0169 (7)0.0003 (7)
N50.0456 (8)0.0439 (8)0.0518 (9)0.0070 (6)0.0110 (7)0.0043 (7)
C120.0371 (8)0.0379 (8)0.0443 (9)0.0000 (7)0.0081 (7)0.0030 (7)
C140.0411 (8)0.0350 (8)0.0391 (8)0.0011 (6)0.0033 (6)0.0012 (6)
C150.0457 (9)0.0398 (9)0.0463 (9)0.0016 (7)0.0083 (7)0.0041 (7)
C40.0549 (10)0.0377 (9)0.0444 (9)0.0048 (8)0.0117 (8)0.0039 (7)
C130.0480 (9)0.0367 (8)0.0545 (10)0.0030 (7)0.0147 (8)0.0030 (7)
C110.0425 (9)0.0477 (10)0.0461 (10)0.0012 (7)0.0050 (7)0.0030 (7)
C200.0498 (10)0.0450 (10)0.0523 (10)0.0062 (8)0.0071 (8)0.0048 (8)
C90.0540 (10)0.0464 (10)0.0536 (11)0.0045 (8)0.0151 (8)0.0054 (8)
C160.0445 (9)0.0555 (11)0.0470 (10)0.0047 (8)0.0067 (8)0.0019 (8)
C180.0605 (11)0.0508 (11)0.0496 (10)0.0170 (9)0.0005 (9)0.0017 (8)
C70.0523 (10)0.0402 (9)0.0409 (9)0.0078 (8)0.0078 (7)0.0016 (7)
C60.0717 (13)0.0574 (12)0.0630 (13)0.0118 (11)0.0093 (11)0.0171 (10)
C80.0533 (10)0.0478 (10)0.0609 (11)0.0107 (8)0.0192 (9)0.0012 (9)
C50.0649 (12)0.0531 (11)0.0485 (10)0.0038 (9)0.0014 (9)0.0046 (9)
C190.0731 (13)0.0392 (9)0.0575 (11)0.0003 (9)0.0036 (10)0.0106 (8)
C30.0544 (11)0.0431 (10)0.0653 (12)0.0049 (8)0.0026 (9)0.0015 (9)
C20.0693 (13)0.0439 (11)0.0789 (15)0.0115 (10)0.0124 (11)0.0084 (10)
C10.0747 (14)0.0390 (10)0.0729 (14)0.0043 (9)0.0268 (11)0.0095 (9)
C170.0482 (12)0.0956 (18)0.0968 (18)0.0064 (12)0.0191 (12)0.0075 (15)
C100.0723 (14)0.0598 (13)0.0986 (19)0.0036 (11)0.0323 (13)0.0114 (12)
Geometric parameters (Å, º) top
S1—C131.659 (2)C20—H140.9300
Cl1—C11.738 (2)C9—C81.398 (3)
N2—C71.353 (2)C9—C101.495 (3)
N2—N11.357 (2)C16—C181.377 (3)
N2—C111.455 (2)C16—C171.504 (3)
N3—C121.372 (2)C18—C191.379 (3)
N3—C131.377 (2)C18—H160.9300
N3—C141.436 (2)C7—C81.367 (3)
N1—C91.332 (2)C6—C11.363 (3)
N4—C131.337 (2)C6—C51.378 (3)
N4—N51.369 (2)C6—H60.9300
N4—HN40.89 (2)C8—H80.9300
N5—C121.293 (2)C5—H50.9300
C12—C111.486 (2)C19—H150.9300
C14—C201.373 (2)C3—C21.381 (3)
C14—C151.377 (2)C3—H30.9300
C15—C161.385 (2)C2—C11.367 (3)
C15—H190.9300C2—H20.9300
C4—C31.382 (3)C17—H17A0.9600
C4—C51.387 (3)C17—H17B0.9600
C4—C71.472 (2)C17—H17C0.9600
C11—H11A0.9700C10—H10A0.9600
C11—H11B0.9700C10—H10B0.9600
C20—C191.381 (3)C10—H10C0.9600
C7—N2—N1111.89 (14)C15—C16—C17120.32 (19)
C7—N2—C11128.53 (15)C16—C18—C19121.26 (17)
N1—N2—C11119.43 (13)C16—C18—H16119.4
C12—N3—C13107.90 (14)C19—C18—H16119.4
C12—N3—C14126.46 (14)N2—C7—C8106.16 (16)
C13—N3—C14125.54 (14)N2—C7—C4123.88 (16)
C9—N1—N2105.27 (14)C8—C7—C4129.96 (16)
C13—N4—N5113.98 (15)C1—C6—C5118.9 (2)
C13—N4—HN4125.5 (13)C1—C6—H6120.5
N5—N4—HN4119.9 (13)C5—C6—H6120.5
C12—N5—N4103.82 (14)C7—C8—C9106.34 (16)
N5—C12—N3111.46 (15)C7—C8—H8126.8
N5—C12—C11123.46 (16)C9—C8—H8126.8
N3—C12—C11125.05 (15)C6—C5—C4120.8 (2)
C20—C14—C15121.24 (16)C6—C5—H5119.6
C20—C14—N3119.76 (15)C4—C5—H5119.6
C15—C14—N3118.99 (15)C18—C19—C20120.32 (18)
C14—C15—C16120.39 (16)C18—C19—H15119.8
C14—C15—H19119.8C20—C19—H15119.8
C16—C15—H19119.8C4—C3—C2120.66 (19)
C3—C4—C5118.72 (18)C4—C3—H3119.7
C3—C4—C7119.44 (17)C2—C3—H3119.7
C5—C4—C7121.82 (17)C1—C2—C3118.9 (2)
N4—C13—N3102.84 (15)C1—C2—H2120.5
N4—C13—S1128.86 (14)C3—C2—H2120.5
N3—C13—S1128.28 (14)C6—C1—C2121.89 (19)
N2—C11—C12112.56 (14)C6—C1—Cl1119.44 (18)
N2—C11—H11A109.1C2—C1—Cl1118.67 (18)
C12—C11—H11A109.1C16—C17—H17A109.5
N2—C11—H11B109.1C16—C17—H17B109.5
C12—C11—H11B109.1H17A—C17—H17B109.5
H11A—C11—H11B107.8C16—C17—H17C109.5
C14—C20—C19118.55 (17)H17A—C17—H17C109.5
C14—C20—H14120.7H17B—C17—H17C109.5
C19—C20—H14120.7C9—C10—H10A109.5
N1—C9—C8110.33 (17)C9—C10—H10B109.5
N1—C9—C10120.48 (18)H10A—C10—H10B109.5
C8—C9—C10129.19 (19)C9—C10—H10C109.5
C18—C16—C15118.22 (17)H10A—C10—H10C109.5
C18—C16—C17121.46 (18)H10B—C10—H10C109.5
C7—N2—N1—C90.24 (19)C14—C15—C16—C180.8 (3)
C11—N2—N1—C9175.82 (15)C14—C15—C16—C17179.16 (19)
C13—N4—N5—C121.10 (19)C15—C16—C18—C191.0 (3)
N4—N5—C12—N30.47 (18)C17—C16—C18—C19178.9 (2)
N4—N5—C12—C11177.59 (15)N1—N2—C7—C80.4 (2)
C13—N3—C12—N50.25 (19)C11—N2—C7—C8175.26 (16)
C14—N3—C12—N5176.79 (15)N1—N2—C7—C4178.73 (15)
C13—N3—C12—C11178.27 (15)C11—N2—C7—C45.7 (3)
C14—N3—C12—C115.2 (3)C3—C4—C7—N2127.2 (2)
C12—N3—C14—C2091.4 (2)C5—C4—C7—N254.4 (3)
C13—N3—C14—C2092.6 (2)C3—C4—C7—C854.0 (3)
C12—N3—C14—C1587.3 (2)C5—C4—C7—C8124.4 (2)
C13—N3—C14—C1588.7 (2)N2—C7—C8—C90.3 (2)
C20—C14—C15—C160.4 (3)C4—C7—C8—C9178.69 (18)
N3—C14—C15—C16178.24 (16)N1—C9—C8—C70.2 (2)
N5—N4—C13—N31.22 (19)C10—C9—C8—C7179.6 (2)
N5—N4—C13—S1179.74 (13)C1—C6—C5—C41.1 (3)
C12—N3—C13—N40.86 (17)C3—C4—C5—C62.7 (3)
C14—N3—C13—N4177.44 (14)C7—C4—C5—C6175.69 (18)
C12—N3—C13—S1179.39 (14)C16—C18—C19—C200.0 (3)
C14—N3—C13—S14.0 (3)C14—C20—C19—C181.1 (3)
C7—N2—C11—C12129.99 (18)C5—C4—C3—C21.2 (3)
N1—N2—C11—C1245.3 (2)C7—C4—C3—C2177.28 (18)
N5—C12—C11—N2117.51 (18)C4—C3—C2—C11.9 (3)
N3—C12—C11—N264.7 (2)C5—C6—C1—C22.1 (3)
C15—C14—C20—C191.3 (3)C5—C6—C1—Cl1177.48 (16)
N3—C14—C20—C19177.29 (16)C3—C2—C1—C63.6 (3)
N2—N1—C9—C80.0 (2)C3—C2—C1—Cl1175.96 (17)
N2—N1—C9—C10179.80 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—HN4···N1i0.88 (2)2.02 (2)2.888 (2)166 (2)
C5—H5···C16ii0.932.833.536 (3)134
C6—H6···S1ii0.933.003.790 (3)144
C2—H2···C2iii0.932.853.464 (4)124
C20—H14···Cl1iv0.932.983.537 (4)120
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y, z+1; (iv) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC20H18ClN5S
Mr395.90
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.328 (5), 16.407 (5), 14.759 (5)
β (°) 99.509 (5)
V3)1988.9 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.61 × 0.53 × 0.52
Data collection
DiffractometerBruker APEXII CCD detector
diffractometer
Absorption correctionAnalytical
{SADABS; Bruker, 2009)
Tmin, Tmax0.833, 0.855
No. of measured, independent and
observed [I > 2σ(I)] reflections
38237, 3914, 3207
Rint0.031
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.112, 1.04
No. of reflections3914
No. of parameters250
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—HN4···N1i0.88 (2)2.02 (2)2.888 (2)166 (2)
C6—H6···S1ii0.933.003.790 (3)144
C20—H14···Cl1iii0.932.983.537 (4)120
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+2, y, z+1.
 

Acknowledgements

GC University Lahore is gratefully acknowledged for the X-ray diffraction measurements. The authors are thankful to Manchester Metropolitan University and Alazhar University for supporting this study.

References

First citationAkahoshi, F., Takeda, S., Okada, T., Kajii, M., Nishimura, H., Sugiura, M., Inoue, Y., Fukaya, C., Naito, Y., Imagawa, T. & Nakamura, N. (1998). J. Med. Chem. 41, 2985–2993.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBeckmann, U. & Brooker, S. (2003). Coord. Chem. Rev. 245, 17–29.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastineiras, A. & Garcia-Santos, I. (2008). Z. Anorg. Allg. Chem. 634, 2907–2916.  CAS Google Scholar
First citationDolzhenko, A. V., Dolzhenko, A. V. & Chui, W.-K. (2007). Heterocycles, 71, 429–436.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerrer, S., Ballesteros, R., Sambartolome, A., Gonzales, M., Alzuet, G., Borras, J. & Liu, M. (2004). J. Inorg. Biochem. 98, 1436–1446.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKlingele, M. H. & Brooker, S. (2003). Coord. Chem. Rev. 241, 119–132.  Web of Science CrossRef CAS Google Scholar
First citationLipinski, Ch. A. (1983). J. Med. Chem. 26, 1–6.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMishra, L., Ram, V. J. & Kushwaha, D. S. (1989). Transition Met. Chem. 14, 384–386.  CrossRef CAS Web of Science Google Scholar
First citationOuyang, X., et al. (2005). Bioorg. Med. Chem. Lett. 15, 5154–5159.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRam, V. J. & Vlietinck, A. J. (1988). J. Heterocycl. Chem. 25, 253–256.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoung, C. K., Ho, K. S., Ghilsoo, N., Hong, S. J., Hoon, K. S., Il, Ch. K., Hyup, K. J. & Deok-Chan, H. (2001). J. Antibiot. 54, 460–462.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o936-o937
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds