organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(2,6-Di­ethyl­phen­yl)carbamo­thio­yl]-2,2-di­phenyl­acetamide

aDepartment of Chemical Sciences, Faculty of Science and Technology, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Terengganu, Malaysia, and bSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 7 May 2013; accepted 15 May 2013; online 25 May 2013)

In the title compound, C25H26N2OS, the diethyl-substituted benzene ring forms dihedral angles of 67.38 (9) and 55.32 (9)° with the terminal benzene rings. The mol­ecule adopts a transcis conformation with respect to the orientations of the di­phenyl­methane and 1,3-di­ethyl­benzene groups with respect to the S atom across the C—N bonds. This conformation is stabilized by an intra­molecular N—H⋯O hydrogen bond, which generates an S(6) ring. In the crystal, pairs of N—H⋯S hydrogen bonds link the mol­ecules into inversion dimers, forming R22(6) loops. The dimer linkage is reinforced by a pair of C—H⋯S hydrogen bonds, which generate R22(8) loops. Weak C—H⋯π and ππ [centroid–centroid seperation = 3.8821 (10) Å] inter­actions also occur in the crystal structure.

Related literature

For related structures and backgroud to thio­urea derivatives, see: Yusof et al. (2012a[Yusof, M. S. M., Mutalib, S. F. A., Arshad, S. & Razak, I. A. (2012a). Acta Cryst. E68, o982.],b[Yusof, M. S. M., Arshad, S., Razak, I. A. & Rahman, A. A. (2012b). Acta Cryst. E68, o2670.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C25H26N2OS

  • Mr = 402.54

  • Triclinic, [P \overline 1]

  • a = 8.0091 (1) Å

  • b = 11.7289 (2) Å

  • c = 11.8923 (2) Å

  • α = 79.008 (1)°

  • β = 80.628 (1)°

  • γ = 83.936 (1)°

  • V = 1078.79 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 100 K

  • 0.41 × 0.17 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.934, Tmax = 0.987

  • 20294 measured reflections

  • 3767 independent reflections

  • 3123 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.087

  • S = 1.06

  • 3767 reflections

  • 272 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1 0.86 (2) 1.96 (2) 2.6702 (19) 140 (2)
N1—H1N1⋯S1i 0.85 (2) 2.59 (2) 3.4225 (16) 167.4 (18)
C7—H7A⋯S1i 1.00 2.64 3.6172 (17) 165
C10—H10ACg1ii 0.95 2.56 3.3859 (19) 146
Symmetry codes: (i) -x, -y+1, -z+2; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing studies of thiourea derivatives (Yusof et al., 2012a,b), we now describe the structure of the title compound, (I), (Fig. 1).

The bond lengths and angles are comparable to those in related structure (Yusof et al., 2012a,b). The diethyl-substituted benzene ring (C16–C21) forms dihedral angles of 67.38 (9) and 55.32 (9)° with the terminal benzene rings (C1–C6 & C8–C13), respectively. The molecule adopts a trans-cis conformation with respect to the position of diphenylmethane and 1,3-diethylbenzene groups to the sulfur (S1) atom across the C–N bonds, respectively. These configuration further resulting in an S(6) graph-set motif (Bernstein et al., 1995) via intra-molecular N2—H1N2···O1 hydrogen bond (Table 1).

In the crystal (Fig. 2), molecules are linked into dimers via N1—H1N1···S1 and C7—H7A···S1 hydrogen bonds (Table 1), generating R22(6) and R22(8) loops. C10—H10A···Cg1 (Table 1) interactions and ππ interactions of Cg1···Cg1 = 3.8821 (10) Å (symmetry code: -x, 2-y, 2-z) further stabilized the crystal structure (Cg1 is the centroid of C1–C6).

Related literature top

For related structures and backgroud to thiourea derivatives, see: Yusof et al. (2012a,b). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

An acetone (30 ml) solution of 2,6-diethylaniline (2.01 g, 13.5 mmol) was added to a round-bottom flask containing 2,2-diphenylacetyl chloride (3.10 g, 13.5 mmol) and ammonium thiocyanate (1.03 g, 13.5 mmol). The mixture was put at reflux for 2.5 h then filtered off and left to evaporate at room temperature. The colourless precipitate obtained was washed with water and cold ethanol. Colourless plates were obtained by recrystallization of the precipitate from MeOH solution.

Refinement top

N-bound H atoms was located from the difference map and refined freely, [N–H = 0.85 (2) and 0.86 (2) Å]. The remaining H atoms were positioned geometrically [C–H = 0.95–1.00 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C).A rotating group model was applied to the methyl groups. In the final refinement two outliers were omitted (6 - 2 8 and 5 - 3 6).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
N-[(2,6-Diethylphenyl)carbamothioyl]-2,2-diphenylacetamide top
Crystal data top
C25H26N2OSZ = 2
Mr = 402.54F(000) = 428
Triclinic, P1Dx = 1.239 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0091 (1) ÅCell parameters from 7540 reflections
b = 11.7289 (2) Åθ = 2.7–31.3°
c = 11.8923 (2) ŵ = 0.17 mm1
α = 79.008 (1)°T = 100 K
β = 80.628 (1)°Plate, colourless
γ = 83.936 (1)°0.41 × 0.17 × 0.08 mm
V = 1078.79 (3) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3767 independent reflections
Radiation source: fine-focus sealed tube3123 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.934, Tmax = 0.987k = 1313
20294 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0256P)2 + 0.7158P]
where P = (Fo2 + 2Fc2)/3
3767 reflections(Δ/σ)max = 0.001
272 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C25H26N2OSγ = 83.936 (1)°
Mr = 402.54V = 1078.79 (3) Å3
Triclinic, P1Z = 2
a = 8.0091 (1) ÅMo Kα radiation
b = 11.7289 (2) ŵ = 0.17 mm1
c = 11.8923 (2) ÅT = 100 K
α = 79.008 (1)°0.41 × 0.17 × 0.08 mm
β = 80.628 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3767 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3123 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.987Rint = 0.037
20294 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.27 e Å3
3767 reflectionsΔρmin = 0.25 e Å3
272 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.14725 (6)0.37823 (4)0.90032 (4)0.02277 (14)
O10.23366 (16)0.74355 (10)0.69663 (10)0.0209 (3)
N10.1116 (2)0.60788 (12)0.84279 (13)0.0175 (3)
H1N10.041 (3)0.6010 (17)0.9051 (18)0.027 (6)*
N20.32515 (19)0.51541 (13)0.72816 (13)0.0176 (3)
H1N20.334 (3)0.5850 (19)0.6903 (18)0.030 (6)*
C10.1681 (2)0.88822 (15)0.95814 (15)0.0192 (4)
H1A0.14940.81821.01220.023*
C20.2650 (2)0.96979 (16)0.98238 (16)0.0214 (4)
H2A0.31240.95551.05250.026*
C30.2921 (2)1.07207 (16)0.90366 (16)0.0226 (4)
H3A0.35991.12750.91900.027*
C40.2204 (2)1.09329 (15)0.80297 (16)0.0217 (4)
H4A0.23771.16400.74980.026*
C50.1228 (2)1.01165 (15)0.77866 (16)0.0191 (4)
H5A0.07331.02720.70940.023*
C60.0981 (2)0.90785 (14)0.85548 (15)0.0151 (4)
C70.0022 (2)0.81080 (14)0.83243 (14)0.0154 (4)
H7A0.05380.77150.90940.018*
C80.1370 (2)0.84747 (14)0.75624 (15)0.0165 (4)
C90.3053 (2)0.84527 (15)0.80968 (16)0.0194 (4)
H9A0.32930.82230.89130.023*
C100.4384 (2)0.87616 (15)0.74551 (16)0.0218 (4)
H10A0.55250.87450.78320.026*
C110.4046 (3)0.90924 (16)0.62722 (17)0.0239 (4)
H11A0.49540.93040.58310.029*
C120.2384 (3)0.91175 (17)0.57251 (16)0.0261 (5)
H12A0.21550.93490.49080.031*
C130.1047 (2)0.88063 (16)0.63647 (16)0.0219 (4)
H13A0.00910.88200.59820.026*
C140.1283 (2)0.71976 (15)0.78288 (15)0.0159 (4)
C150.2009 (2)0.50521 (15)0.81792 (15)0.0170 (4)
C160.4354 (2)0.41906 (14)0.69377 (15)0.0164 (4)
C170.4107 (2)0.37685 (15)0.59603 (15)0.0196 (4)
C180.5229 (3)0.28617 (16)0.56247 (17)0.0271 (5)
H18A0.50950.25620.49590.032*
C190.6536 (3)0.23894 (17)0.62419 (19)0.0310 (5)
H19A0.72800.17640.60060.037*
C200.6758 (2)0.28280 (16)0.72028 (18)0.0258 (5)
H20A0.76590.25000.76220.031*
C210.5685 (2)0.37423 (15)0.75657 (15)0.0195 (4)
C220.6019 (3)0.42551 (17)0.85727 (16)0.0260 (5)
H22A0.67230.36770.90530.031*
H22B0.49260.44170.90600.031*
C230.6922 (3)0.53785 (18)0.81866 (18)0.0333 (5)
H23A0.71390.56620.88690.050*
H23B0.62040.59690.77450.050*
H23C0.80010.52260.76980.050*
C240.2659 (3)0.42388 (17)0.52918 (17)0.0278 (5)
H24A0.30070.41570.44710.033*
H24B0.24140.50790.53180.033*
C250.1047 (3)0.36140 (18)0.57675 (19)0.0326 (5)
H25A0.01560.39410.52960.049*
H25B0.06700.37190.65700.049*
H25C0.12800.27810.57410.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0282 (3)0.0146 (2)0.0217 (3)0.0026 (2)0.0066 (2)0.00198 (18)
O10.0191 (7)0.0186 (6)0.0223 (7)0.0033 (5)0.0043 (6)0.0022 (5)
N10.0161 (8)0.0163 (8)0.0178 (8)0.0019 (6)0.0040 (7)0.0024 (6)
N20.0186 (9)0.0137 (8)0.0181 (8)0.0010 (6)0.0015 (7)0.0009 (6)
C10.0192 (10)0.0180 (9)0.0191 (10)0.0007 (8)0.0016 (8)0.0023 (7)
C20.0208 (11)0.0249 (10)0.0210 (10)0.0003 (8)0.0064 (8)0.0079 (8)
C30.0195 (11)0.0236 (10)0.0270 (11)0.0042 (8)0.0011 (8)0.0106 (8)
C40.0233 (11)0.0166 (9)0.0241 (10)0.0039 (8)0.0012 (8)0.0032 (8)
C50.0187 (10)0.0194 (9)0.0188 (9)0.0005 (8)0.0013 (8)0.0039 (7)
C60.0110 (9)0.0165 (9)0.0178 (9)0.0006 (7)0.0004 (7)0.0057 (7)
C70.0133 (9)0.0166 (9)0.0152 (9)0.0021 (7)0.0001 (7)0.0012 (7)
C80.0162 (10)0.0125 (8)0.0218 (10)0.0026 (7)0.0015 (8)0.0058 (7)
C90.0203 (10)0.0183 (9)0.0198 (10)0.0032 (8)0.0009 (8)0.0059 (7)
C100.0140 (10)0.0232 (10)0.0297 (11)0.0012 (8)0.0026 (8)0.0092 (8)
C110.0220 (11)0.0230 (10)0.0304 (11)0.0007 (8)0.0115 (9)0.0083 (8)
C120.0307 (12)0.0293 (11)0.0188 (10)0.0037 (9)0.0059 (9)0.0026 (8)
C130.0186 (11)0.0255 (10)0.0214 (10)0.0052 (8)0.0003 (8)0.0038 (8)
C140.0143 (10)0.0173 (9)0.0180 (9)0.0050 (7)0.0052 (8)0.0035 (7)
C150.0155 (10)0.0180 (9)0.0182 (9)0.0018 (7)0.0031 (8)0.0043 (7)
C160.0144 (10)0.0157 (9)0.0180 (9)0.0033 (7)0.0016 (7)0.0026 (7)
C170.0173 (10)0.0222 (10)0.0191 (10)0.0107 (8)0.0030 (8)0.0027 (8)
C180.0269 (12)0.0276 (11)0.0285 (11)0.0135 (9)0.0090 (9)0.0142 (9)
C190.0224 (12)0.0218 (10)0.0470 (13)0.0013 (9)0.0087 (10)0.0136 (9)
C200.0164 (10)0.0225 (10)0.0372 (12)0.0012 (8)0.0027 (9)0.0030 (9)
C210.0185 (10)0.0176 (9)0.0218 (10)0.0050 (8)0.0010 (8)0.0018 (8)
C220.0252 (11)0.0288 (11)0.0241 (10)0.0000 (9)0.0078 (9)0.0027 (8)
C230.0348 (13)0.0402 (12)0.0304 (12)0.0117 (10)0.0077 (10)0.0125 (10)
C240.0294 (12)0.0324 (11)0.0229 (10)0.0111 (9)0.0050 (9)0.0022 (9)
C250.0254 (12)0.0320 (11)0.0409 (13)0.0077 (9)0.0107 (10)0.0003 (10)
Geometric parameters (Å, º) top
S1—C151.6748 (17)C11—C121.384 (3)
O1—C141.225 (2)C11—H11A0.9500
N1—C141.377 (2)C12—C131.391 (3)
N1—C151.391 (2)C12—H12A0.9500
N1—H1N10.85 (2)C13—H13A0.9500
N2—C151.332 (2)C16—C171.396 (3)
N2—C161.439 (2)C16—C211.401 (3)
N2—H1N20.86 (2)C17—C181.393 (3)
C1—C21.391 (3)C17—C241.510 (3)
C1—C61.395 (2)C18—C191.383 (3)
C1—H1A0.9500C18—H18A0.9500
C2—C31.387 (3)C19—C201.383 (3)
C2—H2A0.9500C19—H19A0.9500
C3—C41.380 (3)C20—C211.391 (3)
C3—H3A0.9500C20—H20A0.9500
C4—C51.396 (3)C21—C221.510 (3)
C4—H4A0.9500C22—C231.527 (3)
C5—C61.387 (2)C22—H22A0.9900
C5—H5A0.9500C22—H22B0.9900
C6—C71.527 (2)C23—H23A0.9800
C7—C141.525 (2)C23—H23B0.9800
C7—C81.525 (2)C23—H23C0.9800
C7—H7A1.0000C24—C251.526 (3)
C8—C131.392 (2)C24—H24A0.9900
C8—C91.394 (2)C24—H24B0.9900
C9—C101.389 (3)C25—H25A0.9800
C9—H9A0.9500C25—H25B0.9800
C10—C111.376 (3)C25—H25C0.9800
C10—H10A0.9500
C14—N1—C15128.46 (15)O1—C14—N1122.87 (16)
C14—N1—H1N1115.8 (14)O1—C14—C7123.13 (15)
C15—N1—H1N1115.7 (14)N1—C14—C7113.98 (14)
C15—N2—C16124.03 (15)N2—C15—N1116.69 (15)
C15—N2—H1N2114.5 (14)N2—C15—S1124.24 (14)
C16—N2—H1N2121.5 (14)N1—C15—S1119.07 (13)
C2—C1—C6120.85 (16)C17—C16—C21122.22 (17)
C2—C1—H1A119.6C17—C16—N2118.95 (16)
C6—C1—H1A119.6C21—C16—N2118.77 (16)
C3—C2—C1119.62 (17)C18—C17—C16117.69 (18)
C3—C2—H2A120.2C18—C17—C24119.97 (17)
C1—C2—H2A120.2C16—C17—C24122.32 (17)
C4—C3—C2119.93 (17)C19—C18—C17121.23 (18)
C4—C3—H3A120.0C19—C18—H18A119.4
C2—C3—H3A120.0C17—C18—H18A119.4
C3—C4—C5120.51 (17)C20—C19—C18119.91 (18)
C3—C4—H4A119.7C20—C19—H19A120.0
C5—C4—H4A119.7C18—C19—H19A120.0
C6—C5—C4120.08 (17)C19—C20—C21121.10 (19)
C6—C5—H5A120.0C19—C20—H20A119.4
C4—C5—H5A120.0C21—C20—H20A119.4
C5—C6—C1118.98 (16)C20—C21—C16117.83 (17)
C5—C6—C7123.53 (16)C20—C21—C22120.08 (18)
C1—C6—C7117.46 (15)C16—C21—C22122.03 (16)
C14—C7—C8109.72 (14)C21—C22—C23112.66 (16)
C14—C7—C6109.54 (14)C21—C22—H22A109.1
C8—C7—C6116.82 (14)C23—C22—H22A109.1
C14—C7—H7A106.7C21—C22—H22B109.1
C8—C7—H7A106.7C23—C22—H22B109.1
C6—C7—H7A106.7H22A—C22—H22B107.8
C13—C8—C9118.51 (17)C22—C23—H23A109.5
C13—C8—C7123.51 (16)C22—C23—H23B109.5
C9—C8—C7117.97 (15)H23A—C23—H23B109.5
C10—C9—C8121.07 (17)C22—C23—H23C109.5
C10—C9—H9A119.5H23A—C23—H23C109.5
C8—C9—H9A119.5H23B—C23—H23C109.5
C11—C10—C9119.79 (17)C17—C24—C25112.69 (16)
C11—C10—H10A120.1C17—C24—H24A109.1
C9—C10—H10A120.1C25—C24—H24A109.1
C10—C11—C12120.03 (18)C17—C24—H24B109.1
C10—C11—H11A120.0C25—C24—H24B109.1
C12—C11—H11A120.0H24A—C24—H24B107.8
C11—C12—C13120.37 (18)C24—C25—H25A109.5
C11—C12—H12A119.8C24—C25—H25B109.5
C13—C12—H12A119.8H25A—C25—H25B109.5
C12—C13—C8120.23 (17)C24—C25—H25C109.5
C12—C13—H13A119.9H25A—C25—H25C109.5
C8—C13—H13A119.9H25B—C25—H25C109.5
C6—C1—C2—C30.1 (3)C6—C7—C14—O154.8 (2)
C1—C2—C3—C41.2 (3)C8—C7—C14—N1104.38 (17)
C2—C3—C4—C51.0 (3)C6—C7—C14—N1126.15 (16)
C3—C4—C5—C60.4 (3)C16—N2—C15—N1176.91 (16)
C4—C5—C6—C11.7 (3)C16—N2—C15—S13.3 (3)
C4—C5—C6—C7176.24 (16)C14—N1—C15—N23.8 (3)
C2—C1—C6—C51.6 (3)C14—N1—C15—S1176.01 (15)
C2—C1—C6—C7176.50 (16)C15—N2—C16—C17104.9 (2)
C5—C6—C7—C1496.32 (19)C15—N2—C16—C2177.9 (2)
C1—C6—C7—C1481.68 (18)C21—C16—C17—C180.7 (3)
C5—C6—C7—C829.2 (2)N2—C16—C17—C18177.83 (15)
C1—C6—C7—C8152.83 (16)C21—C16—C17—C24179.14 (16)
C14—C7—C8—C1349.6 (2)N2—C16—C17—C243.8 (2)
C6—C7—C8—C1375.8 (2)C16—C17—C18—C190.4 (3)
C14—C7—C8—C9129.11 (16)C24—C17—C18—C19177.99 (17)
C6—C7—C8—C9105.49 (18)C17—C18—C19—C200.8 (3)
C13—C8—C9—C100.5 (3)C18—C19—C20—C210.0 (3)
C7—C8—C9—C10179.22 (15)C19—C20—C21—C161.1 (3)
C8—C9—C10—C110.2 (3)C19—C20—C21—C22176.21 (17)
C9—C10—C11—C120.0 (3)C17—C16—C21—C201.5 (3)
C10—C11—C12—C130.2 (3)N2—C16—C21—C20178.60 (15)
C11—C12—C13—C80.5 (3)C17—C16—C21—C22175.75 (16)
C9—C8—C13—C120.6 (3)N2—C16—C21—C221.3 (2)
C7—C8—C13—C12179.27 (16)C20—C21—C22—C2399.3 (2)
C15—N1—C14—O12.0 (3)C16—C21—C22—C2377.9 (2)
C15—N1—C14—C7177.14 (16)C18—C17—C24—C2590.5 (2)
C8—C7—C14—O174.7 (2)C16—C17—C24—C2587.9 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O10.86 (2)1.96 (2)2.6702 (19)140 (2)
N1—H1N1···S1i0.85 (2)2.59 (2)3.4225 (16)167.4 (18)
C7—H7A···S1i1.002.643.6172 (17)165
C10—H10A···Cg1ii0.952.563.3859 (19)146
Symmetry codes: (i) x, y+1, z+2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC25H26N2OS
Mr402.54
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.0091 (1), 11.7289 (2), 11.8923 (2)
α, β, γ (°)79.008 (1), 80.628 (1), 83.936 (1)
V3)1078.79 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.41 × 0.17 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.934, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
20294, 3767, 3123
Rint0.037
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.087, 1.06
No. of reflections3767
No. of parameters272
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.25

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O10.86 (2)1.96 (2)2.6702 (19)140 (2)
N1—H1N1···S1i0.85 (2)2.59 (2)3.4225 (16)167.4 (18)
C7—H7A···S1i1.002.643.6172 (17)165
C10—H10A···Cg1ii0.952.563.3859 (19)146
Symmetry codes: (i) x, y+1, z+2; (ii) x1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: F-9119-2012.

§Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research University Grant No. 1001/PFIZIK/811151 to conduct this work. SA thanks the Malaysian Government and USM for an Academic Staff Training Scheme Fellowship (ASTS).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYusof, M. S. M., Arshad, S., Razak, I. A. & Rahman, A. A. (2012b). Acta Cryst. E68, o2670.  CSD CrossRef IUCr Journals Google Scholar
First citationYusof, M. S. M., Mutalib, S. F. A., Arshad, S. & Razak, I. A. (2012a). Acta Cryst. E68, o982.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds