organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6a-Nitro-6-phenyl-6,6a,6b,7,8,9,10,12a-octa­hydro­spiro­[chromeno[3,4-a]indol­izine-12,3′-indolin]-2′-one

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 18 May 2013; accepted 21 May 2013; online 31 May 2013)

In the title compound, C28H25N3O4, the central pyrrolidine ring adopts adopts an envelope conformation with the N atom as the flap and the piperidine ring adopts a chair conformation. The pendant pyrrolidine ring is almost planar (r.m.s. deviation = 0.008 Å). An intra­molecular C—H⋯O inter­action closes an S(6) ring. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R22(8) loops.

Related literature

For biological background to 4H-chromene derivatives, see: Cai (2008[Cai, S. X. (2008). Bioorg. Med. Chem. Lett. 18, 603-607.]); Valenti et al. (1993[Valenti, P., Da Re, P., Rampa, A., Montanari, P., Carrara, M. & Cima, L. (1993). Anticancer Drug. Des. 8, 349-360.]). For applications of indoline-2-one and its derivatives as precursors in the synthesis of pharmaceuticals, see: Colgan et al. (1996[Colgan, S. T., Haggan, G. R. & Reed, R. H. (1996). J. Pharm. Biomed. Anal. 14, 825-833.]).

[Scheme 1]

Experimental

Crystal data
  • C28H25N3O4

  • Mr = 467.51

  • Monoclinic, C 2/c

  • a = 23.2940 (13) Å

  • b = 11.2517 (7) Å

  • c = 19.7702 (10) Å

  • β = 112.659 (3)°

  • V = 4781.8 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.974, Tmax = 0.983

  • 20735 measured reflections

  • 5804 independent reflections

  • 3892 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.127

  • S = 1.00

  • 5804 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O4 0.98 2.50 3.1394 (18) 123
N3—H3A⋯O4i 0.86 1.97 2.8218 (17) 168
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

4H-Chromenes are biologically important compounds used in the drug-discovery process (e.g. Valenti et al., 1993; Cai, 2008). Indoline-2-one and its derivatives have been used as precursors to synthesis pharmaceuticals (Colgan et al., 1996). Continuing our interest in such compounds we have synthesized the title compound and report herein its crystal structure.

In the title compound, C28H25N3O4, (fig.1) the pyrrolidine ring adopts an envelope conformation and the piperidine ring adopts a chair conformation. The pyrrolidine ring (N2/C7/C8/C16/C21) makes a dihedral angle of 84.13 (9)° with the other pyrrolidine ring (N3/C21/C22/C27/C28) which shows that they are almost orthogonal to each other. The pyrrolidine ring makes a dihedral angle of 61.22 (8)° with the the pyran ring (O1/C1/C6-C9), it makes a dihedral angle of 4.00 (9)° with the piperidine ring (N2/C16-C20).

The other pyrrolidine ring (N3/C21/C22/C27/C28) makes a dihedral angle of 39.60 (9)° with the pyran ring, it makes a dihedral angle of 88.12 (9)° with the piperidine ring which shows that they are almost at right angles to each other. The dihedral angle between the pyran ring and the piperidine ring is 57.58 (9)° . The oxygen atom O4 attached with pyrrolidine ring deviates by -0.0736 (1)Å. The nitrogroup attached with the pyrrolidine ring makes a diherdal angle of 88.81 (2)° which shows it is in orthogonal orientation . The crystal packing features N—H···O hydrogen bonds and an intramolecular C—H···O hydrogen bond is also observed.

Related literature top

For biological background to 4H-chromene derivatives, see: Cai (2008); Valenti et al. (1993). For applications of indoline-2-one and its derivatives as precursors in the synthesis of pharmaceuticals, see: Colgan et al. (1996).

Experimental top

To a solution of isatin (1 equiv) and piperidine-2-carboxylic acid (1.4 equiv) in dry toluene, was added 3-nitro-2-phenyl-2H-chromene (1equiv) under nitrogen atmosphere. The reaction mixture was refluxed f or 24h in Dean-Stark apparatus to give the cycloadducts. After completion of the reaction as indicated by TLC, the solvent was evaporated under reduced pressure. The crude product was extracted with dichloromethane. The organic layer was dried with anhydrous sodium sulphate and concentrated in vacuo. Then the crude product was purified by column chromatography using hexane/EtOAc (7:3) as eluent. Colourless blocks were obtained by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

The hydrogen atoms were placed in calculated positions and treated as riding atoms: C—H = 0.93 Å to 0.97 Å, and N—H =0.86 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. An inversion dimer in the crystal of the title compound viewed down [100].
6a-Nitro-6-phenyl-6,6a,6b,7,8,9,10,12a-octahydrospiro[chromeno[3,4-a]indolizine-12,3'-indolin]-2'-one top
Crystal data top
C28H25N3O4F(000) = 1968
Mr = 467.51Dx = 1.299 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5804 reflections
a = 23.2940 (13) Åθ = 1.9–28.3°
b = 11.2517 (7) ŵ = 0.09 mm1
c = 19.7702 (10) ÅT = 293 K
β = 112.659 (3)°Block, colourless
V = 4781.8 (5) Å30.30 × 0.25 × 0.20 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD
diffractometer
5804 independent reflections
Radiation source: fine-focus sealed tube3892 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω and ϕ scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 3027
Tmin = 0.974, Tmax = 0.983k = 1414
20735 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0505P)2 + 2.441P]
where P = (Fo2 + 2Fc2)/3
5804 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C28H25N3O4V = 4781.8 (5) Å3
Mr = 467.51Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.2940 (13) ŵ = 0.09 mm1
b = 11.2517 (7) ÅT = 293 K
c = 19.7702 (10) Å0.30 × 0.25 × 0.20 mm
β = 112.659 (3)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
5804 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3892 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.983Rint = 0.048
20735 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.00Δρmax = 0.22 e Å3
5804 reflectionsΔρmin = 0.22 e Å3
316 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.85609 (7)0.07457 (14)0.50076 (8)0.0424 (4)
C20.86024 (10)0.05264 (18)0.43391 (10)0.0608 (5)
H20.83760.09850.39320.073*
C30.89794 (11)0.0370 (2)0.42802 (12)0.0740 (6)
H30.89980.05360.38280.089*
C40.93302 (11)0.1027 (2)0.48873 (12)0.0725 (6)
H40.95920.16240.48480.087*
C50.92917 (8)0.07964 (16)0.55536 (10)0.0530 (4)
H50.95310.12370.59630.064*
C60.89013 (7)0.00828 (13)0.56210 (8)0.0384 (3)
C70.88197 (6)0.02739 (12)0.63324 (7)0.0333 (3)
H70.92320.02620.67310.040*
C80.85040 (7)0.14626 (12)0.63696 (7)0.0337 (3)
C90.83905 (7)0.23119 (13)0.57169 (8)0.0383 (3)
H90.80510.28430.56990.046*
C100.89189 (7)0.30987 (14)0.57303 (8)0.0399 (4)
C110.95412 (8)0.27872 (16)0.60526 (10)0.0514 (4)
H110.96520.20470.62740.062*
C120.99985 (9)0.35599 (18)0.60498 (10)0.0592 (5)
H121.04150.33430.62710.071*
C130.98385 (11)0.46543 (19)0.57194 (10)0.0629 (5)
H131.01470.51780.57180.075*
C140.92229 (11)0.49735 (17)0.53910 (11)0.0660 (6)
H140.91150.57110.51650.079*
C150.87660 (9)0.42018 (15)0.53967 (9)0.0505 (4)
H150.83500.44230.51740.061*
C160.78884 (7)0.11043 (13)0.64328 (8)0.0364 (3)
H160.75810.09470.59380.044*
C170.75963 (8)0.19292 (15)0.68128 (10)0.0490 (4)
H17A0.78920.21040.73040.059*
H17B0.74810.26710.65440.059*
C180.70199 (9)0.13326 (17)0.68491 (11)0.0585 (5)
H18A0.67150.12040.63570.070*
H18B0.68360.18460.71050.070*
C190.71962 (9)0.01512 (18)0.72468 (12)0.0624 (5)
H19A0.68250.02400.72480.075*
H19B0.74740.02880.77520.075*
C200.75132 (8)0.06411 (15)0.68767 (11)0.0535 (4)
H20A0.72210.08500.63900.064*
H20B0.76500.13690.71560.064*
C210.84106 (6)0.07028 (12)0.64953 (7)0.0335 (3)
C220.87723 (7)0.17155 (12)0.69677 (8)0.0339 (3)
C230.92160 (7)0.17261 (14)0.76717 (8)0.0420 (4)
H230.93410.10230.79350.050*
C240.94731 (8)0.28065 (15)0.79802 (9)0.0476 (4)
H240.97720.28290.84560.057*
C250.92886 (8)0.38464 (15)0.75866 (9)0.0460 (4)
H250.94690.45610.78010.055*
C260.88421 (7)0.38502 (14)0.68819 (9)0.0422 (4)
H260.87160.45540.66190.051*
C270.85910 (7)0.27729 (13)0.65836 (8)0.0359 (3)
C280.79893 (7)0.13765 (13)0.57914 (8)0.0372 (3)
N10.88825 (6)0.21232 (12)0.70783 (7)0.0411 (3)
N20.80488 (6)0.00268 (11)0.68254 (7)0.0375 (3)
N30.81272 (6)0.25411 (11)0.58899 (7)0.0435 (3)
H3A0.79530.30790.55670.052*
O10.81579 (5)0.16138 (10)0.50491 (5)0.0439 (3)
O20.92442 (6)0.15660 (11)0.75982 (6)0.0606 (4)
O30.87676 (6)0.31771 (10)0.70992 (6)0.0546 (3)
O40.75833 (5)0.09239 (9)0.52555 (6)0.0476 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0445 (9)0.0376 (9)0.0414 (8)0.0021 (7)0.0124 (7)0.0040 (7)
C20.0756 (13)0.0620 (12)0.0431 (9)0.0079 (10)0.0209 (9)0.0001 (9)
C30.1009 (17)0.0740 (14)0.0602 (12)0.0132 (13)0.0456 (12)0.0058 (11)
C40.0894 (15)0.0648 (14)0.0804 (14)0.0232 (12)0.0516 (13)0.0011 (11)
C50.0565 (11)0.0469 (10)0.0600 (10)0.0152 (8)0.0272 (9)0.0037 (8)
C60.0386 (8)0.0327 (8)0.0425 (8)0.0006 (6)0.0141 (7)0.0027 (6)
C70.0309 (7)0.0269 (7)0.0351 (7)0.0028 (6)0.0050 (6)0.0011 (6)
C80.0346 (7)0.0267 (7)0.0340 (7)0.0007 (6)0.0067 (6)0.0034 (6)
C90.0416 (8)0.0291 (7)0.0381 (8)0.0055 (6)0.0085 (7)0.0004 (6)
C100.0484 (9)0.0334 (8)0.0350 (7)0.0005 (7)0.0130 (7)0.0001 (6)
C110.0492 (10)0.0438 (10)0.0557 (10)0.0023 (8)0.0142 (8)0.0056 (8)
C120.0548 (11)0.0661 (13)0.0552 (10)0.0120 (10)0.0195 (9)0.0024 (9)
C130.0809 (14)0.0625 (13)0.0500 (10)0.0290 (11)0.0305 (10)0.0065 (9)
C140.1004 (17)0.0413 (10)0.0585 (11)0.0087 (11)0.0328 (12)0.0093 (9)
C150.0646 (11)0.0389 (9)0.0447 (9)0.0042 (8)0.0175 (8)0.0054 (7)
C160.0354 (8)0.0300 (8)0.0397 (8)0.0029 (6)0.0101 (6)0.0021 (6)
C170.0516 (10)0.0371 (9)0.0606 (10)0.0074 (8)0.0241 (9)0.0033 (8)
C180.0541 (11)0.0533 (11)0.0776 (13)0.0084 (9)0.0360 (10)0.0040 (10)
C190.0634 (12)0.0560 (12)0.0832 (13)0.0019 (10)0.0452 (11)0.0041 (10)
C200.0532 (10)0.0387 (10)0.0753 (12)0.0009 (8)0.0319 (9)0.0037 (8)
C210.0341 (7)0.0262 (7)0.0345 (7)0.0002 (6)0.0068 (6)0.0029 (6)
C220.0345 (7)0.0273 (7)0.0379 (7)0.0009 (6)0.0117 (6)0.0001 (6)
C230.0423 (9)0.0351 (8)0.0399 (8)0.0034 (7)0.0063 (7)0.0011 (6)
C240.0427 (9)0.0447 (10)0.0441 (9)0.0005 (8)0.0041 (7)0.0085 (7)
C250.0460 (9)0.0358 (9)0.0540 (9)0.0071 (7)0.0167 (8)0.0114 (7)
C260.0504 (9)0.0266 (8)0.0491 (9)0.0019 (7)0.0186 (8)0.0004 (6)
C270.0371 (8)0.0299 (8)0.0377 (7)0.0014 (6)0.0110 (6)0.0011 (6)
C280.0361 (8)0.0306 (8)0.0394 (8)0.0009 (6)0.0085 (6)0.0033 (6)
N10.0458 (7)0.0324 (7)0.0415 (7)0.0043 (6)0.0126 (6)0.0043 (5)
N20.0387 (7)0.0285 (6)0.0452 (7)0.0016 (5)0.0159 (6)0.0010 (5)
N30.0499 (8)0.0264 (7)0.0408 (7)0.0003 (6)0.0026 (6)0.0066 (5)
O10.0446 (6)0.0399 (6)0.0360 (5)0.0074 (5)0.0030 (5)0.0022 (4)
O20.0669 (8)0.0510 (7)0.0413 (6)0.0021 (6)0.0040 (6)0.0037 (6)
O30.0733 (8)0.0299 (6)0.0580 (7)0.0041 (6)0.0225 (6)0.0117 (5)
O40.0451 (6)0.0350 (6)0.0431 (6)0.0030 (5)0.0045 (5)0.0032 (5)
Geometric parameters (Å, º) top
C1—O11.3790 (19)C16—C171.511 (2)
C1—C61.384 (2)C16—H160.9800
C1—C21.384 (2)C17—C181.527 (2)
C2—C31.372 (3)C17—H17A0.9700
C2—H20.9300C17—H17B0.9700
C3—C41.378 (3)C18—C191.518 (3)
C3—H30.9300C18—H18A0.9700
C4—C51.379 (3)C18—H18B0.9700
C4—H40.9300C19—C201.514 (3)
C5—C61.385 (2)C19—H19A0.9700
C5—H50.9300C19—H19B0.9700
C6—C71.505 (2)C20—N21.464 (2)
C7—C81.5417 (19)C20—H20A0.9700
C7—C211.567 (2)C20—H20B0.9700
C7—H70.9800C21—N21.4624 (18)
C8—N11.5301 (18)C21—C221.5080 (19)
C8—C161.540 (2)C21—C281.5563 (19)
C8—C91.544 (2)C22—C231.377 (2)
C9—O11.4499 (17)C22—C271.387 (2)
C9—C101.508 (2)C23—C241.388 (2)
C9—H90.9800C23—H230.9300
C10—C111.385 (2)C24—C251.379 (2)
C10—C151.386 (2)C24—H240.9300
C11—C121.377 (2)C25—C261.381 (2)
C11—H110.9300C25—H250.9300
C12—C131.376 (3)C26—C271.376 (2)
C12—H120.9300C26—H260.9300
C13—C141.375 (3)C27—N31.4050 (19)
C13—H130.9300C28—O41.2264 (17)
C14—C151.377 (3)C28—N31.3454 (19)
C14—H140.9300N1—O31.2199 (17)
C15—H150.9300N1—O21.2216 (17)
C16—N21.4623 (18)N3—H3A0.8600
O1—C1—C6120.19 (14)C16—C17—H17A109.9
O1—C1—C2118.86 (15)C18—C17—H17A109.9
C6—C1—C2120.91 (16)C16—C17—H17B109.9
C3—C2—C1119.64 (18)C18—C17—H17B109.9
C3—C2—H2120.2H17A—C17—H17B108.3
C1—C2—H2120.2C19—C18—C17109.99 (15)
C2—C3—C4120.33 (18)C19—C18—H18A109.7
C2—C3—H3119.8C17—C18—H18A109.7
C4—C3—H3119.8C19—C18—H18B109.7
C3—C4—C5119.73 (18)C17—C18—H18B109.7
C3—C4—H4120.1H18A—C18—H18B108.2
C5—C4—H4120.1C20—C19—C18110.49 (15)
C4—C5—C6120.89 (17)C20—C19—H19A109.6
C4—C5—H5119.6C18—C19—H19A109.6
C6—C5—H5119.6C20—C19—H19B109.6
C1—C6—C5118.47 (15)C18—C19—H19B109.6
C1—C6—C7120.39 (13)H19A—C19—H19B108.1
C5—C6—C7121.06 (14)N2—C20—C19110.06 (14)
C6—C7—C8113.75 (12)N2—C20—H20A109.6
C6—C7—C21113.41 (11)C19—C20—H20A109.6
C8—C7—C21105.04 (11)N2—C20—H20B109.6
C6—C7—H7108.1C19—C20—H20B109.6
C8—C7—H7108.1H20A—C20—H20B108.2
C21—C7—H7108.1N2—C21—C22113.40 (12)
N1—C8—C16106.20 (11)N2—C21—C28112.27 (11)
N1—C8—C7110.35 (11)C22—C21—C28101.25 (11)
C16—C8—C7104.66 (11)N2—C21—C7103.15 (11)
N1—C8—C9108.50 (11)C22—C21—C7114.73 (11)
C16—C8—C9111.39 (12)C28—C21—C7112.45 (11)
C7—C8—C9115.35 (12)C23—C22—C27119.84 (13)
O1—C9—C10110.48 (12)C23—C22—C21130.92 (13)
O1—C9—C8108.02 (11)C27—C22—C21109.24 (12)
C10—C9—C8118.21 (12)C22—C23—C24118.71 (14)
O1—C9—H9106.5C22—C23—H23120.6
C10—C9—H9106.5C24—C23—H23120.6
C8—C9—H9106.5C25—C24—C23120.47 (14)
C11—C10—C15118.49 (16)C25—C24—H24119.8
C11—C10—C9124.19 (14)C23—C24—H24119.8
C15—C10—C9117.32 (15)C24—C25—C26121.47 (15)
C12—C11—C10120.83 (17)C24—C25—H25119.3
C12—C11—H11119.6C26—C25—H25119.3
C10—C11—H11119.6C27—C26—C25117.41 (14)
C13—C12—C11119.90 (19)C27—C26—H26121.3
C13—C12—H12120.0C25—C26—H26121.3
C11—C12—H12120.0C26—C27—C22122.11 (14)
C14—C13—C12120.03 (18)C26—C27—N3128.46 (14)
C14—C13—H13120.0C22—C27—N3109.43 (12)
C12—C13—H13120.0O4—C28—N3126.24 (14)
C13—C14—C15120.03 (18)O4—C28—C21125.52 (13)
C13—C14—H14120.0N3—C28—C21108.16 (12)
C15—C14—H14120.0O3—N1—O2124.03 (13)
C14—C15—C10120.72 (18)O3—N1—C8116.53 (12)
C14—C15—H15119.6O2—N1—C8119.25 (12)
C10—C15—H15119.6C16—N2—C21106.81 (11)
N2—C16—C17110.04 (13)C16—N2—C20113.42 (12)
N2—C16—C8102.43 (11)C21—N2—C20116.01 (12)
C17—C16—C8119.42 (13)C28—N3—C27111.91 (12)
N2—C16—H16108.1C28—N3—H3A124.0
C17—C16—H16108.1C27—N3—H3A124.0
C8—C16—H16108.1C1—O1—C9114.45 (11)
C16—C17—C18109.01 (14)
O1—C1—C2—C3177.03 (18)C8—C7—C21—C22140.86 (12)
C6—C1—C2—C30.9 (3)C6—C7—C21—C2820.67 (16)
C1—C2—C3—C42.0 (3)C8—C7—C21—C28104.13 (13)
C2—C3—C4—C51.3 (4)N2—C21—C22—C2357.8 (2)
C3—C4—C5—C60.5 (3)C28—C21—C22—C23178.28 (16)
O1—C1—C6—C5178.74 (14)C7—C21—C22—C2360.4 (2)
C2—C1—C6—C50.9 (3)N2—C21—C22—C27121.55 (13)
O1—C1—C6—C72.0 (2)C28—C21—C22—C271.08 (15)
C2—C1—C6—C7175.85 (16)C7—C21—C22—C27120.27 (13)
C4—C5—C6—C11.5 (3)C27—C22—C23—C240.1 (2)
C4—C5—C6—C7175.15 (18)C21—C22—C23—C24179.42 (15)
C1—C6—C7—C817.7 (2)C22—C23—C24—C250.3 (3)
C5—C6—C7—C8165.71 (14)C23—C24—C25—C260.6 (3)
C1—C6—C7—C21102.30 (16)C24—C25—C26—C270.5 (2)
C5—C6—C7—C2174.33 (18)C25—C26—C27—C220.1 (2)
C6—C7—C8—N1129.79 (13)C25—C26—C27—N3178.80 (15)
C21—C7—C8—N1105.62 (12)C23—C22—C27—C260.2 (2)
C6—C7—C8—C16116.34 (13)C21—C22—C27—C26179.63 (14)
C21—C7—C8—C168.25 (13)C23—C22—C27—N3178.70 (14)
C6—C7—C8—C96.41 (17)C21—C22—C27—N30.74 (17)
C21—C7—C8—C9131.00 (12)N2—C21—C28—O454.7 (2)
N1—C8—C9—O1167.40 (11)C22—C21—C28—O4175.92 (15)
C16—C8—C9—O176.04 (14)C7—C21—C28—O461.14 (19)
C7—C8—C9—O143.05 (16)N2—C21—C28—N3122.35 (14)
N1—C8—C9—C1041.10 (17)C22—C21—C28—N31.08 (16)
C16—C8—C9—C10157.65 (13)C7—C21—C28—N3121.86 (14)
C7—C8—C9—C1083.25 (16)C16—C8—N1—O383.56 (15)
O1—C9—C10—C1193.16 (18)C7—C8—N1—O3163.55 (13)
C8—C9—C10—C1131.9 (2)C9—C8—N1—O336.28 (17)
O1—C9—C10—C1586.82 (16)C16—C8—N1—O291.57 (15)
C8—C9—C10—C15148.08 (14)C7—C8—N1—O221.31 (19)
C15—C10—C11—C120.8 (3)C9—C8—N1—O2148.59 (14)
C9—C10—C11—C12179.26 (16)C17—C16—N2—C21171.62 (12)
C10—C11—C12—C130.4 (3)C8—C16—N2—C2143.60 (13)
C11—C12—C13—C140.2 (3)C17—C16—N2—C2059.32 (17)
C12—C13—C14—C150.4 (3)C8—C16—N2—C20172.66 (12)
C13—C14—C15—C100.1 (3)C22—C21—N2—C16162.76 (11)
C11—C10—C15—C140.5 (2)C28—C21—N2—C1683.23 (14)
C9—C10—C15—C14179.52 (16)C7—C21—N2—C1638.06 (13)
N1—C8—C16—N286.17 (12)C22—C21—N2—C2069.69 (16)
C7—C8—C16—N230.59 (13)C28—C21—N2—C2044.32 (17)
C9—C8—C16—N2155.88 (11)C7—C21—N2—C20165.61 (12)
N1—C8—C16—C1735.65 (17)C19—C20—N2—C1657.37 (19)
C7—C8—C16—C17152.41 (13)C19—C20—N2—C21178.43 (14)
C9—C8—C16—C1782.30 (16)O4—C28—N3—C27176.25 (15)
N2—C16—C17—C1858.08 (17)C21—C28—N3—C270.72 (18)
C8—C16—C17—C18176.04 (14)C26—C27—N3—C28178.79 (16)
C16—C17—C18—C1957.7 (2)C22—C27—N3—C280.01 (18)
C17—C18—C19—C2056.6 (2)C6—C1—O1—C940.2 (2)
C18—C19—C20—N255.2 (2)C2—C1—O1—C9141.90 (16)
C6—C7—C21—N2141.84 (12)C10—C9—O1—C169.57 (16)
C8—C7—C21—N217.04 (13)C8—C9—O1—C161.14 (16)
C6—C7—C21—C2294.34 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O40.982.503.1394 (18)123
N3—H3A···O4i0.861.972.8218 (17)168
Symmetry code: (i) x+3/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC28H25N3O4
Mr467.51
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)23.2940 (13), 11.2517 (7), 19.7702 (10)
β (°) 112.659 (3)
V3)4781.8 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.974, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
20735, 5804, 3892
Rint0.048
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.127, 1.00
No. of reflections5804
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.22

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O40.982.503.1394 (18)123
N3—H3A···O4i0.861.972.8218 (17)168
Symmetry code: (i) x+3/2, y+1/2, z+1.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. SK,TS and DV acknowledge the UGC (SAP–CAS) for the departmental facilties. SK thanks DST PURSE for a Junior Research fellowship and TS thanks DST Inspire for a fellowship.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, S. X. (2008). Bioorg. Med. Chem. Lett. 18, 603-607.  Web of Science PubMed Google Scholar
First citationColgan, S. T., Haggan, G. R. & Reed, R. H. (1996). J. Pharm. Biomed. Anal. 14, 825–833.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValenti, P., Da Re, P., Rampa, A., Montanari, P., Carrara, M. & Cima, L. (1993). Anticancer Drug. Des. 8, 349–360.  CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds