organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Di­phenyl­phosphanyl-8-methyl-1,5-naphthyridine

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhuhjnjut@hotmail.com

(Received 8 May 2013; accepted 14 May 2013; online 18 May 2013)

In the title compound, C21H17N2P, the dihedral angles between the 1,5-naphthyridine ring system (r.m.s. deviation = 0.005 Å) and the phenyl rings are 89.18 (8) and 77.39 (8)°. The phenyl rings are almost perpendicular, making a dihedral angle of 88.12 (8)°. The only possible inter­molecular inter­action is a very weak aromatic ππ stacking inter­action [centroid–centroid separation = 3.898 (2) Å].

Related literature

For further synthetic details and background to the role of the title compound as an inter­mediate in the synthesis of OLED materials, see: Chen et al. (2012[Chen, C., Wang, K., Jiang, P., Song, G. & Zhu, H. (2012). Inorg. Chem. Commun. 17, 116-119.]).

[Scheme 1]

Experimental

Crystal data
  • C21H17N2P

  • Mr = 328.34

  • Triclinic, [P \overline 1]

  • a = 7.2320 (14) Å

  • b = 7.4470 (15) Å

  • c = 16.780 (3) Å

  • α = 99.78 (3)°

  • β = 93.35 (3)°

  • γ = 98.58 (3)°

  • V = 877.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.954, Tmax = 0.984

  • 3500 measured reflections

  • 3224 independent reflections

  • 2285 reflections with I > 2σ(I)

  • Rint = 0.023

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.155

  • S = 1.00

  • 3224 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The tittle compound, (I), is an intermediate for manufacturing OLED materials (Chen et al., 2012). We now report its crystal structure (Fig. 1).

The 1,5-naphthyridine ring system is nearly planar with an r.m.s. deviation of 0.005Å; its mean plane is oriented with respect to the two phenyl rings at 89.18 (8) and 77.39 (8)°. The two phenyl rings are twisted to each other with a dihedral angle of 88.12 (8)°. The crystal packing of the molecules in the crystal is influenced by van der Waals forces (Fig. 2).

Related literature top

For further synthetic details and background to the role of the title compound as an intermediate in the synthesis of OLED materials, see: Chen et al. (2012).

Experimental top

The title compund was synthesized according to the published procedure (Chen et al., 2012). Yellow blocks were obtained by dissolving it (0.5 g) in tetrahydrofuran (20 ml) and evaporating the solvent slowly at room temperature for about 5 d.

Refinement top

H atoms were positioned geometrically and refined as riding groups, with C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.2 for aromatic H, and x = 1.5 for other H.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I).
4-Diphenylphosphanyl-8-methyl-1,5-naphthyridine top
Crystal data top
C21H17N2PZ = 2
Mr = 328.34F(000) = 344
Triclinic, P1Dx = 1.243 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2320 (14) ÅCell parameters from 25 reflections
b = 7.4470 (15) Åθ = 10–14°
c = 16.780 (3) ŵ = 0.16 mm1
α = 99.78 (3)°T = 293 K
β = 93.35 (3)°Block, yellow
γ = 98.58 (3)°0.30 × 0.20 × 0.10 mm
V = 877.4 (3) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
2285 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 25.4°, θmin = 1.2°
ω/2θ scansh = 08
Absorption correction: ψ scan
(North et al., 1968)
k = 88
Tmin = 0.954, Tmax = 0.984l = 2020
3500 measured reflections3 standard reflections every 200 reflections
3224 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.096P)2]
where P = (Fo2 + 2Fc2)/3
3224 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C21H17N2Pγ = 98.58 (3)°
Mr = 328.34V = 877.4 (3) Å3
Triclinic, P1Z = 2
a = 7.2320 (14) ÅMo Kα radiation
b = 7.4470 (15) ŵ = 0.16 mm1
c = 16.780 (3) ÅT = 293 K
α = 99.78 (3)°0.30 × 0.20 × 0.10 mm
β = 93.35 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2285 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.023
Tmin = 0.954, Tmax = 0.9843 standard reflections every 200 reflections
3500 measured reflections intensity decay: 1%
3224 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.00Δρmax = 0.17 e Å3
3224 reflectionsΔρmin = 0.23 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P0.18105 (10)0.17196 (9)0.71974 (4)0.0529 (2)
N10.2284 (3)0.3164 (3)0.89550 (13)0.0603 (6)
C10.0068 (5)0.0965 (4)0.59708 (17)0.0711 (8)
H1B0.11160.06500.62230.085*
N20.2453 (3)0.1579 (3)0.92992 (13)0.0569 (6)
C20.0308 (6)0.2312 (5)0.5287 (2)0.0906 (11)
H2B0.15070.29170.50870.109*
C30.1213 (7)0.2762 (5)0.4901 (2)0.0976 (13)
H3A0.10480.36550.44320.117*
C40.2974 (6)0.1907 (5)0.5202 (2)0.0914 (11)
H4A0.40090.22300.49420.110*
C50.3227 (5)0.0553 (4)0.58980 (18)0.0734 (8)
H5A0.44330.00280.60980.088*
C60.1710 (4)0.0060 (3)0.62951 (15)0.0579 (7)
C70.4103 (3)0.3111 (3)0.71826 (14)0.0501 (6)
C80.5758 (4)0.2855 (4)0.75679 (17)0.0644 (7)
H8A0.57540.18890.78540.077*
C90.7416 (4)0.4013 (4)0.75339 (19)0.0757 (8)
H9A0.85160.38420.78060.091*
C100.7445 (5)0.5412 (4)0.7101 (2)0.0822 (10)
H10A0.85680.61810.70710.099*
C110.5835 (5)0.5682 (4)0.6713 (2)0.0844 (10)
H11A0.58590.66350.64190.101*
C120.4175 (4)0.4557 (3)0.67539 (17)0.0652 (7)
H12A0.30800.47640.64910.078*
C130.2210 (3)0.0390 (3)0.79998 (14)0.0476 (6)
C140.2313 (3)0.1306 (3)0.88168 (14)0.0468 (6)
C150.2393 (5)0.3962 (4)0.97172 (18)0.0744 (9)
H15A0.23790.52260.98270.089*
C160.2527 (4)0.3065 (4)1.03778 (18)0.0736 (8)
H16A0.26090.37361.09030.088*
C170.2539 (3)0.1222 (4)1.02590 (15)0.0557 (6)
C180.2437 (3)0.0284 (3)0.94493 (15)0.0478 (6)
C190.2366 (4)0.2382 (3)0.85361 (17)0.0638 (7)
H19A0.23890.36450.84260.077*
C200.2241 (4)0.1471 (3)0.78760 (16)0.0576 (6)
H20A0.21790.21330.73500.069*
C210.2657 (4)0.0179 (4)1.09549 (16)0.0724 (8)
H21A0.27180.10221.14600.109*
H21B0.37610.03941.09350.109*
H21C0.15650.07521.09110.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P0.0594 (4)0.0457 (4)0.0574 (4)0.0135 (3)0.0070 (3)0.0149 (3)
N10.0850 (16)0.0364 (11)0.0630 (14)0.0140 (10)0.0175 (12)0.0113 (10)
C10.086 (2)0.0568 (16)0.0678 (18)0.0071 (15)0.0020 (16)0.0218 (14)
N20.0624 (14)0.0436 (11)0.0676 (14)0.0070 (10)0.0070 (11)0.0191 (10)
C20.124 (3)0.066 (2)0.070 (2)0.022 (2)0.013 (2)0.0194 (17)
C30.166 (4)0.0558 (19)0.061 (2)0.009 (2)0.003 (2)0.0081 (15)
C40.136 (3)0.065 (2)0.077 (2)0.024 (2)0.029 (2)0.0121 (17)
C50.091 (2)0.0604 (17)0.0681 (18)0.0135 (15)0.0148 (16)0.0055 (14)
C60.0759 (18)0.0475 (14)0.0505 (14)0.0035 (13)0.0023 (13)0.0162 (11)
C70.0615 (15)0.0364 (12)0.0539 (14)0.0121 (11)0.0124 (12)0.0061 (10)
C80.0623 (17)0.0624 (17)0.0735 (18)0.0144 (14)0.0100 (14)0.0214 (14)
C90.0608 (18)0.087 (2)0.076 (2)0.0133 (16)0.0077 (15)0.0024 (17)
C100.082 (2)0.069 (2)0.088 (2)0.0125 (17)0.0211 (19)0.0113 (17)
C110.100 (3)0.0589 (18)0.096 (2)0.0019 (17)0.017 (2)0.0296 (17)
C120.0796 (19)0.0476 (14)0.0709 (18)0.0105 (14)0.0071 (14)0.0175 (13)
C130.0499 (14)0.0399 (12)0.0547 (14)0.0068 (10)0.0084 (11)0.0121 (10)
C140.0460 (13)0.0402 (12)0.0560 (14)0.0065 (10)0.0102 (11)0.0121 (10)
C150.113 (3)0.0438 (15)0.0681 (18)0.0187 (15)0.0194 (17)0.0057 (13)
C160.098 (2)0.0628 (18)0.0591 (17)0.0169 (16)0.0137 (16)0.0018 (14)
C170.0519 (15)0.0614 (16)0.0563 (15)0.0096 (12)0.0090 (12)0.0152 (12)
C180.0437 (13)0.0456 (13)0.0576 (14)0.0082 (10)0.0116 (11)0.0158 (11)
C190.082 (2)0.0361 (13)0.0733 (18)0.0077 (12)0.0043 (15)0.0130 (12)
C200.0713 (17)0.0409 (13)0.0591 (15)0.0070 (12)0.0045 (13)0.0072 (11)
C210.0725 (19)0.090 (2)0.0609 (17)0.0143 (16)0.0112 (14)0.0279 (15)
Geometric parameters (Å, º) top
P—C71.823 (3)C9—C101.367 (4)
P—C61.825 (3)C9—H9A0.9300
P—C131.836 (2)C10—C111.358 (5)
N1—C151.308 (3)C10—H10A0.9300
N1—C141.367 (3)C11—C121.369 (4)
C1—C21.374 (4)C11—H11A0.9300
C1—C61.392 (4)C12—H12A0.9300
C1—H1B0.9300C13—C201.370 (3)
N2—C191.312 (3)C13—C141.416 (3)
N2—C181.369 (3)C14—C181.413 (3)
C2—C31.364 (5)C15—C161.394 (4)
C2—H2B0.9300C15—H15A0.9300
C3—C41.362 (5)C16—C171.355 (4)
C3—H3A0.9300C16—H16A0.9300
C4—C51.391 (4)C17—C181.411 (3)
C4—H4A0.9300C17—C211.513 (3)
C5—C61.380 (4)C19—C201.399 (3)
C5—H5A0.9300C19—H19A0.9300
C7—C81.381 (4)C20—H20A0.9300
C7—C121.390 (3)C21—H21A0.9600
C8—C91.379 (4)C21—H21B0.9600
C8—H8A0.9300C21—H21C0.9600
C7—P—C6102.31 (12)C10—C11—H11A119.8
C7—P—C13102.97 (11)C12—C11—H11A119.8
C6—P—C13100.69 (11)C11—C12—C7121.0 (3)
C15—N1—C14115.8 (2)C11—C12—H12A119.5
C2—C1—C6121.5 (3)C7—C12—H12A119.5
C2—C1—H1B119.3C20—C13—C14116.6 (2)
C6—C1—H1B119.3C20—C13—P125.1 (2)
C19—N2—C18116.9 (2)C14—C13—P117.97 (16)
C3—C2—C1119.9 (3)N1—C14—C18122.9 (2)
C3—C2—H2B120.0N1—C14—C13117.7 (2)
C1—C2—H2B120.0C18—C14—C13119.5 (2)
C4—C3—C2120.2 (3)N1—C15—C16125.1 (2)
C4—C3—H3A119.9N1—C15—H15A117.4
C2—C3—H3A119.9C16—C15—H15A117.4
C3—C4—C5120.1 (4)C17—C16—C15120.3 (3)
C3—C4—H4A119.9C17—C16—H16A119.8
C5—C4—H4A119.9C15—C16—H16A119.8
C6—C5—C4120.8 (3)C16—C17—C18117.2 (2)
C6—C5—H5A119.6C16—C17—C21122.4 (3)
C4—C5—H5A119.6C18—C17—C21120.4 (2)
C5—C6—C1117.5 (3)N2—C18—C17119.3 (2)
C5—C6—P125.9 (2)N2—C18—C14122.1 (2)
C1—C6—P116.6 (2)C17—C18—C14118.6 (2)
C8—C7—C12117.7 (2)N2—C19—C20124.6 (2)
C8—C7—P125.38 (19)N2—C19—H19A117.7
C12—C7—P116.9 (2)C20—C19—H19A117.7
C9—C8—C7120.8 (3)C13—C20—C19120.4 (2)
C9—C8—H8A119.6C13—C20—H20A119.8
C7—C8—H8A119.6C19—C20—H20A119.8
C10—C9—C8120.1 (3)C17—C21—H21A109.5
C10—C9—H9A120.0C17—C21—H21B109.5
C8—C9—H9A120.0H21A—C21—H21B109.5
C11—C10—C9120.0 (3)C17—C21—H21C109.5
C11—C10—H10A120.0H21A—C21—H21C109.5
C9—C10—H10A120.0H21B—C21—H21C109.5
C10—C11—C12120.4 (3)
C6—C1—C2—C31.3 (5)C7—P—C13—C1476.6 (2)
C1—C2—C3—C41.4 (5)C6—P—C13—C14178.00 (19)
C2—C3—C4—C50.9 (5)C15—N1—C14—C180.5 (4)
C3—C4—C5—C60.3 (5)C15—N1—C14—C13179.6 (2)
C4—C5—C6—C10.2 (4)C20—C13—C14—N1180.0 (2)
C4—C5—C6—P178.5 (2)P—C13—C14—N16.0 (3)
C2—C1—C6—C50.7 (4)C20—C13—C14—C180.1 (3)
C2—C1—C6—P179.2 (2)P—C13—C14—C18173.91 (17)
C7—P—C6—C519.7 (3)C14—N1—C15—C160.2 (5)
C13—P—C6—C586.2 (2)N1—C15—C16—C170.5 (5)
C7—P—C6—C1158.59 (19)C15—C16—C17—C180.9 (4)
C13—P—C6—C195.5 (2)C15—C16—C17—C21179.2 (3)
C6—P—C7—C891.8 (2)C19—N2—C18—C17179.6 (2)
C13—P—C7—C812.4 (2)C19—N2—C18—C140.7 (3)
C6—P—C7—C1288.9 (2)C16—C17—C18—N2179.7 (2)
C13—P—C7—C12166.89 (19)C21—C17—C18—N20.2 (3)
C12—C7—C8—C90.7 (4)C16—C17—C18—C140.6 (4)
P—C7—C8—C9178.5 (2)C21—C17—C18—C14179.5 (2)
C7—C8—C9—C101.4 (4)N1—C14—C18—N2179.6 (2)
C8—C9—C10—C111.0 (5)C13—C14—C18—N20.3 (3)
C9—C10—C11—C120.0 (5)N1—C14—C18—C170.1 (4)
C10—C11—C12—C70.7 (5)C13—C14—C18—C17180.0 (2)
C8—C7—C12—C110.3 (4)C18—N2—C19—C200.7 (4)
P—C7—C12—C11179.6 (2)C14—C13—C20—C190.1 (4)
C7—P—C13—C20110.0 (2)P—C13—C20—C19173.4 (2)
C6—P—C13—C204.6 (3)N2—C19—C20—C130.3 (4)

Experimental details

Crystal data
Chemical formulaC21H17N2P
Mr328.34
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.2320 (14), 7.4470 (15), 16.780 (3)
α, β, γ (°)99.78 (3), 93.35 (3), 98.58 (3)
V3)877.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.954, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
3500, 3224, 2285
Rint0.023
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.155, 1.00
No. of reflections3224
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.23

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationChen, C., Wang, K., Jiang, P., Song, G. & Zhu, H. (2012). Inorg. Chem. Commun. 17, 116–119.  Web of Science CSD CrossRef CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds