organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o863-o864

N,N-Di­ethyl-2-hy­dr­oxy­ethanaminium 5-(2,4-di­nitro­phen­yl)barbiturate sesquihydrate

aPG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Tiruchirappalli 620 002, Tamil Nadu, India
*Correspondence e-mail: kalaivbalaj@yahoo.co.in

(Received 21 April 2013; accepted 5 May 2013; online 11 May 2013)

In the title hydrated mol­ecular salt, C6H16NO+·C10H5N4O7·1.5H2O [systematic name: N,N-diethyl-2-hy­droxy­ethan­am­in­ium 5-(2,4-di­nitro­phen­yl)-2,6-di­oxo-1,2,3,6-tetra­hydro­pyrim­idin-4-olate sesquihydrate], the dihedral angle between the six-membered rings in the anion is 37.66 (11)°. The nitro groups ortho and para to the ring junction are rotated from their attached ring by 40.8 (3) and 23.5 (3)°, respectively. The ethanol group is disordered over two of the `arms' of the cation in a statistical ratio. In the crystal, [010] chains of anions occur, linked by N—H⋯O and O—H⋯O hydrogen bonds, which generate R22(8) loops. Further N—H⋯O and O—H⋯O hydrogen bonds link the components into a three-dimensional network. One of the water O atoms lies near an inversion centre and is 50% occupied.

Related literature

For related barbiturates, see: Kalaivani et al. (2008[Kalaivani, D., Malarvizhi, R. & Subbalakshmi, R. (2008). Med. Chem. Res. 17, 369-373.]); Kalaivani & Buvaneswari (2010[Kalaivani, D. & Buvaneswari, M. (2010). Recent Advances in Clinical Medicine, pp. 255-260. Cambridge, England: WSEAS Press UK.]); Buvaneswari & Kalaivani (2011[Buvaneswari, M. & Kalaivani, D. (2011). Acta Cryst. E67, o1433-o1434.]); Babykala & Kalaivani (2012[Babykala, R. & Kalaivani, D. (2012). Acta Cryst. E68, o541.]).

[Scheme 1]

Experimental

Crystal data
  • C6H16NO+·C10H5N4O7·1.5H2O

  • Mr = 438.40

  • Monoclinic, P 21 /c

  • a = 9.6003 (5) Å

  • b = 11.6568 (6) Å

  • c = 18.1993 (9) Å

  • β = 98.066 (3)°

  • V = 2016.51 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004)[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.948, Tmax = 0.979

  • 16207 measured reflections

  • 3219 independent reflections

  • 2353 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.131

  • S = 1.09

  • 3219 reflections

  • 341 parameters

  • 49 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8⋯O9i 0.82 2.14 2.739 (10) 130
O9—H9⋯O11ii 0.82 2.11 2.841 (17) 148
N3—H3⋯O3iii 0.86 1.94 2.794 (2) 174
N4—H4A⋯O1iv 0.86 1.97 2.804 (3) 165
N5—H5A⋯O10ii 0.97 (4) 1.86 (4) 2.808 (4) 164 (3)
O10—H10B⋯O2 0.90 (2) 1.87 (3) 2.751 (3) 163 (5)
O10—H10A⋯O6iv 0.89 (2) 2.02 (2) 2.902 (4) 172 (6)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Good crystallinity of the title barbiturate (pyrimidine derivative) and the biological effects of the related barbiturates (Kalaivani et al.,2008; Kalaivani & Buvaneswari,2010) necessitate us to subject the molecular salt of the present investigation for single-crystal X-ray analysis. The crystal structures of two different barbiturates with N,N-diethyl-2-hydroxyethanaminium cation have been reported by us recently (Buvaneswari & Kalaivani,2011; Babykala & Kalaivani,2012). No disorder has been observed in their cation moieties. The X-ray results of the molecular salt of present interest imply that the asymmetric unit consists of N,N-Diethyl-2-hydroxyethanaminium cation, 5-(2,4-dinitrophenyl)barbiturate anion and 1.5 molecules of water (Scheme).Fig.1 is the ORTEP diagram of the title molecule with 30% probability displacement ellipsoids. Disorder has been noticed in the ethanol group of diethylethanolammonium cation at two positions with equal probability (50% occupancy). The crystal structure features a number of N—H···O and O—H···O hydrogen bonds (Table.1) and these hydrogen bond interactions extend three dimensionally (Fig.2). O11 of water molecule is also disordered with its symmetry related position (sym:-x + 1,-y,-z + 2).The hydrogen atoms of O11 could not be located.In the anion, the dinitrophenyl ring and the barbiturate ring are not planar and the dihedral angle between them is 37.65 (0.09)°.The nitro groups attached to C3 and C1 atoms of phenyl ring make dihedral angles,23.51(0.15°) and 39.75(0.11°) respectively with the phenylplane. The inversion related barbiturate residues are linked through R22(8) motifs.

Related literature top

For related barbiturates, see: Kalaivani et al. (2008); Kalaivani & Buvaneswari (2010); Buvaneswari & Kalaivani (2011); Babykala & Kalaivani (2012).

Experimental top

1-Chloro-2,4-dinitrobenzene(2.02 g, 0.01 mol) was dissolved in 20 ml of ethanol and mixed with barbituric acid(1.2 g, 0.01 mol) dissolved in 30 ml of ethanol. To this mixture diethylethanolamine (5.85 g, 0.05 mol) was added,the red coloured solution obtained was shaken well for 3 h and kept as such at 25° C. Dark shiny maroon red crystals were deposited from the solution after 4 weeks. The crystals were washed with 5 ml of ethanol followed by 30 ml of ether, powdered well and was further washed with 40 ml of dry ether to remove unreacted reactants.The pure crystals thus obtained were recrystallized from hot ethanol(yield:85%; m.pt; 511 K). Red blocks were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement top

The initial refinement of the structure showed abnormal displacement ellipsoids for two chains of diethylethanolammonium ion, soon it could be identified as disorder arising from the ethanol and ethyl group exchanging positions. The disordered components are suitably positioned and the occupancies refined, keeping the sum of occupancies as 1. As the occupancies convulsed to 50%, their values were fixed as 0.5 towards the last cycles of refinement.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The ORTEP diagram of the title compound with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing view of title compound.
N,N-Diethyl-2-hydroxyethanaminium 5-(2,4-dinitrophenyl)-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate sesquihydrate top
Crystal data top
C6H16NO+·C10H5N4O7·1.5H2OF(000) = 924
Mr = 438.40Dx = 1.444 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.6003 (5) ÅCell parameters from 5746 reflections
b = 11.6568 (6) Åθ = 2.1–24.1°
c = 18.1993 (9) ŵ = 0.12 mm1
β = 98.066 (3)°T = 293 K
V = 2016.51 (18) Å3Block, red
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3219 independent reflections
Radiation source: fine-focus sealed tube2353 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω and ϕ scanθmax = 24.2°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1110
Tmin = 0.948, Tmax = 0.979k = 1313
16207 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0518P)2 + 1.3181P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
3219 reflectionsΔρmax = 0.34 e Å3
341 parametersΔρmin = 0.26 e Å3
49 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0070 (12)
Crystal data top
C6H16NO+·C10H5N4O7·1.5H2OV = 2016.51 (18) Å3
Mr = 438.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6003 (5) ŵ = 0.12 mm1
b = 11.6568 (6) ÅT = 293 K
c = 18.1993 (9) Å0.30 × 0.20 × 0.20 mm
β = 98.066 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3219 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2353 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.979Rint = 0.033
16207 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04349 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.34 e Å3
3219 reflectionsΔρmin = 0.26 e Å3
341 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2628 (2)0.0366 (2)0.54157 (13)0.0329 (6)
C20.2250 (3)0.0267 (2)0.46611 (13)0.0391 (6)
H20.14970.01930.44650.047*
C30.3010 (3)0.0862 (2)0.42078 (13)0.0382 (6)
C40.4145 (3)0.1532 (2)0.44884 (13)0.0392 (6)
H40.46290.19590.41740.047*
C50.4544 (3)0.1556 (2)0.52411 (13)0.0356 (6)
H50.53390.19750.54290.043*
C60.3811 (2)0.09788 (18)0.57400 (12)0.0302 (5)
C70.4339 (2)0.09933 (19)0.65315 (12)0.0307 (5)
C80.4299 (2)0.0016 (2)0.69591 (12)0.0320 (5)
C90.5512 (3)0.0971 (2)0.80407 (13)0.0415 (6)
C100.4982 (2)0.1991 (2)0.68671 (12)0.0333 (6)
C110.055 (3)0.421 (2)0.6323 (12)0.123 (6)0.50
H11A0.09310.42830.68440.148*0.50
H11B0.05820.49640.61000.148*0.50
C120.148 (2)0.341 (2)0.5957 (12)0.123 (6)0.50
H12A0.21710.38790.57570.148*0.50
H12B0.19870.29410.63460.148*0.50
O80.0978 (6)0.2768 (6)0.5468 (3)0.0968 (18)0.50
H80.08040.31260.50780.145*0.50
C11'0.0599 (11)0.4204 (8)0.6337 (5)0.0340 (19)0.50
H11C0.06870.48510.60120.041*0.50
H11D0.09160.44470.68420.041*0.50
C12'0.1500 (14)0.3260 (12)0.6142 (7)0.058 (2)0.50
H12C0.14630.26360.64830.087*0.50
H12D0.24520.35260.61690.087*0.50
H12E0.11730.30020.56470.087*0.50
C130.1176 (4)0.2726 (3)0.66133 (19)0.0675 (9)
H13A0.06930.21320.63740.081*
H13B0.21760.25620.65170.081*
C140.0709 (5)0.2668 (4)0.7436 (2)0.0950 (13)
H14A0.02970.27320.75350.142*
H14B0.09960.19480.76240.142*
H14C0.11300.32850.76760.142*
C150.169 (2)0.4779 (19)0.6581 (13)0.125 (6)0.50
H15A0.12660.48820.70930.149*0.50
H15B0.26390.45050.65900.149*0.50
C160.179 (3)0.5919 (19)0.6233 (11)0.120 (6)0.50
H16A0.25290.63640.64120.144*0.50
H16B0.09100.63300.63470.144*0.50
O90.2118 (8)0.5734 (6)0.5442 (3)0.109 (2)0.50
H90.28770.54050.53510.164*0.50
C15'0.1878 (13)0.4742 (14)0.6532 (12)0.073 (4)0.50
H15C0.28050.44120.65360.088*0.50
H15D0.15170.49770.70340.088*0.50
C16'0.198 (2)0.5752 (15)0.6036 (11)0.104 (6)0.50
H16C0.10600.59720.59450.156*0.50
H16D0.24090.63760.62670.156*0.50
H16E0.25500.55630.55750.156*0.50
N10.2581 (2)0.0802 (2)0.34106 (12)0.0495 (6)
N20.1609 (2)0.01230 (19)0.58625 (12)0.0427 (5)
N30.4909 (2)0.00326 (16)0.76952 (10)0.0392 (5)
H30.49020.05850.79530.047*
N40.5523 (2)0.19167 (17)0.76131 (10)0.0397 (5)
H4A0.58980.25260.78220.048*
N50.0911 (3)0.3855 (2)0.62698 (15)0.0531 (6)
O10.37759 (18)0.09499 (13)0.67247 (9)0.0400 (4)
O20.5996 (3)0.09640 (17)0.87033 (10)0.0673 (7)
O30.50875 (19)0.29377 (14)0.65590 (9)0.0432 (5)
O40.2933 (2)0.1579 (2)0.30267 (10)0.0642 (6)
O50.1890 (3)0.0026 (2)0.31603 (11)0.0756 (7)
O60.1012 (2)0.10192 (18)0.56472 (12)0.0613 (6)
O70.1327 (2)0.04142 (17)0.63940 (11)0.0542 (5)
O100.7928 (4)0.1814 (3)0.98317 (18)0.1345 (15)
O110.5047 (15)0.0413 (8)0.9782 (6)0.193 (5)0.50
H5A0.126 (4)0.376 (3)0.574 (2)0.079 (10)*
H10B0.744 (5)0.145 (4)0.944 (2)0.16 (2)*
H10A0.818 (6)0.251 (3)0.969 (3)0.19 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0335 (13)0.0302 (13)0.0342 (13)0.0035 (11)0.0017 (10)0.0016 (10)
C20.0345 (13)0.0388 (14)0.0408 (14)0.0048 (11)0.0057 (11)0.0061 (11)
C30.0418 (14)0.0416 (15)0.0289 (13)0.0114 (12)0.0029 (11)0.0019 (11)
C40.0476 (15)0.0373 (14)0.0327 (14)0.0037 (12)0.0061 (12)0.0011 (11)
C50.0407 (14)0.0325 (13)0.0325 (13)0.0009 (11)0.0009 (11)0.0012 (11)
C60.0355 (13)0.0228 (12)0.0313 (12)0.0077 (10)0.0013 (10)0.0021 (10)
C70.0376 (13)0.0249 (12)0.0286 (12)0.0022 (10)0.0015 (10)0.0013 (10)
C80.0364 (13)0.0295 (13)0.0295 (12)0.0028 (11)0.0024 (10)0.0023 (10)
C90.0589 (17)0.0327 (14)0.0303 (14)0.0006 (13)0.0032 (12)0.0019 (11)
C100.0402 (14)0.0280 (13)0.0314 (13)0.0021 (11)0.0042 (11)0.0022 (10)
C110.117 (12)0.123 (13)0.123 (13)0.008 (10)0.003 (10)0.002 (10)
C120.108 (11)0.119 (12)0.136 (12)0.011 (8)0.005 (9)0.008 (9)
O80.089 (4)0.126 (5)0.073 (3)0.028 (3)0.004 (3)0.028 (3)
C11'0.035 (4)0.034 (4)0.030 (4)0.007 (4)0.003 (3)0.000 (3)
C12'0.039 (4)0.069 (6)0.062 (5)0.011 (4)0.004 (4)0.002 (4)
C130.066 (2)0.058 (2)0.075 (2)0.0106 (16)0.0018 (17)0.0037 (17)
C140.111 (3)0.090 (3)0.077 (3)0.028 (2)0.008 (2)0.026 (2)
C150.193 (13)0.101 (11)0.076 (9)0.043 (10)0.007 (9)0.014 (8)
C160.189 (12)0.085 (10)0.079 (7)0.042 (8)0.002 (7)0.018 (6)
O90.161 (7)0.092 (4)0.070 (4)0.037 (4)0.001 (4)0.002 (4)
C15'0.055 (5)0.061 (7)0.110 (11)0.024 (5)0.037 (5)0.004 (7)
C16'0.104 (8)0.058 (7)0.151 (17)0.039 (6)0.019 (10)0.007 (10)
N10.0520 (14)0.0595 (16)0.0343 (13)0.0112 (13)0.0036 (11)0.0041 (12)
N20.0382 (12)0.0411 (13)0.0472 (13)0.0017 (11)0.0006 (10)0.0016 (11)
N30.0602 (14)0.0265 (11)0.0284 (11)0.0010 (10)0.0029 (9)0.0030 (9)
N40.0573 (14)0.0272 (11)0.0312 (11)0.0047 (10)0.0051 (10)0.0048 (9)
N50.0562 (16)0.0510 (15)0.0500 (15)0.0065 (12)0.0001 (12)0.0067 (12)
O10.0543 (11)0.0248 (9)0.0376 (10)0.0029 (8)0.0053 (8)0.0010 (7)
O20.1120 (18)0.0475 (12)0.0334 (11)0.0130 (12)0.0207 (11)0.0022 (9)
O30.0687 (12)0.0263 (9)0.0327 (9)0.0060 (8)0.0009 (8)0.0006 (7)
O40.0747 (15)0.0790 (16)0.0362 (11)0.0055 (12)0.0016 (10)0.0101 (11)
O50.0957 (18)0.0804 (16)0.0435 (12)0.0150 (14)0.0150 (11)0.0126 (11)
O60.0528 (12)0.0529 (13)0.0769 (15)0.0191 (10)0.0051 (10)0.0075 (11)
O70.0551 (12)0.0581 (13)0.0524 (12)0.0048 (10)0.0185 (9)0.0030 (10)
O100.173 (3)0.106 (2)0.097 (2)0.064 (2)0.076 (2)0.0379 (19)
O110.262 (11)0.162 (11)0.153 (10)0.096 (10)0.021 (9)0.020 (6)
Geometric parameters (Å, º) top
C1—C21.375 (3)C12'—H12D0.9600
C1—C61.400 (3)C12'—H12E0.9600
C1—N21.472 (3)C13—N51.495 (4)
C2—C31.366 (4)C13—C141.504 (5)
C2—H20.9300C13—H13A0.9700
C3—C41.379 (4)C13—H13B0.9700
C3—N11.453 (3)C14—H14A0.9600
C4—C51.370 (3)C14—H14B0.9600
C4—H40.9300C14—H14C0.9600
C5—C61.397 (3)C15—N51.47 (2)
C5—H50.9300C15—C161.470 (13)
C6—C71.458 (3)C15—H15A0.9700
C7—C81.414 (3)C15—H15B0.9700
C7—C101.415 (3)C16—O91.44 (2)
C8—O11.248 (3)C16—H16A0.9700
C8—N31.386 (3)C16—H16B0.9700
C9—O21.230 (3)O9—H90.8200
C9—N41.350 (3)C15'—C16'1.478 (12)
C9—N31.351 (3)C15'—N51.512 (15)
C10—O31.248 (3)C15'—H15C0.9700
C10—N41.387 (3)C15'—H15D0.9700
C11—N51.45 (2)C16'—H16C0.9600
C11—C121.509 (13)C16'—H16D0.9600
C11—H11A0.9700C16'—H16E0.9600
C11—H11B0.9700N1—O41.220 (3)
C12—O81.21 (2)N1—O51.223 (3)
C12—H12A0.9700N2—O71.214 (3)
C12—H12B0.9700N2—O61.229 (3)
O8—H80.8200N3—H30.8600
C11'—C12'1.474 (10)N4—H4A0.8600
C11'—N51.493 (11)N5—H5A0.97 (4)
C11'—H11C0.9700O10—H10B0.903 (19)
C11'—H11D0.9700O10—H10A0.89 (2)
C12'—H12C0.9600O11—O11i1.260 (18)
C2—C1—C6123.3 (2)H13A—C13—H13B107.6
C2—C1—N2114.6 (2)C13—C14—H14A109.5
C6—C1—N2121.8 (2)C13—C14—H14B109.5
C3—C2—C1118.2 (2)H14A—C14—H14B109.5
C3—C2—H2120.9C13—C14—H14C109.5
C1—C2—H2120.9H14A—C14—H14C109.5
C2—C3—C4121.7 (2)H14B—C14—H14C109.5
C2—C3—N1118.5 (2)N5—C15—C16120.3 (17)
C4—C3—N1119.7 (2)N5—C15—H15A107.2
C5—C4—C3118.5 (2)C16—C15—H15A107.2
C5—C4—H4120.8N5—C15—H15B107.2
C3—C4—H4120.8C16—C15—H15B107.2
C4—C5—C6123.0 (2)H15A—C15—H15B106.9
C4—C5—H5118.5O9—C16—C15106.7 (16)
C6—C5—H5118.5O9—C16—H16A110.4
C5—C6—C1115.1 (2)C15—C16—H16A110.4
C5—C6—C7120.0 (2)O9—C16—H16B110.4
C1—C6—C7124.8 (2)C15—C16—H16B110.4
C8—C7—C10119.4 (2)H16A—C16—H16B108.6
C8—C7—C6120.1 (2)C16—O9—H9109.5
C10—C7—C6120.4 (2)C16'—C15'—N5110.1 (12)
O1—C8—N3117.5 (2)C16'—C15'—H15C109.6
O1—C8—C7125.3 (2)N5—C15'—H15C109.6
N3—C8—C7117.2 (2)C16'—C15'—H15D109.6
O2—C9—N4122.5 (2)N5—C15'—H15D109.6
O2—C9—N3122.0 (2)H15C—C15'—H15D108.2
N4—C9—N3115.5 (2)C15'—C16'—H16C109.5
O3—C10—N4116.9 (2)C15'—C16'—H16D109.5
O3—C10—C7126.2 (2)H16C—C16'—H16D109.5
N4—C10—C7116.9 (2)C15'—C16'—H16E109.5
N5—C11—C12114.7 (18)H16C—C16'—H16E109.5
N5—C11—H11A108.6H16D—C16'—H16E109.5
C12—C11—H11A108.6O4—N1—O5123.5 (2)
N5—C11—H11B108.6O4—N1—C3118.3 (2)
C12—C11—H11B108.6O5—N1—C3118.2 (2)
H11A—C11—H11B107.6O7—N2—O6123.1 (2)
O8—C12—C11121 (2)O7—N2—C1118.7 (2)
O8—C12—H12A107.2O6—N2—C1118.0 (2)
C11—C12—H12A107.2C9—N3—C8125.4 (2)
O8—C12—H12B107.2C9—N3—H3117.3
C11—C12—H12B107.2C8—N3—H3117.3
H12A—C12—H12B106.8C9—N4—C10125.7 (2)
C12—O8—H8109.5C9—N4—H4A117.2
C12'—C11'—N5111.9 (9)C10—N4—H4A117.2
C12'—C11'—H11C109.2C11—N5—C15107.6 (13)
N5—C11'—H11C109.2C11—N5—C11'1.2 (13)
C12'—C11'—H11D109.2C15—N5—C11'108.0 (10)
N5—C11'—H11D109.2C11—N5—C13116.3 (10)
H11C—C11'—H11D107.9C15—N5—C13111.0 (9)
C11'—C12'—H12C109.5C11'—N5—C13115.2 (4)
C11'—C12'—H12D109.5C11—N5—C15'114.4 (11)
H12C—C12'—H12D109.5C15—N5—C15'7.4 (15)
C11'—C12'—H12E109.5C11'—N5—C15'114.9 (7)
H12C—C12'—H12E109.5C13—N5—C15'108.8 (6)
H12D—C12'—H12E109.5C11—N5—H5A107 (2)
N5—C13—C14114.3 (3)C15—N5—H5A110 (2)
N5—C13—H13A108.7C11'—N5—H5A108 (2)
C14—C13—H13A108.7C13—N5—H5A105 (2)
N5—C13—H13B108.7C15'—N5—H5A104 (2)
C14—C13—H13B108.7H10B—O10—H10A109 (3)
C6—C1—C2—C34.7 (4)C6—C1—N2—O737.2 (3)
N2—C1—C2—C3169.2 (2)C2—C1—N2—O638.1 (3)
C1—C2—C3—C41.2 (4)C6—C1—N2—O6147.8 (2)
C1—C2—C3—N1177.4 (2)O2—C9—N3—C8177.7 (3)
C2—C3—C4—C52.7 (4)N4—C9—N3—C81.1 (4)
N1—C3—C4—C5178.7 (2)O1—C8—N3—C9179.5 (2)
C3—C4—C5—C63.4 (4)C7—C8—N3—C91.3 (4)
C4—C5—C6—C10.1 (3)O2—C9—N4—C10179.1 (3)
C4—C5—C6—C7176.8 (2)N3—C9—N4—C100.3 (4)
C2—C1—C6—C54.1 (3)O3—C10—N4—C9179.9 (2)
N2—C1—C6—C5169.4 (2)C7—C10—N4—C91.4 (4)
C2—C1—C6—C7172.5 (2)C12—C11—N5—C15174.2 (17)
N2—C1—C6—C714.1 (3)C12—C11—N5—C11'76 (62)
C5—C6—C7—C8138.6 (2)C12—C11—N5—C1360.6 (19)
C1—C6—C7—C837.7 (3)C12—C11—N5—C15'171.2 (15)
C5—C6—C7—C1036.9 (3)C16—C15—N5—C1163 (2)
C1—C6—C7—C10146.7 (2)C16—C15—N5—C11'64 (2)
C10—C7—C8—O1179.2 (2)C16—C15—N5—C13168.7 (16)
C6—C7—C8—O13.6 (4)C16—C15—N5—C15'95 (12)
C10—C7—C8—N30.1 (3)C12'—C11'—N5—C11118 (62)
C6—C7—C8—N3175.5 (2)C12'—C11'—N5—C15171.4 (11)
C8—C7—C10—O3179.7 (2)C12'—C11'—N5—C1346.7 (8)
C6—C7—C10—O34.7 (4)C12'—C11'—N5—C15'174.3 (10)
C8—C7—C10—N41.1 (3)C14—C13—N5—C1161.7 (10)
C6—C7—C10—N4176.7 (2)C14—C13—N5—C1561.7 (11)
N5—C11—C12—O823 (3)C14—C13—N5—C11'61.4 (5)
N5—C15—C16—O945 (3)C14—C13—N5—C15'69.2 (9)
C2—C3—N1—O4156.9 (2)C16'—C15'—N5—C1166.1 (17)
C4—C3—N1—O421.7 (3)C16'—C15'—N5—C1589 (11)
C2—C3—N1—O523.3 (3)C16'—C15'—N5—C11'67.3 (14)
C4—C3—N1—O5158.1 (2)C16'—C15'—N5—C13161.9 (10)
C2—C1—N2—O7136.8 (2)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O9ii0.822.142.739 (10)130
O9—H9···O11iii0.822.112.841 (17)148
N3—H3···O3iv0.861.942.794 (2)174
N4—H4A···O1v0.861.972.804 (3)165
N5—H5A···O10iii0.97 (4)1.86 (4)2.808 (4)164 (3)
O10—H10B···O20.90 (2)1.87 (3)2.751 (3)163 (5)
O10—H10A···O6v0.89 (2)2.02 (2)2.902 (4)172 (6)
Symmetry codes: (ii) x, y+1, z+1; (iii) x1, y+1/2, z1/2; (iv) x+1, y1/2, z+3/2; (v) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC6H16NO+·C10H5N4O7·1.5H2O
Mr438.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.6003 (5), 11.6568 (6), 18.1993 (9)
β (°) 98.066 (3)
V3)2016.51 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.948, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
16207, 3219, 2353
Rint0.033
(sin θ/λ)max1)0.577
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.131, 1.09
No. of reflections3219
No. of parameters341
No. of restraints49
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.26

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O9i0.822.142.739 (10)129.6
O9—H9···O11ii0.822.112.841 (17)147.9
N3—H3···O3iii0.861.942.794 (2)174.0
N4—H4A···O1iv0.861.972.804 (3)164.5
N5—H5A···O10ii0.97 (4)1.86 (4)2.808 (4)164 (3)
O10—H10B···O20.903 (19)1.87 (3)2.751 (3)163 (5)
O10—H10A···O6iv0.89 (2)2.02 (2)2.902 (4)172 (6)
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y+1/2, z1/2; (iii) x+1, y1/2, z+3/2; (iv) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors are thankful to the SAIF, IIT Madras, for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBabykala, R. & Kalaivani, D. (2012). Acta Cryst. E68, o541.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuvaneswari, M. & Kalaivani, D. (2011). Acta Cryst. E67, o1433–o1434.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKalaivani, D. & Buvaneswari, M. (2010). Recent Advances in Clinical Medicine, pp. 255–260. Cambridge, England: WSEAS Press UK.  Google Scholar
First citationKalaivani, D., Malarvizhi, R. & Subbalakshmi, R. (2008). Med. Chem. Res. 17, 369–373.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o863-o864
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds