organic compounds
Rupatadine
aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cCR & D, Cadila Pharmaceuticals Ltd, 1389, Trasad Road, Dholka, Ahmedabad 387 810, Gujarat, India
*Correspondence e-mail: jjasinski@keene.edu
In the title compound (systematic name: 8-chloro-11-{1-[(5-methylpyridin-3-yl)methyl]piperidin-4-ylidene}-6,11-dihydro-5H-benzo[5,6]cyclohepta[1,2-b]pyridine), C26H26ClN3, the dihedral angle between the mean planes of the chlorophenyl and cyclohepta[1,2-b]pyridinyl rings fused to the cycloheptane ring is 56.6 (1)°. The mean planes of the cyclohepta[1,2-b]pyridinyl and 5-methylpyridin-3-yl rings are twisted by 64.9 (4)°. The central piperizene group is in a slightly distorted chair configuration. A weak intramolecular C—H⋯N interaction is observed between the cyclohepta[1,2-b]pyridinyl and piperidin-4-ylidene moieties.
Related literature
For the pharmacological importance of rupatadine, see: Kean & Plosker (2007); Merlos et al. (1997); Mullol et al. (2008); Picado (2006). For the reported synthesis methodology of rupatadine, see: Agarwal et al. (2008). For standard bond lengths, see: Allen et al. (1987).
Experimental
Crystal data
|
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
10.1107/S1600536813014256/hg5317sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813014256/hg5317Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813014256/hg5317Isup3.cml
4-methyl-3-chloromethyl pyridine hydrochloride (3.5 g, 0.02 mol), desloratadine (6.2 g, 0.02 mol), potassium carbonate (6.9 g, 0.05 mol) was charged into acetonitrile (30 ml) Fig. 3). The reaction mass was heated to 313–318 K and stirred for 10-12 h (Agarwal et al., 2008). The reaction mass was cooled to 298–303 K and the inorganic material filtered. The solvent was removed under reduced pressure. Toluene (40 ml) was added to residue and heated to 328-333 K to get a clear solution. The toluene layer was washed with a saturated sodium chloride solution (40 ml) and water (25 ml). Half the quantity of toluene was distilled out under vacuum and single crystals were grown from toluene using the slow evaporation technique (m. p.: 409–410 K).
All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH), 0.99Å (CH2) or 0.98Å (CH3). Idealised Me was refined as a rotating group: C26(H26A,H26B,H26C). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2) or 1.5 (CH3 times Ueq of the parent atom.
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C26H26ClN3 | F(000) = 880 |
Mr = 415.95 | Dx = 1.262 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.5418 Å |
a = 10.2655 (3) Å | Cell parameters from 4864 reflections |
b = 11.3341 (4) Å | θ = 3.9–72.2° |
c = 18.8111 (6) Å | µ = 1.67 mm−1 |
β = 90.874 (3)° | T = 173 K |
V = 2188.43 (11) Å3 | Irregular, clear orangish orange |
Z = 4 | 0.42 × 0.38 × 0.22 mm |
Agilent Xcalibur (Eos, Gemini) diffractometer | 4281 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 3565 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
Detector resolution: 16.0416 pixels mm-1 | θmax = 72.4°, θmin = 4.6° |
ω scans | h = −11→12 |
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) | k = −8→13 |
Tmin = 0.673, Tmax = 1.000 | l = −21→23 |
13849 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.041 | w = 1/[σ2(Fo2) + (0.0616P)2 + 0.3876P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.122 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.22 e Å−3 |
4281 reflections | Δρmin = −0.29 e Å−3 |
273 parameters | Extinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0043 (3) |
Primary atom site location: structure-invariant direct methods |
C26H26ClN3 | V = 2188.43 (11) Å3 |
Mr = 415.95 | Z = 4 |
Monoclinic, P21/n | Cu Kα radiation |
a = 10.2655 (3) Å | µ = 1.67 mm−1 |
b = 11.3341 (4) Å | T = 173 K |
c = 18.8111 (6) Å | 0.42 × 0.38 × 0.22 mm |
β = 90.874 (3)° |
Agilent Xcalibur (Eos, Gemini) diffractometer | 4281 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) | 3565 reflections with I > 2σ(I) |
Tmin = 0.673, Tmax = 1.000 | Rint = 0.026 |
13849 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.122 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.22 e Å−3 |
4281 reflections | Δρmin = −0.29 e Å−3 |
273 parameters |
Experimental. (HPLC purity 99.75 %) FT IR (KBr) : 1350.2, 1475.6, 1583.6; 1H NMR (300 MHz, DMSO d6) δ 2.072 (s, 1H), 2.127-2.164 (m, 3H), 2.247 (s, 3H), 2.264-2.320 (m, 2H), 2.545-2.580 (m, 2H), 2.725-2.827 (m, 2H), 3.217-3.324 (m, 2H), 3.406 (s, 2H), 7.011-7.038 (d, 1H), 7.124-7.193 (m, 2H), 7.242-7.248 (d, 1H), 7.474-7.537 (m, 2H), 8.250-8.313 (dd, 3H); MS m/z (EI): 416 (M + 1). |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.21448 (5) | 0.23499 (6) | 0.09566 (3) | 0.0826 (2) | |
N1 | 0.76596 (13) | 0.40249 (13) | 0.35326 (7) | 0.0484 (3) | |
N2 | 0.98891 (11) | 0.58991 (11) | 0.10639 (6) | 0.0391 (3) | |
N3 | 1.29611 (17) | 0.88557 (15) | 0.14524 (10) | 0.0684 (5) | |
C1 | 0.69993 (14) | 0.44001 (13) | 0.23053 (7) | 0.0386 (3) | |
C2 | 0.69596 (14) | 0.46981 (14) | 0.30801 (8) | 0.0399 (3) | |
C3 | 0.61966 (15) | 0.56496 (14) | 0.32955 (8) | 0.0443 (4) | |
C4 | 0.54486 (17) | 0.63427 (15) | 0.27422 (9) | 0.0509 (4) | |
H4A | 0.6038 | 0.6550 | 0.2350 | 0.061* | |
H4B | 0.5137 | 0.7087 | 0.2956 | 0.061* | |
C5 | 0.42840 (16) | 0.56586 (15) | 0.24409 (9) | 0.0487 (4) | |
H5A | 0.3693 | 0.5488 | 0.2839 | 0.058* | |
H5B | 0.3808 | 0.6187 | 0.2108 | 0.058* | |
C6 | 0.45366 (15) | 0.45093 (14) | 0.20564 (8) | 0.0425 (3) | |
C7 | 0.57478 (14) | 0.39337 (14) | 0.19947 (7) | 0.0394 (3) | |
C8 | 0.76056 (19) | 0.43009 (18) | 0.42245 (9) | 0.0576 (5) | |
H8 | 0.8101 | 0.3838 | 0.4552 | 0.069* | |
C9 | 0.6876 (2) | 0.52139 (19) | 0.44884 (9) | 0.0626 (5) | |
H9 | 0.6863 | 0.5373 | 0.4984 | 0.075* | |
C10 | 0.61619 (18) | 0.58930 (16) | 0.40146 (9) | 0.0558 (4) | |
H10 | 0.5647 | 0.6528 | 0.4183 | 0.067* | |
C11 | 0.34414 (16) | 0.39908 (17) | 0.17349 (9) | 0.0519 (4) | |
H11 | 0.2620 | 0.4371 | 0.1767 | 0.062* | |
C12 | 0.35305 (16) | 0.29398 (17) | 0.13731 (9) | 0.0531 (4) | |
C13 | 0.46934 (18) | 0.23397 (16) | 0.13272 (9) | 0.0525 (4) | |
H13 | 0.4744 | 0.1604 | 0.1087 | 0.063* | |
C14 | 0.57883 (16) | 0.28467 (15) | 0.16437 (8) | 0.0456 (4) | |
H14 | 0.6596 | 0.2440 | 0.1621 | 0.055* | |
C15 | 0.80824 (14) | 0.45528 (14) | 0.19264 (8) | 0.0401 (3) | |
C16 | 0.81702 (16) | 0.43718 (15) | 0.11334 (8) | 0.0468 (4) | |
H16A | 0.7302 | 0.4154 | 0.0938 | 0.056* | |
H16B | 0.8778 | 0.3716 | 0.1035 | 0.056* | |
C17 | 0.86446 (14) | 0.54878 (15) | 0.07714 (8) | 0.0446 (4) | |
H17A | 0.8738 | 0.5333 | 0.0257 | 0.053* | |
H17B | 0.7984 | 0.6116 | 0.0826 | 0.053* | |
C18 | 0.97594 (15) | 0.61314 (15) | 0.18277 (8) | 0.0445 (4) | |
H18A | 0.9108 | 0.6764 | 0.1897 | 0.053* | |
H18B | 1.0604 | 0.6412 | 0.2024 | 0.053* | |
C19 | 0.93417 (14) | 0.50352 (15) | 0.22298 (8) | 0.0440 (4) | |
H19A | 1.0030 | 0.4426 | 0.2199 | 0.053* | |
H19B | 0.9227 | 0.5233 | 0.2738 | 0.053* | |
C20 | 1.02633 (15) | 0.69742 (15) | 0.06862 (8) | 0.0462 (4) | |
H20A | 0.9631 | 0.7606 | 0.0795 | 0.055* | |
H20B | 1.0215 | 0.6823 | 0.0168 | 0.055* | |
C21 | 1.16119 (15) | 0.73962 (13) | 0.08791 (8) | 0.0412 (3) | |
C22 | 1.17979 (18) | 0.84145 (16) | 0.12707 (10) | 0.0566 (4) | |
H22 | 1.1046 | 0.8829 | 0.1421 | 0.068* | |
C23 | 1.39933 (18) | 0.82602 (18) | 0.12289 (10) | 0.0604 (5) | |
H23 | 1.4831 | 0.8563 | 0.1350 | 0.072* | |
C24 | 1.39372 (16) | 0.72266 (16) | 0.08313 (9) | 0.0485 (4) | |
C25 | 1.27098 (15) | 0.67932 (15) | 0.06625 (8) | 0.0432 (3) | |
H25 | 1.2621 | 0.6083 | 0.0398 | 0.052* | |
C26 | 1.51532 (18) | 0.6591 (2) | 0.06151 (12) | 0.0698 (6) | |
H26A | 1.5056 | 0.5745 | 0.0709 | 0.105* | |
H26B | 1.5899 | 0.6897 | 0.0889 | 0.105* | |
H26C | 1.5297 | 0.6715 | 0.0107 | 0.105* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0574 (3) | 0.1179 (5) | 0.0722 (3) | −0.0312 (3) | −0.0097 (2) | −0.0091 (3) |
N1 | 0.0462 (7) | 0.0604 (8) | 0.0386 (7) | 0.0055 (6) | 0.0025 (5) | 0.0016 (6) |
N2 | 0.0342 (6) | 0.0489 (7) | 0.0344 (6) | −0.0019 (5) | 0.0044 (5) | −0.0008 (5) |
N3 | 0.0712 (11) | 0.0625 (10) | 0.0716 (11) | −0.0165 (8) | 0.0050 (8) | −0.0175 (8) |
C1 | 0.0391 (7) | 0.0420 (8) | 0.0349 (7) | −0.0004 (6) | 0.0034 (6) | 0.0015 (6) |
C2 | 0.0383 (7) | 0.0460 (8) | 0.0356 (7) | −0.0052 (6) | 0.0056 (6) | 0.0020 (6) |
C3 | 0.0457 (8) | 0.0445 (8) | 0.0430 (8) | −0.0044 (7) | 0.0067 (6) | −0.0008 (7) |
C4 | 0.0605 (10) | 0.0402 (8) | 0.0523 (9) | 0.0026 (7) | 0.0079 (7) | 0.0035 (7) |
C5 | 0.0476 (9) | 0.0516 (9) | 0.0469 (9) | 0.0087 (7) | 0.0051 (7) | 0.0107 (7) |
C6 | 0.0408 (8) | 0.0505 (9) | 0.0364 (7) | −0.0010 (6) | 0.0049 (6) | 0.0099 (6) |
C7 | 0.0396 (7) | 0.0459 (8) | 0.0330 (7) | −0.0040 (6) | 0.0050 (6) | 0.0063 (6) |
C8 | 0.0623 (11) | 0.0736 (12) | 0.0367 (8) | 0.0052 (9) | −0.0012 (7) | 0.0043 (8) |
C9 | 0.0730 (12) | 0.0789 (13) | 0.0362 (8) | 0.0016 (10) | 0.0048 (8) | −0.0107 (8) |
C10 | 0.0629 (11) | 0.0555 (10) | 0.0493 (9) | 0.0025 (8) | 0.0084 (8) | −0.0122 (8) |
C11 | 0.0392 (8) | 0.0706 (11) | 0.0459 (9) | −0.0030 (7) | 0.0033 (7) | 0.0087 (8) |
C12 | 0.0449 (9) | 0.0717 (12) | 0.0427 (8) | −0.0173 (8) | −0.0017 (7) | 0.0056 (8) |
C13 | 0.0598 (10) | 0.0542 (10) | 0.0435 (9) | −0.0123 (8) | 0.0018 (7) | −0.0012 (7) |
C14 | 0.0449 (8) | 0.0495 (9) | 0.0426 (8) | −0.0014 (7) | 0.0037 (6) | 0.0019 (7) |
C15 | 0.0386 (7) | 0.0457 (8) | 0.0360 (7) | −0.0022 (6) | 0.0034 (6) | −0.0008 (6) |
C16 | 0.0451 (8) | 0.0584 (10) | 0.0370 (8) | −0.0105 (7) | 0.0075 (6) | −0.0078 (7) |
C17 | 0.0387 (8) | 0.0608 (10) | 0.0343 (7) | −0.0050 (7) | 0.0030 (6) | −0.0020 (7) |
C18 | 0.0418 (8) | 0.0552 (9) | 0.0364 (7) | −0.0072 (7) | 0.0024 (6) | −0.0051 (7) |
C19 | 0.0394 (8) | 0.0564 (9) | 0.0364 (7) | −0.0036 (7) | 0.0023 (6) | 0.0012 (7) |
C20 | 0.0411 (8) | 0.0540 (9) | 0.0436 (8) | −0.0003 (7) | 0.0021 (6) | 0.0062 (7) |
C21 | 0.0443 (8) | 0.0447 (8) | 0.0348 (7) | −0.0038 (6) | 0.0048 (6) | 0.0052 (6) |
C22 | 0.0586 (10) | 0.0550 (10) | 0.0563 (10) | −0.0035 (8) | 0.0110 (8) | −0.0088 (8) |
C23 | 0.0531 (10) | 0.0690 (12) | 0.0589 (10) | −0.0227 (9) | −0.0024 (8) | 0.0007 (9) |
C24 | 0.0437 (8) | 0.0598 (10) | 0.0420 (8) | −0.0050 (7) | 0.0037 (6) | 0.0096 (7) |
C25 | 0.0470 (8) | 0.0472 (8) | 0.0356 (7) | −0.0027 (7) | 0.0021 (6) | 0.0007 (6) |
C26 | 0.0456 (10) | 0.0882 (15) | 0.0758 (13) | 0.0045 (10) | 0.0078 (9) | 0.0121 (11) |
Cl1—C12 | 1.7465 (17) | C12—C13 | 1.378 (3) |
N1—C2 | 1.343 (2) | C13—H13 | 0.9500 |
N1—C8 | 1.340 (2) | C13—C14 | 1.388 (2) |
N2—C17 | 1.4597 (18) | C14—H14 | 0.9500 |
N2—C18 | 1.4688 (18) | C15—C16 | 1.510 (2) |
N2—C20 | 1.465 (2) | C15—C19 | 1.508 (2) |
N3—C22 | 1.334 (2) | C16—H16A | 0.9900 |
N3—C23 | 1.330 (3) | C16—H16B | 0.9900 |
C1—C2 | 1.4973 (19) | C16—C17 | 1.520 (2) |
C1—C7 | 1.499 (2) | C17—H17A | 0.9900 |
C1—C15 | 1.341 (2) | C17—H17B | 0.9900 |
C2—C3 | 1.397 (2) | C18—H18A | 0.9900 |
C3—C4 | 1.505 (2) | C18—H18B | 0.9900 |
C3—C10 | 1.382 (2) | C18—C19 | 1.520 (2) |
C4—H4A | 0.9900 | C19—H19A | 0.9900 |
C4—H4B | 0.9900 | C19—H19B | 0.9900 |
C4—C5 | 1.527 (2) | C20—H20A | 0.9900 |
C5—H5A | 0.9900 | C20—H20B | 0.9900 |
C5—H5B | 0.9900 | C20—C21 | 1.504 (2) |
C5—C6 | 1.514 (2) | C21—C22 | 1.381 (2) |
C6—C7 | 1.411 (2) | C21—C25 | 1.385 (2) |
C6—C11 | 1.398 (2) | C22—H22 | 0.9500 |
C7—C14 | 1.399 (2) | C23—H23 | 0.9500 |
C8—H8 | 0.9500 | C23—C24 | 1.391 (3) |
C8—C9 | 1.375 (3) | C24—C25 | 1.385 (2) |
C9—H9 | 0.9500 | C24—C26 | 1.503 (2) |
C9—C10 | 1.380 (3) | C25—H25 | 0.9500 |
C10—H10 | 0.9500 | C26—H26A | 0.9800 |
C11—H11 | 0.9500 | C26—H26B | 0.9800 |
C11—C12 | 1.376 (3) | C26—H26C | 0.9800 |
C8—N1—C2 | 116.94 (15) | C1—C15—C19 | 123.97 (13) |
C17—N2—C18 | 109.52 (11) | C19—C15—C16 | 111.07 (12) |
C17—N2—C20 | 108.51 (12) | C15—C16—H16A | 109.5 |
C20—N2—C18 | 110.72 (12) | C15—C16—H16B | 109.5 |
C23—N3—C22 | 116.29 (16) | C15—C16—C17 | 110.72 (13) |
C2—C1—C7 | 115.02 (12) | H16A—C16—H16B | 108.1 |
C15—C1—C2 | 121.55 (13) | C17—C16—H16A | 109.5 |
C15—C1—C7 | 123.42 (13) | C17—C16—H16B | 109.5 |
N1—C2—C1 | 117.81 (13) | N2—C17—C16 | 112.43 (13) |
N1—C2—C3 | 123.49 (14) | N2—C17—H17A | 109.1 |
C3—C2—C1 | 118.70 (14) | N2—C17—H17B | 109.1 |
C2—C3—C4 | 119.01 (14) | C16—C17—H17A | 109.1 |
C10—C3—C2 | 117.46 (15) | C16—C17—H17B | 109.1 |
C10—C3—C4 | 123.53 (15) | H17A—C17—H17B | 107.9 |
C3—C4—H4A | 109.1 | N2—C18—H18A | 109.3 |
C3—C4—H4B | 109.1 | N2—C18—H18B | 109.3 |
C3—C4—C5 | 112.33 (13) | N2—C18—C19 | 111.77 (13) |
H4A—C4—H4B | 107.9 | H18A—C18—H18B | 107.9 |
C5—C4—H4A | 109.1 | C19—C18—H18A | 109.3 |
C5—C4—H4B | 109.1 | C19—C18—H18B | 109.3 |
C4—C5—H5A | 107.7 | C15—C19—C18 | 110.78 (13) |
C4—C5—H5B | 107.7 | C15—C19—H19A | 109.5 |
H5A—C5—H5B | 107.1 | C15—C19—H19B | 109.5 |
C6—C5—C4 | 118.39 (13) | C18—C19—H19A | 109.5 |
C6—C5—H5A | 107.7 | C18—C19—H19B | 109.5 |
C6—C5—H5B | 107.7 | H19A—C19—H19B | 108.1 |
C7—C6—C5 | 126.49 (14) | N2—C20—H20A | 108.9 |
C11—C6—C5 | 115.21 (14) | N2—C20—H20B | 108.9 |
C11—C6—C7 | 118.30 (15) | N2—C20—C21 | 113.25 (12) |
C6—C7—C1 | 123.78 (14) | H20A—C20—H20B | 107.7 |
C14—C7—C1 | 117.58 (13) | C21—C20—H20A | 108.9 |
C14—C7—C6 | 118.61 (14) | C21—C20—H20B | 108.9 |
N1—C8—H8 | 118.1 | C22—C21—C20 | 120.91 (15) |
N1—C8—C9 | 123.86 (17) | C22—C21—C25 | 117.57 (15) |
C9—C8—H8 | 118.1 | C25—C21—C20 | 121.50 (14) |
C8—C9—H9 | 120.9 | N3—C22—C21 | 124.46 (17) |
C8—C9—C10 | 118.27 (16) | N3—C22—H22 | 117.8 |
C10—C9—H9 | 120.9 | C21—C22—H22 | 117.8 |
C3—C10—H10 | 120.0 | N3—C23—H23 | 117.6 |
C9—C10—C3 | 119.98 (17) | N3—C23—C24 | 124.82 (16) |
C9—C10—H10 | 120.0 | C24—C23—H23 | 117.6 |
C6—C11—H11 | 119.4 | C23—C24—C26 | 121.46 (17) |
C12—C11—C6 | 121.26 (16) | C25—C24—C23 | 116.89 (16) |
C12—C11—H11 | 119.4 | C25—C24—C26 | 121.63 (17) |
C11—C12—Cl1 | 119.57 (14) | C21—C25—C24 | 119.96 (15) |
C11—C12—C13 | 121.51 (15) | C21—C25—H25 | 120.0 |
C13—C12—Cl1 | 118.91 (15) | C24—C25—H25 | 120.0 |
C12—C13—H13 | 121.1 | C24—C26—H26A | 109.5 |
C12—C13—C14 | 117.74 (17) | C24—C26—H26B | 109.5 |
C14—C13—H13 | 121.1 | C24—C26—H26C | 109.5 |
C7—C14—H14 | 118.8 | H26A—C26—H26B | 109.5 |
C13—C14—C7 | 122.50 (16) | H26A—C26—H26C | 109.5 |
C13—C14—H14 | 118.8 | H26B—C26—H26C | 109.5 |
C1—C15—C16 | 124.75 (14) | ||
Cl1—C12—C13—C14 | 177.98 (13) | C7—C1—C15—C16 | 5.0 (2) |
N1—C2—C3—C4 | −179.86 (14) | C7—C1—C15—C19 | 179.20 (14) |
N1—C2—C3—C10 | −0.6 (2) | C7—C6—C11—C12 | 0.7 (2) |
N1—C8—C9—C10 | −0.4 (3) | C8—N1—C2—C1 | −179.61 (14) |
N2—C18—C19—C15 | −56.69 (17) | C8—N1—C2—C3 | 0.0 (2) |
N2—C20—C21—C22 | −109.94 (17) | C8—C9—C10—C3 | −0.2 (3) |
N2—C20—C21—C25 | 71.12 (18) | C10—C3—C4—C5 | −106.83 (19) |
N3—C23—C24—C25 | −0.3 (3) | C11—C6—C7—C1 | 179.20 (13) |
N3—C23—C24—C26 | −178.44 (19) | C11—C6—C7—C14 | −2.9 (2) |
C1—C2—C3—C4 | −0.3 (2) | C11—C12—C13—C14 | −1.7 (3) |
C1—C2—C3—C10 | 179.00 (14) | C12—C13—C14—C7 | −0.6 (2) |
C1—C7—C14—C13 | −179.02 (14) | C15—C1—C2—N1 | −68.7 (2) |
C1—C15—C16—C17 | 122.92 (17) | C15—C1—C2—C3 | 111.71 (17) |
C1—C15—C19—C18 | −122.30 (16) | C15—C1—C7—C6 | −126.93 (17) |
C2—N1—C8—C9 | 0.5 (3) | C15—C1—C7—C14 | 55.1 (2) |
C2—C1—C7—C6 | 52.68 (19) | C15—C16—C17—N2 | 55.82 (17) |
C2—C1—C7—C14 | −125.27 (15) | C16—C15—C19—C18 | 52.61 (17) |
C2—C1—C15—C16 | −174.60 (14) | C17—N2—C18—C19 | 59.11 (16) |
C2—C1—C15—C19 | −0.4 (2) | C17—N2—C20—C21 | −172.79 (13) |
C2—C3—C4—C5 | 72.40 (19) | C18—N2—C17—C16 | −58.83 (17) |
C2—C3—C10—C9 | 0.7 (3) | C18—N2—C20—C21 | 66.99 (16) |
C3—C4—C5—C6 | −61.48 (19) | C19—C15—C16—C17 | −51.94 (18) |
C4—C3—C10—C9 | 179.93 (17) | C20—N2—C17—C16 | −179.79 (13) |
C4—C5—C6—C7 | 5.9 (2) | C20—N2—C18—C19 | 178.72 (12) |
C4—C5—C6—C11 | −173.99 (14) | C20—C21—C22—N3 | −178.84 (17) |
C5—C6—C7—C1 | −0.7 (2) | C20—C21—C25—C24 | 178.02 (14) |
C5—C6—C7—C14 | 177.28 (14) | C22—N3—C23—C24 | −0.5 (3) |
C5—C6—C11—C12 | −179.44 (14) | C22—C21—C25—C24 | −1.0 (2) |
C6—C7—C14—C13 | 2.9 (2) | C23—N3—C22—C21 | 0.6 (3) |
C6—C11—C12—Cl1 | −178.00 (12) | C23—C24—C25—C21 | 1.0 (2) |
C6—C11—C12—C13 | 1.6 (3) | C25—C21—C22—N3 | 0.1 (3) |
C7—C1—C2—N1 | 111.69 (16) | C26—C24—C25—C21 | 179.15 (15) |
C7—C1—C2—C3 | −67.92 (18) |
Experimental details
Crystal data | |
Chemical formula | C26H26ClN3 |
Mr | 415.95 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 173 |
a, b, c (Å) | 10.2655 (3), 11.3341 (4), 18.8111 (6) |
β (°) | 90.874 (3) |
V (Å3) | 2188.43 (11) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 1.67 |
Crystal size (mm) | 0.42 × 0.38 × 0.22 |
Data collection | |
Diffractometer | Agilent Xcalibur (Eos, Gemini) diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) |
Tmin, Tmax | 0.673, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13849, 4281, 3565 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.618 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.122, 1.05 |
No. of reflections | 4281 |
No. of parameters | 273 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.22, −0.29 |
Computer programs: CrysAlis PRO (Agilent, 2012), CrysAlis RED (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2012 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).
Acknowledgements
HSY thanks the UOM for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.
References
Agarwal, R., Bhirud, S. B., Bijukumar, G. & Khude, G. D. (2008). Synth. Commun. 38, 122–127. Web of Science CrossRef CAS Google Scholar
Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England. Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kean, S. J. & Plosker, G. L. (2007). Drugs, 67, 457–474. Web of Science PubMed Google Scholar
Merlos, M., Giral, M., Balsa, D., Ferrando, R., Queralt, M., Puigdemont, A., Garcia-Rafanell, J. & Forn, J. (1997). J. Pharmacol. Exp. Ther. 280, 114–121. CAS PubMed Web of Science Google Scholar
Mullol, J., Bousquet, J., Bachert, C., Canonica, W. G., Gimenez-Arnau, A., Kowalski, M. L., Martí-Guadaño, E., Maurer, M., Picado, C., Scadding, G. & Van Cauwenberge, P. (2008). Allergy, 63, 5–28. Web of Science CrossRef PubMed Google Scholar
Picado, C. (2006). Expert Opin. Pharmacother. 7, 1989–2001. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Rupatadine (IUPAC Name: 8-Chloro-6,11-dihydro-11-[1-[(5-methyl-3- pyridinyl) methyl]-4-piperidinylidene]-5H-benzo[5,6]cyclohepta[1,2-b] pyridine) is a non-sedating antihistamine showing a rapid onset of action and a good safety profile even in prolonged treatment periods of a year (Picado, 2006; Mullol et al., 2008). A review of its use in the management of allergic disorders is published (Kean & Plosker, 2007). Rupatadine has shown as inhibition deregulation, induced by the immunological and non-immunological stimulants and the inhibition of release of cytokines, particularly the tumor necrosis factor alpha (TNF-alpha) in human mastocytes and monocytes (Picado, 2006). In vitro metabolism studies indicate that rupatadine is metabolized mainly by the cytochrome P-450 in liver (Merlos et al., 1997). In view of the importance of the title compound, (I), C26H26ClN3, we have synthesized rupatadine free base based on a reported method (Agarwal et al., 2008) and its single crystal structure is reported herin.
In (I), the dihedral angle between the mean planes of the chlorophenyl and cyclohepta[1,2-b]pyridinyl rings fused to the cycloheptane ring is 56.6 (1)° (Fig. 1). The mean planes of the cyclohepta[1,2-b]pyridinyl and 5-methyl-3-pyridinyl rings are twisted by 64.9 (4)°. The central 6-membered piperizene group adopts a slightly distorted chair configuration with puckering parameters Q, θ and ϕ of 0.5613 (16)Å, 3.31 (16)°, and 348 (3)°, respectively. A weak C—H···O intramolecular interaction is observed between the cyclohepta[1,2-b]pyridinyl and 4-piperidinylidene moieties. In the crystal, the molecules pack in a normal head-to tail dimer-like arrangement (Fig. 2).