organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Rupatadine

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cCR & D, Cadila Pharmaceuticals Ltd, 1389, Trasad Road, Dholka, Ahmedabad 387 810, Gujarat, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 21 May 2013; accepted 22 May 2013; online 31 May 2013)

In the title compound (systematic name: 8-chloro-11-{1-[(5-methyl­pyridin-3-yl)meth­yl]piperidin-4-yl­idene}-6,11-di­hydro-5H-benzo[5,6]cyclo­hepta­[1,2-b]pyridine), C26H26ClN3, the dihedral angle between the mean planes of the chloro­phenyl and cyclo­hepta­[1,2-b]pyridinyl rings fused to the cyclo­heptane ring is 56.6 (1)°. The mean planes of the cyclo­hepta­[1,2-b]pyridinyl and 5-methyl­pyridin-3-yl rings are twisted by 64.9 (4)°. The central piperizene group is in a slightly distorted chair configuration. A weak intra­molecular C—H⋯N inter­action is observed between the cyclo­hepta­[1,2-b]pyridinyl and piperidin-4-yl­idene moieties.

Related literature

For the pharmacological importance of rupatadine, see: Kean & Plosker (2007[Kean, S. J. & Plosker, G. L. (2007). Drugs, 67, 457-474.]); Merlos et al. (1997[Merlos, M., Giral, M., Balsa, D., Ferrando, R., Queralt, M., Puigdemont, A., Garcia-Rafanell, J. & Forn, J. (1997). J. Pharmacol. Exp. Ther. 280, 114-121.]); Mullol et al. (2008[Mullol, J., Bousquet, J., Bachert, C., Canonica, W. G., Gimenez-Arnau, A., Kowalski, M. L., Martí-Guadaño, E., Maurer, M., Picado, C., Scadding, G. & Van Cauwenberge, P. (2008). Allergy, 63, 5-28.]); Picado (2006[Picado, C. (2006). Expert Opin. Pharmacother. 7, 1989-2001.]). For the reported synthesis methodology of rupatadine, see: Agarwal et al. (2008[Agarwal, R., Bhirud, S. B., Bijukumar, G. & Khude, G. D. (2008). Synth. Commun. 38, 122-127.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C26H26ClN3

  • Mr = 415.95

  • Monoclinic, P 21 /n

  • a = 10.2655 (3) Å

  • b = 11.3341 (4) Å

  • c = 18.8111 (6) Å

  • β = 90.874 (3)°

  • V = 2188.43 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.67 mm−1

  • T = 173 K

  • 0.42 × 0.38 × 0.22 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.673, Tmax = 1.000

  • 13849 measured reflections

  • 4281 independent reflections

  • 3565 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.122

  • S = 1.05

  • 4281 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19B⋯N1 0.99 2.60 3.229 (2) 121

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Rupatadine (IUPAC Name: 8-Chloro-6,11-dihydro-11-[1-[(5-methyl-3- pyridinyl) methyl]-4-piperidinylidene]-5H-benzo[5,6]cyclohepta[1,2-b] pyridine) is a non-sedating antihistamine showing a rapid onset of action and a good safety profile even in prolonged treatment periods of a year (Picado, 2006; Mullol et al., 2008). A review of its use in the management of allergic disorders is published (Kean & Plosker, 2007). Rupatadine has shown as inhibition deregulation, induced by the immunological and non-immunological stimulants and the inhibition of release of cytokines, particularly the tumor necrosis factor alpha (TNF-alpha) in human mastocytes and monocytes (Picado, 2006). In vitro metabolism studies indicate that rupatadine is metabolized mainly by the cytochrome P-450 in liver (Merlos et al., 1997). In view of the importance of the title compound, (I), C26H26ClN3, we have synthesized rupatadine free base based on a reported method (Agarwal et al., 2008) and its single crystal structure is reported herin.

In (I), the dihedral angle between the mean planes of the chlorophenyl and cyclohepta[1,2-b]pyridinyl rings fused to the cycloheptane ring is 56.6 (1)° (Fig. 1). The mean planes of the cyclohepta[1,2-b]pyridinyl and 5-methyl-3-pyridinyl rings are twisted by 64.9 (4)°. The central 6-membered piperizene group adopts a slightly distorted chair configuration with puckering parameters Q, θ and ϕ of 0.5613 (16)Å, 3.31 (16)°, and 348 (3)°, respectively. A weak C—H···O intramolecular interaction is observed between the cyclohepta[1,2-b]pyridinyl and 4-piperidinylidene moieties. In the crystal, the molecules pack in a normal head-to tail dimer-like arrangement (Fig. 2).

Related literature top

For the pharmacological importance of rupatadine, see: Kean & Plosker (2007); Merlos et al. (1997); Mullol et al. (2008); Picado (2006). For the reported synthesis methodology of rupatadine, see: Agarwal et al. (2008). For standard bond lengths, see: Allen et al. (1987).

Experimental top

4-methyl-3-chloromethyl pyridine hydrochloride (3.5 g, 0.02 mol), desloratadine (6.2 g, 0.02 mol), potassium carbonate (6.9 g, 0.05 mol) was charged into acetonitrile (30 ml) Fig. 3). The reaction mass was heated to 313–318 K and stirred for 10-12 h (Agarwal et al., 2008). The reaction mass was cooled to 298–303 K and the inorganic material filtered. The solvent was removed under reduced pressure. Toluene (40 ml) was added to residue and heated to 328-333 K to get a clear solution. The toluene layer was washed with a saturated sodium chloride solution (40 ml) and water (25 ml). Half the quantity of toluene was distilled out under vacuum and single crystals were grown from toluene using the slow evaporation technique (m. p.: 409–410 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH), 0.99Å (CH2) or 0.98Å (CH3). Idealised Me was refined as a rotating group: C26(H26A,H26B,H26C). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2) or 1.5 (CH3 times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the b axis.
[Figure 3] Fig. 3. Reaction scheme for the synthesis of rupatadine free base.
8-Chloro-11-{1-[(5-methylpyridin-3-yl)methyl]piperidin-4-ylidene}-6,11-dihydro-5H-benzo[5,6]cyclohepta[1,2-b]pyridine top
Crystal data top
C26H26ClN3F(000) = 880
Mr = 415.95Dx = 1.262 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.5418 Å
a = 10.2655 (3) ÅCell parameters from 4864 reflections
b = 11.3341 (4) Åθ = 3.9–72.2°
c = 18.8111 (6) ŵ = 1.67 mm1
β = 90.874 (3)°T = 173 K
V = 2188.43 (11) Å3Irregular, clear orangish orange
Z = 40.42 × 0.38 × 0.22 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
4281 independent reflections
Radiation source: Enhance (Cu) X-ray Source3565 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 16.0416 pixels mm-1θmax = 72.4°, θmin = 4.6°
ω scansh = 1112
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
k = 813
Tmin = 0.673, Tmax = 1.000l = 2123
13849 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0616P)2 + 0.3876P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.122(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.22 e Å3
4281 reflectionsΔρmin = 0.29 e Å3
273 parametersExtinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0043 (3)
Primary atom site location: structure-invariant direct methods
Crystal data top
C26H26ClN3V = 2188.43 (11) Å3
Mr = 415.95Z = 4
Monoclinic, P21/nCu Kα radiation
a = 10.2655 (3) ŵ = 1.67 mm1
b = 11.3341 (4) ÅT = 173 K
c = 18.8111 (6) Å0.42 × 0.38 × 0.22 mm
β = 90.874 (3)°
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
4281 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
3565 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 1.000Rint = 0.026
13849 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.05Δρmax = 0.22 e Å3
4281 reflectionsΔρmin = 0.29 e Å3
273 parameters
Special details top

Experimental. (HPLC purity 99.75 %) FT IR (KBr) : 1350.2, 1475.6, 1583.6; 1H NMR (300 MHz, DMSO d6) δ 2.072 (s, 1H), 2.127-2.164 (m, 3H), 2.247 (s, 3H), 2.264-2.320 (m, 2H), 2.545-2.580 (m, 2H), 2.725-2.827 (m, 2H), 3.217-3.324 (m, 2H), 3.406 (s, 2H), 7.011-7.038 (d, 1H), 7.124-7.193 (m, 2H), 7.242-7.248 (d, 1H), 7.474-7.537 (m, 2H), 8.250-8.313 (dd, 3H); MS m/z (EI): 416 (M + 1).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.21448 (5)0.23499 (6)0.09566 (3)0.0826 (2)
N10.76596 (13)0.40249 (13)0.35326 (7)0.0484 (3)
N20.98891 (11)0.58991 (11)0.10639 (6)0.0391 (3)
N31.29611 (17)0.88557 (15)0.14524 (10)0.0684 (5)
C10.69993 (14)0.44001 (13)0.23053 (7)0.0386 (3)
C20.69596 (14)0.46981 (14)0.30801 (8)0.0399 (3)
C30.61966 (15)0.56496 (14)0.32955 (8)0.0443 (4)
C40.54486 (17)0.63427 (15)0.27422 (9)0.0509 (4)
H4A0.60380.65500.23500.061*
H4B0.51370.70870.29560.061*
C50.42840 (16)0.56586 (15)0.24409 (9)0.0487 (4)
H5A0.36930.54880.28390.058*
H5B0.38080.61870.21080.058*
C60.45366 (15)0.45093 (14)0.20564 (8)0.0425 (3)
C70.57478 (14)0.39337 (14)0.19947 (7)0.0394 (3)
C80.76056 (19)0.43009 (18)0.42245 (9)0.0576 (5)
H80.81010.38380.45520.069*
C90.6876 (2)0.52139 (19)0.44884 (9)0.0626 (5)
H90.68630.53730.49840.075*
C100.61619 (18)0.58930 (16)0.40146 (9)0.0558 (4)
H100.56470.65280.41830.067*
C110.34414 (16)0.39908 (17)0.17349 (9)0.0519 (4)
H110.26200.43710.17670.062*
C120.35305 (16)0.29398 (17)0.13731 (9)0.0531 (4)
C130.46934 (18)0.23397 (16)0.13272 (9)0.0525 (4)
H130.47440.16040.10870.063*
C140.57883 (16)0.28467 (15)0.16437 (8)0.0456 (4)
H140.65960.24400.16210.055*
C150.80824 (14)0.45528 (14)0.19264 (8)0.0401 (3)
C160.81702 (16)0.43718 (15)0.11334 (8)0.0468 (4)
H16A0.73020.41540.09380.056*
H16B0.87780.37160.10350.056*
C170.86446 (14)0.54878 (15)0.07714 (8)0.0446 (4)
H17A0.87380.53330.02570.053*
H17B0.79840.61160.08260.053*
C180.97594 (15)0.61314 (15)0.18277 (8)0.0445 (4)
H18A0.91080.67640.18970.053*
H18B1.06040.64120.20240.053*
C190.93417 (14)0.50352 (15)0.22298 (8)0.0440 (4)
H19A1.00300.44260.21990.053*
H19B0.92270.52330.27380.053*
C201.02633 (15)0.69742 (15)0.06862 (8)0.0462 (4)
H20A0.96310.76060.07950.055*
H20B1.02150.68230.01680.055*
C211.16119 (15)0.73962 (13)0.08791 (8)0.0412 (3)
C221.17979 (18)0.84145 (16)0.12707 (10)0.0566 (4)
H221.10460.88290.14210.068*
C231.39933 (18)0.82602 (18)0.12289 (10)0.0604 (5)
H231.48310.85630.13500.072*
C241.39372 (16)0.72266 (16)0.08313 (9)0.0485 (4)
C251.27098 (15)0.67932 (15)0.06625 (8)0.0432 (3)
H251.26210.60830.03980.052*
C261.51532 (18)0.6591 (2)0.06151 (12)0.0698 (6)
H26A1.50560.57450.07090.105*
H26B1.58990.68970.08890.105*
H26C1.52970.67150.01070.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0574 (3)0.1179 (5)0.0722 (3)0.0312 (3)0.0097 (2)0.0091 (3)
N10.0462 (7)0.0604 (8)0.0386 (7)0.0055 (6)0.0025 (5)0.0016 (6)
N20.0342 (6)0.0489 (7)0.0344 (6)0.0019 (5)0.0044 (5)0.0008 (5)
N30.0712 (11)0.0625 (10)0.0716 (11)0.0165 (8)0.0050 (8)0.0175 (8)
C10.0391 (7)0.0420 (8)0.0349 (7)0.0004 (6)0.0034 (6)0.0015 (6)
C20.0383 (7)0.0460 (8)0.0356 (7)0.0052 (6)0.0056 (6)0.0020 (6)
C30.0457 (8)0.0445 (8)0.0430 (8)0.0044 (7)0.0067 (6)0.0008 (7)
C40.0605 (10)0.0402 (8)0.0523 (9)0.0026 (7)0.0079 (7)0.0035 (7)
C50.0476 (9)0.0516 (9)0.0469 (9)0.0087 (7)0.0051 (7)0.0107 (7)
C60.0408 (8)0.0505 (9)0.0364 (7)0.0010 (6)0.0049 (6)0.0099 (6)
C70.0396 (7)0.0459 (8)0.0330 (7)0.0040 (6)0.0050 (6)0.0063 (6)
C80.0623 (11)0.0736 (12)0.0367 (8)0.0052 (9)0.0012 (7)0.0043 (8)
C90.0730 (12)0.0789 (13)0.0362 (8)0.0016 (10)0.0048 (8)0.0107 (8)
C100.0629 (11)0.0555 (10)0.0493 (9)0.0025 (8)0.0084 (8)0.0122 (8)
C110.0392 (8)0.0706 (11)0.0459 (9)0.0030 (7)0.0033 (7)0.0087 (8)
C120.0449 (9)0.0717 (12)0.0427 (8)0.0173 (8)0.0017 (7)0.0056 (8)
C130.0598 (10)0.0542 (10)0.0435 (9)0.0123 (8)0.0018 (7)0.0012 (7)
C140.0449 (8)0.0495 (9)0.0426 (8)0.0014 (7)0.0037 (6)0.0019 (7)
C150.0386 (7)0.0457 (8)0.0360 (7)0.0022 (6)0.0034 (6)0.0008 (6)
C160.0451 (8)0.0584 (10)0.0370 (8)0.0105 (7)0.0075 (6)0.0078 (7)
C170.0387 (8)0.0608 (10)0.0343 (7)0.0050 (7)0.0030 (6)0.0020 (7)
C180.0418 (8)0.0552 (9)0.0364 (7)0.0072 (7)0.0024 (6)0.0051 (7)
C190.0394 (8)0.0564 (9)0.0364 (7)0.0036 (7)0.0023 (6)0.0012 (7)
C200.0411 (8)0.0540 (9)0.0436 (8)0.0003 (7)0.0021 (6)0.0062 (7)
C210.0443 (8)0.0447 (8)0.0348 (7)0.0038 (6)0.0048 (6)0.0052 (6)
C220.0586 (10)0.0550 (10)0.0563 (10)0.0035 (8)0.0110 (8)0.0088 (8)
C230.0531 (10)0.0690 (12)0.0589 (10)0.0227 (9)0.0024 (8)0.0007 (9)
C240.0437 (8)0.0598 (10)0.0420 (8)0.0050 (7)0.0037 (6)0.0096 (7)
C250.0470 (8)0.0472 (8)0.0356 (7)0.0027 (7)0.0021 (6)0.0007 (6)
C260.0456 (10)0.0882 (15)0.0758 (13)0.0045 (10)0.0078 (9)0.0121 (11)
Geometric parameters (Å, º) top
Cl1—C121.7465 (17)C12—C131.378 (3)
N1—C21.343 (2)C13—H130.9500
N1—C81.340 (2)C13—C141.388 (2)
N2—C171.4597 (18)C14—H140.9500
N2—C181.4688 (18)C15—C161.510 (2)
N2—C201.465 (2)C15—C191.508 (2)
N3—C221.334 (2)C16—H16A0.9900
N3—C231.330 (3)C16—H16B0.9900
C1—C21.4973 (19)C16—C171.520 (2)
C1—C71.499 (2)C17—H17A0.9900
C1—C151.341 (2)C17—H17B0.9900
C2—C31.397 (2)C18—H18A0.9900
C3—C41.505 (2)C18—H18B0.9900
C3—C101.382 (2)C18—C191.520 (2)
C4—H4A0.9900C19—H19A0.9900
C4—H4B0.9900C19—H19B0.9900
C4—C51.527 (2)C20—H20A0.9900
C5—H5A0.9900C20—H20B0.9900
C5—H5B0.9900C20—C211.504 (2)
C5—C61.514 (2)C21—C221.381 (2)
C6—C71.411 (2)C21—C251.385 (2)
C6—C111.398 (2)C22—H220.9500
C7—C141.399 (2)C23—H230.9500
C8—H80.9500C23—C241.391 (3)
C8—C91.375 (3)C24—C251.385 (2)
C9—H90.9500C24—C261.503 (2)
C9—C101.380 (3)C25—H250.9500
C10—H100.9500C26—H26A0.9800
C11—H110.9500C26—H26B0.9800
C11—C121.376 (3)C26—H26C0.9800
C8—N1—C2116.94 (15)C1—C15—C19123.97 (13)
C17—N2—C18109.52 (11)C19—C15—C16111.07 (12)
C17—N2—C20108.51 (12)C15—C16—H16A109.5
C20—N2—C18110.72 (12)C15—C16—H16B109.5
C23—N3—C22116.29 (16)C15—C16—C17110.72 (13)
C2—C1—C7115.02 (12)H16A—C16—H16B108.1
C15—C1—C2121.55 (13)C17—C16—H16A109.5
C15—C1—C7123.42 (13)C17—C16—H16B109.5
N1—C2—C1117.81 (13)N2—C17—C16112.43 (13)
N1—C2—C3123.49 (14)N2—C17—H17A109.1
C3—C2—C1118.70 (14)N2—C17—H17B109.1
C2—C3—C4119.01 (14)C16—C17—H17A109.1
C10—C3—C2117.46 (15)C16—C17—H17B109.1
C10—C3—C4123.53 (15)H17A—C17—H17B107.9
C3—C4—H4A109.1N2—C18—H18A109.3
C3—C4—H4B109.1N2—C18—H18B109.3
C3—C4—C5112.33 (13)N2—C18—C19111.77 (13)
H4A—C4—H4B107.9H18A—C18—H18B107.9
C5—C4—H4A109.1C19—C18—H18A109.3
C5—C4—H4B109.1C19—C18—H18B109.3
C4—C5—H5A107.7C15—C19—C18110.78 (13)
C4—C5—H5B107.7C15—C19—H19A109.5
H5A—C5—H5B107.1C15—C19—H19B109.5
C6—C5—C4118.39 (13)C18—C19—H19A109.5
C6—C5—H5A107.7C18—C19—H19B109.5
C6—C5—H5B107.7H19A—C19—H19B108.1
C7—C6—C5126.49 (14)N2—C20—H20A108.9
C11—C6—C5115.21 (14)N2—C20—H20B108.9
C11—C6—C7118.30 (15)N2—C20—C21113.25 (12)
C6—C7—C1123.78 (14)H20A—C20—H20B107.7
C14—C7—C1117.58 (13)C21—C20—H20A108.9
C14—C7—C6118.61 (14)C21—C20—H20B108.9
N1—C8—H8118.1C22—C21—C20120.91 (15)
N1—C8—C9123.86 (17)C22—C21—C25117.57 (15)
C9—C8—H8118.1C25—C21—C20121.50 (14)
C8—C9—H9120.9N3—C22—C21124.46 (17)
C8—C9—C10118.27 (16)N3—C22—H22117.8
C10—C9—H9120.9C21—C22—H22117.8
C3—C10—H10120.0N3—C23—H23117.6
C9—C10—C3119.98 (17)N3—C23—C24124.82 (16)
C9—C10—H10120.0C24—C23—H23117.6
C6—C11—H11119.4C23—C24—C26121.46 (17)
C12—C11—C6121.26 (16)C25—C24—C23116.89 (16)
C12—C11—H11119.4C25—C24—C26121.63 (17)
C11—C12—Cl1119.57 (14)C21—C25—C24119.96 (15)
C11—C12—C13121.51 (15)C21—C25—H25120.0
C13—C12—Cl1118.91 (15)C24—C25—H25120.0
C12—C13—H13121.1C24—C26—H26A109.5
C12—C13—C14117.74 (17)C24—C26—H26B109.5
C14—C13—H13121.1C24—C26—H26C109.5
C7—C14—H14118.8H26A—C26—H26B109.5
C13—C14—C7122.50 (16)H26A—C26—H26C109.5
C13—C14—H14118.8H26B—C26—H26C109.5
C1—C15—C16124.75 (14)
Cl1—C12—C13—C14177.98 (13)C7—C1—C15—C165.0 (2)
N1—C2—C3—C4179.86 (14)C7—C1—C15—C19179.20 (14)
N1—C2—C3—C100.6 (2)C7—C6—C11—C120.7 (2)
N1—C8—C9—C100.4 (3)C8—N1—C2—C1179.61 (14)
N2—C18—C19—C1556.69 (17)C8—N1—C2—C30.0 (2)
N2—C20—C21—C22109.94 (17)C8—C9—C10—C30.2 (3)
N2—C20—C21—C2571.12 (18)C10—C3—C4—C5106.83 (19)
N3—C23—C24—C250.3 (3)C11—C6—C7—C1179.20 (13)
N3—C23—C24—C26178.44 (19)C11—C6—C7—C142.9 (2)
C1—C2—C3—C40.3 (2)C11—C12—C13—C141.7 (3)
C1—C2—C3—C10179.00 (14)C12—C13—C14—C70.6 (2)
C1—C7—C14—C13179.02 (14)C15—C1—C2—N168.7 (2)
C1—C15—C16—C17122.92 (17)C15—C1—C2—C3111.71 (17)
C1—C15—C19—C18122.30 (16)C15—C1—C7—C6126.93 (17)
C2—N1—C8—C90.5 (3)C15—C1—C7—C1455.1 (2)
C2—C1—C7—C652.68 (19)C15—C16—C17—N255.82 (17)
C2—C1—C7—C14125.27 (15)C16—C15—C19—C1852.61 (17)
C2—C1—C15—C16174.60 (14)C17—N2—C18—C1959.11 (16)
C2—C1—C15—C190.4 (2)C17—N2—C20—C21172.79 (13)
C2—C3—C4—C572.40 (19)C18—N2—C17—C1658.83 (17)
C2—C3—C10—C90.7 (3)C18—N2—C20—C2166.99 (16)
C3—C4—C5—C661.48 (19)C19—C15—C16—C1751.94 (18)
C4—C3—C10—C9179.93 (17)C20—N2—C17—C16179.79 (13)
C4—C5—C6—C75.9 (2)C20—N2—C18—C19178.72 (12)
C4—C5—C6—C11173.99 (14)C20—C21—C22—N3178.84 (17)
C5—C6—C7—C10.7 (2)C20—C21—C25—C24178.02 (14)
C5—C6—C7—C14177.28 (14)C22—N3—C23—C240.5 (3)
C5—C6—C11—C12179.44 (14)C22—C21—C25—C241.0 (2)
C6—C7—C14—C132.9 (2)C23—N3—C22—C210.6 (3)
C6—C11—C12—Cl1178.00 (12)C23—C24—C25—C211.0 (2)
C6—C11—C12—C131.6 (3)C25—C21—C22—N30.1 (3)
C7—C1—C2—N1111.69 (16)C26—C24—C25—C21179.15 (15)
C7—C1—C2—C367.92 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19B···N10.992.603.229 (2)121

Experimental details

Crystal data
Chemical formulaC26H26ClN3
Mr415.95
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)10.2655 (3), 11.3341 (4), 18.8111 (6)
β (°) 90.874 (3)
V3)2188.43 (11)
Z4
Radiation typeCu Kα
µ (mm1)1.67
Crystal size (mm)0.42 × 0.38 × 0.22
Data collection
DiffractometerAgilent Xcalibur (Eos, Gemini)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
Tmin, Tmax0.673, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13849, 4281, 3565
Rint0.026
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.122, 1.05
No. of reflections4281
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.29

Computer programs: CrysAlis PRO (Agilent, 2012), CrysAlis RED (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2012 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19B···N10.992.603.229 (2)121.3
 

Acknowledgements

HSY thanks the UOM for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgarwal, R., Bhirud, S. B., Bijukumar, G. & Khude, G. D. (2008). Synth. Commun. 38, 122–127.  Web of Science CrossRef CAS Google Scholar
First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKean, S. J. & Plosker, G. L. (2007). Drugs, 67, 457–474.  Web of Science PubMed Google Scholar
First citationMerlos, M., Giral, M., Balsa, D., Ferrando, R., Queralt, M., Puigdemont, A., Garcia-Rafanell, J. & Forn, J. (1997). J. Pharmacol. Exp. Ther. 280, 114–121.  CAS PubMed Web of Science Google Scholar
First citationMullol, J., Bousquet, J., Bachert, C., Canonica, W. G., Gimenez-Arnau, A., Kowalski, M. L., Martí-Guadaño, E., Maurer, M., Picado, C., Scadding, G. & Van Cauwenberge, P. (2008). Allergy, 63, 5–28.  Web of Science CrossRef PubMed Google Scholar
First citationPicado, C. (2006). Expert Opin. Pharmacother. 7, 1989–2001.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds