metal-organic compounds
catena-Poly[[manganese(III)-bis{μ-2-[(2-hydroxyethyl)iminomethyl]-6-methoxyphenolato-κ3O1,N:O2;κ3O2:N,O1}] iodide]
aDepartment of Inorganic Chemistry,Taras Shevchenko National University of Kyiv, 64/13 Volodymyrs'ka St, Kyiv 01601, Ukraine, and bSSI "Institute for Single Crystals" National Academy of Sciences of Ukraine, 60 Lenin Ave., Kharkiv 61001, Ukraine
*Correspondence e-mail: spetrusenko@yahoo.com
In the title one-dimensional coordination polymer, {[Mn(C10H12NO3)2]I}n, the potentially tetradentate (O,O,O,N) 2-[(2-hydroxyethyl)iminomethyl]-6-methoxyphenol (H2L) ligands are mono-deprotonated (as HL−) and coordinated by the metal ions in a tridentate chelate-bridging fashion [2.0111112]. The MnIII atom possesses a distorted trans-MnO4N2 octahedral coordination environment. The bridging ligands lead to [010]-chain polymeric cations {[Mn(HL)2]+}n in the crystal. The charge-balancing iodide ions are disordered over two sites in a 0.690 (2):0.310 (2) ratio and a weak O—H⋯I hydrogen bond occurs. The crystal studied was found to be a racemic twin.
Related literature
For the related structure of {[Mn(C9H10NO2)2]Cl}n, see: Zhang et al. (2005). For further synthetic details, see: Babich et al. (1996); Vinogradova et al. (2002); Makhankova et al. (2002); Nesterov et al. (2012); Chygorin et al. (2012). For bond-valence sum calculations, see: Brown & Altermatt (1985). For coordination mode notation, see: Coxall et al. (2000).
Experimental
Crystal data
|
|
Data collection: CrysAlis CCD (Agilent, 2011); cell CrysAlis RED (Agilent, 2011); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: OLEX2 (Dolomanov et al., 2009); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536813012695/hb7060sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813012695/hb7060Isup2.hkl
2-Aminoethanol (0.18 g, 3 mmol) and o-vanillin (0.457 g, 3 mmol) were added to 30 ml of methanol and stirred magnetically for 15 min until the colour of the solution turned in yellow. After manganese powder (0.055 g, 1 mmol), iron powder (0.058 g, 1 mmol) and NH4I (0.29 g, 2 mmol) were added to the solution, the reaction mixture was stirred at 50°C for ca 6 h. Almost total dissolution of metal powders was observed. Dark brown crystals that precipitated after 1 day were collected by filtration and dried in air; yield 45%. Elemental analysis for C20H24I2MnN2O6 (Mr = 570.26). Calcd: Mn, 9.63%. Found: Mn, 9.3%. IR(KBr, cm-1): 3457(b), 3411(w), 3248(b), 3193(w), 2993(w), 2939(w), 2830(w), 1615(s), 1552(m), 1459(s), 1443(s), 1406(m), 1343(m), 1316(s), 1243(s), 1216(m) 1161(w), 1107(w), 1071(m), 1017(m), 980(m), 898(w), 871(m), 789(w), 726(s), 635(m), 599(w), 526(w), 454(w), 417(w).
All H atoms were placed in idealized positions (C–H = 0.93 – 0.97 Å, O–H = 0.86 Å) and constrained to ride on their parent atoms, with Uiso = 1.2Ueq (except Uiso = 1.5Ueq for methyl and hydroxyl groups). It should be noted that the mean value of the |E2-1| is 0.816 and the structure can be solved in both polar (Pca21) and centrosymmetric (Pbca) groups, however, the R1 value in the latter case is consistently higher (ca. 0.24) that in the former (less than 0.10), so the noncentrosymmetric
is believed to be the correct choice. value (Flack, 1983) of 0.48 (5) was obtained in the final calculation, indicating a racemic twin. for Futher full-matrix of the slightly improved the agreement index R (from 0.077 to 0.076). Content of the the major component in the refined racemic twin structure is 59 (3)%. Iodine atom was found to be disordered over two sites with with occupancy factors 0.69 and 0.31.Data collection: CrysAlis CCD (Agilent, 2011); cell
CrysAlis RED (Agilent, 2011); data reduction: CrysAlis RED (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: OLEX2 (Dolomanov et al., 2009); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).[Mn(C10H12NO3)2]I | F(000) = 1136 |
Mr = 570.25 | Dx = 1.626 Mg m−3 |
Orthorhombic, Pca21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2ac | Cell parameters from 861 reflections |
a = 18.880 (2) Å | θ = 2.9–32.3° |
b = 5.8979 (10) Å | µ = 1.93 mm−1 |
c = 20.916 (2) Å | T = 298 K |
V = 2329.1 (5) Å3 | Block, brown |
Z = 4 | 0.40 × 0.20 × 0.20 mm |
Agilent Xcalibur Sapphire3 diffractometer | 4752 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2094 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.078 |
Detector resolution: 16.1827 pixels mm-1 | θmax = 30.0°, θmin = 3.5° |
ω scans | h = −26→10 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −6→8 |
Tmin = 0.513, Tmax = 0.699 | l = −29→28 |
7841 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.076 | H-atom parameters constrained |
wR(F2) = 0.173 | w = 1/[σ2(Fo2) + (0.055P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.92 | (Δ/σ)max < 0.001 |
4752 reflections | Δρmax = 1.49 e Å−3 |
282 parameters | Δρmin = −0.66 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1276 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.59 (3) |
[Mn(C10H12NO3)2]I | V = 2329.1 (5) Å3 |
Mr = 570.25 | Z = 4 |
Orthorhombic, Pca21 | Mo Kα radiation |
a = 18.880 (2) Å | µ = 1.93 mm−1 |
b = 5.8979 (10) Å | T = 298 K |
c = 20.916 (2) Å | 0.40 × 0.20 × 0.20 mm |
Agilent Xcalibur Sapphire3 diffractometer | 4752 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 2094 reflections with I > 2σ(I) |
Tmin = 0.513, Tmax = 0.699 | Rint = 0.078 |
7841 measured reflections |
R[F2 > 2σ(F2)] = 0.076 | H-atom parameters constrained |
wR(F2) = 0.173 | Δρmax = 1.49 e Å−3 |
S = 0.92 | Δρmin = −0.66 e Å−3 |
4752 reflections | Absolute structure: Flack (1983), 1276 Friedel pairs |
282 parameters | Absolute structure parameter: 0.59 (3) |
1 restraint |
Experimental. Absorption correction: CrysAlis PRO (Agilent, 2011). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
I1A | 0.08961 (6) | 0.43638 (19) | 0.26350 (5) | 0.0583 (4) | 0.690 (2) |
I1B | 0.08839 (17) | −0.0686 (6) | 0.20195 (17) | 0.0752 (12) | 0.310 (2) |
Mn1 | −0.00346 (8) | −0.2483 (4) | −0.01586 (13) | 0.0360 (3) | |
O1 | 0.0867 (4) | −0.3014 (13) | −0.0471 (4) | 0.046 (2) | |
N1 | −0.0240 (4) | −0.0371 (15) | −0.0905 (5) | 0.036 (2) | |
C1 | 0.0895 (7) | −0.0934 (19) | −0.1467 (5) | 0.045 (3) | |
N2 | 0.0178 (4) | −0.4584 (16) | 0.0605 (4) | 0.036 (2) | |
O2 | 0.2049 (4) | −0.5108 (13) | −0.0732 (4) | 0.057 (2) | |
C2 | 0.1194 (6) | −0.2539 (19) | −0.1020 (6) | 0.041 (3) | |
O3 | −0.0923 (4) | −0.1935 (15) | 0.0153 (4) | 0.049 (2) | |
C3 | 0.1822 (6) | −0.354 (3) | −0.1174 (7) | 0.058 (4) | |
O4 | −0.2124 (5) | 0.0167 (19) | 0.0405 (6) | 0.095 (4) | |
C4 | 0.2190 (7) | −0.297 (2) | −0.1702 (6) | 0.060 (4) | |
H4 | 0.2633 | −0.3603 | −0.1782 | 0.072* | |
O5 | −0.0455 (4) | 0.4550 (13) | −0.0775 (4) | 0.048 (2) | |
H5 | −0.0337 | 0.4208 | −0.1158 | 0.072* | |
C5 | 0.1889 (7) | −0.138 (2) | −0.2134 (6) | 0.067 (4) | |
H5A | 0.2124 | −0.1046 | −0.2514 | 0.081* | |
O6 | 0.0391 (4) | −0.9640 (12) | 0.0445 (4) | 0.047 (2) | |
H6 | 0.0484 | −0.9805 | 0.0846 | 0.071* | |
C6 | 0.1268 (7) | −0.035 (2) | −0.2004 (6) | 0.053 (3) | |
H6A | 0.1093 | 0.0758 | −0.2279 | 0.063* | |
C7 | 0.0196 (6) | 0.000 (2) | −0.1382 (6) | 0.042 (3) | |
H7 | 0.0037 | 0.0981 | −0.1700 | 0.050* | |
C8 | 0.2479 (9) | −0.695 (2) | −0.0966 (9) | 0.078 (5) | |
H8A | 0.2609 | −0.7920 | −0.0616 | 0.117* | |
H8B | 0.2900 | −0.6354 | −0.1162 | 0.117* | |
H8C | 0.2216 | −0.7807 | −0.1275 | 0.117* | |
C9 | −0.0945 (6) | −0.3948 (19) | 0.1152 (5) | 0.040 (3) | |
C10 | −0.1217 (6) | −0.256 (2) | 0.0695 (6) | 0.039 (3) | |
C11 | −0.1901 (6) | −0.1460 (19) | 0.0850 (6) | 0.041 (3) | |
C12 | −0.2257 (6) | −0.200 (2) | 0.1367 (7) | 0.056 (4) | |
H12 | −0.2695 | −0.1327 | 0.1443 | 0.067* | |
C13 | −0.1983 (6) | −0.358 (2) | 0.1810 (8) | 0.065 (4) | |
H13 | −0.2246 | −0.4019 | 0.2165 | 0.078* | |
C14 | −0.1321 (7) | −0.445 (2) | 0.1705 (6) | 0.060 (4) | |
H14 | −0.1119 | −0.5401 | 0.2010 | 0.072* | |
C15 | −0.0250 (6) | −0.496 (2) | 0.1054 (6) | 0.048 (3) | |
H15 | −0.0105 | −0.6015 | 0.1359 | 0.058* | |
C16 | −0.2537 (8) | 0.190 (2) | 0.0618 (7) | 0.065 (4) | |
H16A | −0.2654 | 0.2880 | 0.0267 | 0.098* | |
H16B | −0.2285 | 0.2746 | 0.0937 | 0.098* | |
H16C | −0.2964 | 0.1298 | 0.0800 | 0.098* | |
C17 | −0.0928 (5) | 0.0769 (15) | −0.0985 (7) | 0.049 (3) | |
H17A | −0.1310 | −0.0249 | −0.0869 | 0.059* | |
H17B | −0.0993 | 0.1225 | −0.1427 | 0.059* | |
C18 | −0.0929 (6) | 0.2899 (19) | −0.0539 (6) | 0.044 (3) | |
H18A | −0.1403 | 0.3529 | −0.0517 | 0.053* | |
H18B | −0.0789 | 0.2458 | −0.0110 | 0.053* | |
C19 | 0.0885 (6) | −0.7926 (19) | 0.0222 (7) | 0.048 (4) | |
H19A | 0.0769 | −0.7521 | −0.0215 | 0.058* | |
H19B | 0.1360 | −0.8551 | 0.0224 | 0.058* | |
C20 | 0.0869 (5) | −0.5841 (19) | 0.0628 (5) | 0.040 (3) | |
H20A | 0.1244 | −0.4829 | 0.0491 | 0.048* | |
H20B | 0.0966 | −0.6267 | 0.1068 | 0.048* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1A | 0.0828 (7) | 0.0563 (6) | 0.0359 (5) | −0.0091 (7) | −0.0043 (9) | −0.0054 (10) |
I1B | 0.087 (2) | 0.0596 (19) | 0.079 (2) | −0.0057 (18) | 0.011 (2) | −0.002 (2) |
Mn1 | 0.0441 (6) | 0.0298 (5) | 0.0340 (6) | 0.0027 (6) | 0.0010 (7) | 0.0055 (6) |
O1 | 0.054 (5) | 0.049 (5) | 0.036 (4) | 0.008 (4) | −0.007 (5) | 0.010 (4) |
N1 | 0.039 (5) | 0.027 (5) | 0.042 (5) | −0.009 (4) | 0.005 (5) | −0.015 (5) |
C1 | 0.070 (8) | 0.034 (6) | 0.031 (5) | 0.014 (6) | 0.010 (7) | 0.000 (5) |
N2 | 0.038 (5) | 0.038 (5) | 0.033 (5) | 0.017 (4) | 0.003 (4) | 0.014 (5) |
O2 | 0.079 (5) | 0.051 (5) | 0.040 (5) | 0.039 (4) | 0.013 (5) | 0.008 (5) |
C2 | 0.044 (6) | 0.038 (7) | 0.043 (7) | −0.003 (5) | 0.005 (6) | −0.007 (6) |
O3 | 0.056 (5) | 0.054 (6) | 0.038 (5) | 0.011 (4) | 0.014 (5) | 0.015 (5) |
C3 | 0.044 (7) | 0.087 (10) | 0.044 (7) | −0.012 (7) | 0.023 (6) | −0.027 (8) |
O4 | 0.075 (6) | 0.146 (11) | 0.065 (7) | 0.057 (7) | −0.009 (6) | −0.006 (8) |
C4 | 0.069 (8) | 0.077 (11) | 0.034 (7) | 0.018 (8) | 0.011 (7) | −0.013 (8) |
O5 | 0.069 (5) | 0.043 (5) | 0.033 (4) | −0.011 (4) | −0.010 (4) | −0.008 (5) |
C5 | 0.097 (10) | 0.076 (10) | 0.028 (6) | −0.005 (9) | 0.020 (7) | −0.011 (7) |
O6 | 0.069 (5) | 0.030 (4) | 0.043 (4) | −0.010 (4) | −0.009 (5) | 0.006 (5) |
C6 | 0.076 (8) | 0.048 (7) | 0.035 (6) | 0.004 (7) | 0.008 (7) | 0.003 (7) |
C7 | 0.054 (7) | 0.028 (7) | 0.044 (7) | 0.002 (5) | −0.008 (6) | −0.001 (6) |
C8 | 0.085 (8) | 0.043 (8) | 0.106 (15) | 0.012 (7) | 0.006 (11) | −0.004 (10) |
C9 | 0.045 (6) | 0.041 (7) | 0.035 (5) | −0.008 (5) | −0.003 (6) | 0.010 (6) |
C10 | 0.051 (7) | 0.042 (7) | 0.025 (5) | 0.002 (5) | −0.003 (6) | −0.004 (6) |
C11 | 0.040 (6) | 0.041 (7) | 0.041 (6) | 0.011 (5) | −0.014 (6) | 0.013 (6) |
C12 | 0.048 (7) | 0.061 (10) | 0.057 (9) | 0.006 (7) | −0.009 (7) | 0.002 (9) |
C13 | 0.058 (7) | 0.065 (9) | 0.071 (10) | 0.002 (7) | 0.036 (8) | 0.018 (8) |
C14 | 0.078 (8) | 0.062 (9) | 0.040 (7) | 0.020 (7) | 0.007 (7) | 0.004 (8) |
C15 | 0.063 (8) | 0.042 (8) | 0.039 (6) | 0.000 (6) | −0.022 (7) | 0.007 (6) |
C16 | 0.067 (8) | 0.069 (10) | 0.059 (9) | 0.016 (7) | 0.010 (8) | −0.016 (9) |
C17 | 0.029 (5) | 0.016 (5) | 0.102 (10) | −0.005 (4) | −0.018 (7) | 0.016 (7) |
C18 | 0.046 (6) | 0.049 (8) | 0.037 (6) | −0.010 (6) | −0.010 (6) | 0.011 (6) |
C19 | 0.048 (7) | 0.025 (7) | 0.072 (10) | 0.008 (5) | 0.006 (7) | −0.010 (7) |
C20 | 0.042 (5) | 0.048 (7) | 0.030 (5) | −0.010 (5) | −0.018 (6) | 0.005 (6) |
Mn1—O3 | 1.829 (8) | O6—H6 | 0.8625 |
Mn1—O1 | 1.849 (8) | C6—H6A | 0.9300 |
Mn1—N1 | 2.035 (10) | C7—H7 | 0.9300 |
Mn1—N2 | 2.061 (9) | C8—H8A | 0.9600 |
Mn1—O6i | 2.247 (8) | C8—H8B | 0.9600 |
Mn1—O5ii | 2.315 (8) | C8—H8C | 0.9600 |
O1—C2 | 1.335 (14) | C9—C10 | 1.358 (15) |
N1—C7 | 1.312 (14) | C9—C14 | 1.391 (16) |
N1—C17 | 1.473 (13) | C9—C15 | 1.457 (17) |
C1—C6 | 1.371 (16) | C10—C11 | 1.482 (16) |
C1—C7 | 1.443 (16) | C11—C12 | 1.312 (17) |
C1—C2 | 1.445 (16) | C12—C13 | 1.414 (19) |
N2—C15 | 1.259 (15) | C12—H12 | 0.9300 |
N2—C20 | 1.502 (13) | C13—C14 | 1.369 (16) |
O2—C3 | 1.376 (17) | C13—H13 | 0.9300 |
O2—C8 | 1.442 (14) | C14—H14 | 0.9300 |
C2—C3 | 1.363 (16) | C15—H15 | 0.9300 |
O3—C10 | 1.315 (13) | C16—H16A | 0.9600 |
C3—C4 | 1.349 (18) | C16—H16B | 0.9600 |
O4—C16 | 1.361 (14) | C16—H16C | 0.9600 |
O4—C11 | 1.401 (14) | C17—C18 | 1.566 (16) |
C4—C5 | 1.421 (18) | C17—H17A | 0.9700 |
C4—H4 | 0.9300 | C17—H17B | 0.9700 |
O5—C18 | 1.412 (12) | C18—H18A | 0.9700 |
O5—Mn1i | 2.315 (8) | C18—H18B | 0.9700 |
O5—H5 | 0.8547 | C19—C20 | 1.496 (17) |
C5—C6 | 1.348 (17) | C19—H19A | 0.9700 |
C5—H5A | 0.9300 | C19—H19B | 0.9700 |
O6—C19 | 1.453 (13) | C20—H20A | 0.9700 |
O6—Mn1ii | 2.247 (8) | C20—H20B | 0.9700 |
O3—Mn1—O1 | 179.5 (5) | O2—C8—H8C | 109.5 |
O3—Mn1—N1 | 89.5 (4) | H8A—C8—H8C | 109.5 |
O1—Mn1—N1 | 90.5 (3) | H8B—C8—H8C | 109.5 |
O3—Mn1—N2 | 90.5 (4) | C10—C9—C14 | 121.4 (11) |
O1—Mn1—N2 | 89.6 (3) | C10—C9—C15 | 119.3 (10) |
N1—Mn1—N2 | 179.2 (5) | C14—C9—C15 | 119.2 (11) |
O3—Mn1—O6i | 89.8 (4) | O3—C10—C9 | 128.1 (11) |
O1—Mn1—O6i | 89.8 (3) | O3—C10—C11 | 115.6 (10) |
N1—Mn1—O6i | 92.4 (3) | C9—C10—C11 | 116.1 (11) |
N2—Mn1—O6i | 86.8 (3) | C12—C11—O4 | 124.0 (10) |
O3—Mn1—O5ii | 91.0 (4) | C12—C11—C10 | 121.4 (11) |
O1—Mn1—O5ii | 89.5 (3) | O4—C11—C10 | 114.6 (10) |
N1—Mn1—O5ii | 88.3 (3) | C11—C12—C13 | 120.8 (11) |
N2—Mn1—O5ii | 92.5 (4) | C11—C12—H12 | 119.6 |
O6i—Mn1—O5ii | 179.0 (4) | C13—C12—H12 | 119.6 |
C2—O1—Mn1 | 134.0 (7) | C14—C13—C12 | 118.6 (12) |
C7—N1—C17 | 113.0 (10) | C14—C13—H13 | 120.7 |
C7—N1—Mn1 | 124.6 (7) | C12—C13—H13 | 120.7 |
C17—N1—Mn1 | 122.3 (8) | C13—C14—C9 | 121.2 (13) |
C6—C1—C7 | 118.3 (12) | C13—C14—H14 | 119.4 |
C6—C1—C2 | 119.7 (12) | C9—C14—H14 | 119.4 |
C7—C1—C2 | 121.9 (11) | N2—C15—C9 | 127.5 (11) |
C15—N2—C20 | 116.4 (9) | N2—C15—H15 | 116.3 |
C15—N2—Mn1 | 124.1 (7) | C9—C15—H15 | 116.3 |
C20—N2—Mn1 | 119.4 (7) | O4—C16—H16A | 109.5 |
C3—O2—C8 | 117.0 (11) | O4—C16—H16B | 109.5 |
O1—C2—C3 | 121.0 (12) | H16A—C16—H16B | 109.5 |
O1—C2—C1 | 120.9 (10) | O4—C16—H16C | 109.5 |
C3—C2—C1 | 118.1 (12) | H16A—C16—H16C | 109.5 |
C10—O3—Mn1 | 130.1 (8) | H16B—C16—H16C | 109.5 |
C4—C3—C2 | 122.2 (15) | N1—C17—C18 | 107.4 (9) |
C4—C3—O2 | 123.9 (11) | N1—C17—H17A | 110.2 |
C2—C3—O2 | 113.8 (11) | C18—C17—H17A | 110.2 |
C16—O4—C11 | 118.0 (12) | N1—C17—H17B | 110.2 |
C3—C4—C5 | 118.7 (13) | C18—C17—H17B | 110.2 |
C3—C4—H4 | 120.7 | H17A—C17—H17B | 108.5 |
C5—C4—H4 | 120.7 | O5—C18—C17 | 110.1 (9) |
C18—O5—Mn1i | 122.9 (7) | O5—C18—H18A | 109.6 |
C18—O5—H5 | 109.4 | C17—C18—H18A | 109.6 |
Mn1i—O5—H5 | 127.6 | O5—C18—H18B | 109.6 |
C6—C5—C4 | 121.1 (12) | C17—C18—H18B | 109.6 |
C6—C5—H5A | 119.4 | H18A—C18—H18B | 108.2 |
C4—C5—H5A | 119.4 | O6—C19—C20 | 112.1 (10) |
C19—O6—Mn1ii | 124.6 (8) | O6—C19—H19A | 109.2 |
C19—O6—H6 | 105.1 | C20—C19—H19A | 109.2 |
Mn1ii—O6—H6 | 122.3 | O6—C19—H19B | 109.2 |
C5—C6—C1 | 119.9 (13) | C20—C19—H19B | 109.2 |
C5—C6—H6A | 120.0 | H19A—C19—H19B | 107.9 |
C1—C6—H6A | 120.0 | C19—C20—N2 | 113.9 (9) |
N1—C7—C1 | 127.1 (11) | C19—C20—H20A | 108.8 |
N1—C7—H7 | 116.5 | N2—C20—H20A | 108.8 |
C1—C7—H7 | 116.5 | C19—C20—H20B | 108.8 |
O2—C8—H8A | 109.5 | N2—C20—H20B | 108.8 |
O2—C8—H8B | 109.5 | H20A—C20—H20B | 107.7 |
H8A—C8—H8B | 109.5 | ||
O3—Mn1—O1—C2 | −95 (59) | C8—O2—C3—C2 | 151.0 (12) |
N1—Mn1—O1—C2 | −10.8 (10) | C2—C3—C4—C5 | −4 (2) |
N2—Mn1—O1—C2 | 170.0 (11) | O2—C3—C4—C5 | 177.9 (11) |
O6i—Mn1—O1—C2 | −103.2 (10) | C3—C4—C5—C6 | 4 (2) |
O5ii—Mn1—O1—C2 | 77.5 (10) | C4—C5—C6—C1 | −4 (2) |
O3—Mn1—N1—C7 | −176.6 (9) | C7—C1—C6—C5 | −172.8 (12) |
O1—Mn1—N1—C7 | 3.9 (9) | C2—C1—C6—C5 | 4.3 (19) |
N2—Mn1—N1—C7 | 96 (30) | C17—N1—C7—C1 | −177.0 (11) |
O6i—Mn1—N1—C7 | 93.7 (8) | Mn1—N1—C7—C1 | −1.4 (16) |
O5ii—Mn1—N1—C7 | −85.6 (9) | C6—C1—C7—N1 | 179.4 (12) |
O3—Mn1—N1—C17 | −1.3 (8) | C2—C1—C7—N1 | 2.3 (18) |
O1—Mn1—N1—C17 | 179.1 (8) | Mn1—O3—C10—C9 | −5.3 (18) |
N2—Mn1—N1—C17 | −89 (30) | Mn1—O3—C10—C11 | 168.8 (8) |
O6i—Mn1—N1—C17 | −91.1 (8) | C14—C9—C10—O3 | 179.7 (12) |
O5ii—Mn1—N1—C17 | 89.7 (8) | C15—C9—C10—O3 | −1.5 (18) |
O3—Mn1—N2—C15 | −1.5 (10) | C14—C9—C10—C11 | 5.7 (17) |
O1—Mn1—N2—C15 | 178.0 (10) | C15—C9—C10—C11 | −175.6 (11) |
N1—Mn1—N2—C15 | 86 (30) | C16—O4—C11—C12 | 28.4 (19) |
O6i—Mn1—N2—C15 | 88.2 (10) | C16—O4—C11—C10 | −151.5 (12) |
O5ii—Mn1—N2—C15 | −92.5 (10) | O3—C10—C11—C12 | 177.8 (11) |
O3—Mn1—N2—C20 | 175.9 (8) | C9—C10—C11—C12 | −7.4 (18) |
O1—Mn1—N2—C20 | −4.6 (8) | O3—C10—C11—O4 | −2.3 (15) |
N1—Mn1—N2—C20 | −97 (30) | C9—C10—C11—O4 | 172.5 (10) |
O6i—Mn1—N2—C20 | −94.4 (8) | O4—C11—C12—C13 | −177.0 (12) |
O5ii—Mn1—N2—C20 | 84.8 (8) | C10—C11—C12—C13 | 3 (2) |
Mn1—O1—C2—C3 | −166.4 (9) | C11—C12—C13—C14 | 3 (2) |
Mn1—O1—C2—C1 | 14.1 (16) | C12—C13—C14—C9 | −5 (2) |
C6—C1—C2—O1 | 175.1 (11) | C10—C9—C14—C13 | 0 (2) |
C7—C1—C2—O1 | −7.9 (17) | C15—C9—C14—C13 | −178.4 (13) |
C6—C1—C2—C3 | −4.5 (17) | C20—N2—C15—C9 | 178.8 (11) |
C7—C1—C2—C3 | 172.5 (12) | Mn1—N2—C15—C9 | −3.7 (18) |
O1—Mn1—O3—C10 | −90 (59) | C10—C9—C15—N2 | 6.1 (19) |
N1—Mn1—O3—C10 | −173.4 (10) | C14—C9—C15—N2 | −175.1 (13) |
N2—Mn1—O3—C10 | 5.8 (10) | C7—N1—C17—C18 | −103.3 (12) |
O6i—Mn1—O3—C10 | −80.9 (10) | Mn1—N1—C17—C18 | 81.0 (9) |
O5ii—Mn1—O3—C10 | 98.4 (10) | Mn1i—O5—C18—C17 | −162.6 (6) |
O1—C2—C3—C4 | −175.0 (12) | N1—C17—C18—O5 | 70.0 (12) |
C1—C2—C3—C4 | 4.6 (19) | Mn1ii—O6—C19—C20 | 159.0 (7) |
O1—C2—C3—O2 | 2.9 (17) | O6—C19—C20—N2 | −65.1 (13) |
C1—C2—C3—O2 | −177.5 (11) | C15—N2—C20—C19 | 97.8 (13) |
C8—O2—C3—C4 | −31.1 (19) | Mn1—N2—C20—C19 | −79.8 (11) |
Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5···I1Aiii | 0.86 | 2.86 | 3.488 (8) | 131 |
Symmetry code: (iii) −x, −y+1, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Mn(C10H12NO3)2]I |
Mr | 570.25 |
Crystal system, space group | Orthorhombic, Pca21 |
Temperature (K) | 298 |
a, b, c (Å) | 18.880 (2), 5.8979 (10), 20.916 (2) |
V (Å3) | 2329.1 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.93 |
Crystal size (mm) | 0.40 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Agilent Xcalibur Sapphire3 diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.513, 0.699 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7841, 4752, 2094 |
Rint | 0.078 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.076, 0.173, 0.92 |
No. of reflections | 4752 |
No. of parameters | 282 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.49, −0.66 |
Absolute structure | Flack (1983), 1276 Friedel pairs |
Absolute structure parameter | 0.59 (3) |
Computer programs: CrysAlis CCD (Agilent, 2011), CrysAlis RED (Agilent, 2011), SHELXS97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).
Mn1—O3 | 1.829 (8) | Mn1—N2 | 2.061 (9) |
Mn1—O1 | 1.849 (8) | Mn1—O6i | 2.247 (8) |
Mn1—N1 | 2.035 (10) | Mn1—O5ii | 2.315 (8) |
Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5···I1Aiii | 0.86 | 2.86 | 3.488 (8) | 131 |
Symmetry code: (iii) −x, −y+1, z−1/2. |
Acknowledgements
This work was partially supported by the State Fund for Fundamental Researches of Ukraine (project 54.3/005).
References
Agilent (2011). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Babich, O. A., Kokozay, V. N. & Pavlenko, V. A. (1996). Polyhedron, 15, 2727–2731. CSD CrossRef CAS Web of Science Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Chygorin, E. N., Nesterova, O. V., Rusanova, J. A., Kokozay, V. N., Bon, V. V., Boca, R. & Ozarowski, A. (2012). Inorg. Chem. 51, 386–396. Web of Science CSD CrossRef CAS PubMed Google Scholar
Coxall, R. A., Harris, S. G., Henderson, D. K., Parsons, S., Tasker, P. A. & Winpenny, R. E. P. (2000). J. Chem. Soc. Dalton Trans. pp. 2349–2356. Web of Science CSD CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Makhankova, V. G., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Sorace, L. & Gatteschi, D. (2002). J. Chem. Soc. Dalton Trans. pp. 4253–4259. Web of Science CSD CrossRef Google Scholar
Nesterov, D. S., Chygorin, E. N., Kokozay, V. N., Bon, V. V., Boca, R., Kozlov, Y. N., Shul'pina, L. S., Jezierska, J., Ozarowski, A., Pombeiro, A. L. J. & Shul'pin, G. B. (2012). Inorg. Chem. 51, 9110–9122. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vinogradova, E. A., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Bjernemose, J. K. & Raithby, P. R. (2002). J. Chem. Soc. Dalton Trans. pp. 4248–4252. Web of Science CSD CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, L.-F., Ni, Z.-H., Zong, Z.-M., Wei, X.-Y., Ge, C.-H. & Kou, H.-Z. (2005). Acta Cryst. C61, m542–m544. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Developing the "direct synthesis" approach (Babich et al., 1996; Vinogradova et al., 2002; Makhankova et al., 2002), our research group are now interested in the preparation of manganese-based heterometallic "salen-type" Schiff bases complexes as promising objects for search and production of new materials with useful properties. Synthesis from metal powders as reagents has been recently demonstrated to be an alternative and efficient way to similar Fe/Co complexes (Nesterov et al., 2012; Chygorin et al., 2012). But in some cases instead of heterometallic compounds we can obtain monometallic ones or a mixture of different compounds as more thermodinamically favorable products in selected conditions. Such a case is observed with the investigated system
Mn0 – Fe0 – {3(o-vanillin) – 3(Hea)} – 2NH4I – CH3OH (t=50 0C, in open air),
where o-vanillin = 2-hydroxy-3-methoxybenzaldehyde; Hea = 2-aminoethanol;
from which the new polymeric complex [Mn(HL)2]I (H2L = 2-hydroxyiminomethyl-6-methoxyphenol), (I), was isolated.
The total dissolution of metal powders was observed within 6 h resulting into intensive dark brown solution. The block brown crystalls precipitate after 24 h with 45% yield. Interestingly that the stechiometric system
Mn0 – {2(o-vanillin) – 2(Hea)} – NH4I – CH3OH
produces the same complex, but the dissolution of metal powders is longer (more than 7 h) and the yield is lower (26%).
The {[Mn(HL)2]}n unit (Fig.1) demonstrates the [O4N2] coordination environment with a distorted octahedral geometry around the central atom. The metal assignment and its oxidation state were confirmed by considering coordination bond lengths, existence of Jahn-Teller elongation and bond valence sum calculation [BVS(Mn) = 3.07 (Brown & Altermatt, 1985)].
The one-dimensional polymeric structure of the crystal (Fig. 2) is realised by means of chelate-bridging function of the ligand, [2.0111112] by Harris notation (Coxall et al., 2000), which is firstly observed for H2L.
The disodered iodide anions occupy channels between polymeric cationic chains joining to them through weak O–H···I hydrogen bonds (H···I 2.62 - 2.86 Å, O—H···I 131 - 172°) forming neutral chains along (010) direction (Fig. 2, 3). It is worth noting that in the similar complex {[Mn(HL')2]Cl}n, where H2L'= 2-[(2-hydroxyethyl)iminomethyl]-phenol (Zhang et al., 2005), the polymeric chains interlink with numerous O–H···Cl hydrogen bonds and C–H···π contacts yielding two-dimensional network. This difference can be caused by at least two factors: (1) greater electronegativeness and notably smaller radius of Cl- anions, and (2) absence of methoxy-group, and so additional steric hindrance, in H2L'.