organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Bis(prop-2-yn-1-yl)-1H-anthra[1,2-d]imidazole-2,6,11(3H)-trione

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed, Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202 Fès, Morocco, bUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181 Ecole Nationale Supérieure de Chimie de Lille, France, cUSR 3290 Miniaturisation pour l'Analyse, la Synthèse et la Protéomique, 59655 Villeneuve d'Ascq Cedex, Université Lille 1, France, and dLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: afrassou@yahoo.fr

(Received 7 May 2013; accepted 17 May 2013; online 22 May 2013)

In the title compound, C21H12N2O3, the fused-ring system is roughly planar, the largest deviation from the mean plane being 0.084 (2) Å. The two prop-2-yn-1-yl groups are almost perpendicular to the fused ring plane, making C—C—N—C torsion angles of −103.4 (2) and −105.3 (2)°, and point in opposite directions with respect to the plane. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For background to the pharmacological activity and potential applications of anthra­quinones, see: Alves et al. (2004[Alves, D. S., Perez-Fons, L., Estepa, A. & Micol, V. (2004). Biochem. Pharmacol. 68, 549-561.]); Ellis et al. (2003[Ellis, L. T., Perkins, D. F., Turner, P. & Hambley, T. W. (2003). Dalton Trans. pp. 2728-2736.]); Boseggia et al. (2004[Boseggia, E., Gatos, M., Lucatello, L., Mancin, F., Moro, S., Palumbo, M., Sissi, C., Tecilla, P., Tonellato, U. & Zagotto, G. (2004). J. Am. Chem. Soc. 126, 4543-4549.]); Mariappan & Basa (2011[Mariappan, K. & Basa, P. N. (2011). Inorg. Chim. Acta, 366, 344-349.]); Kadarkaraisamy et al. (2008[Kadarkaraisamy, M., Caple, G., Gorden, A. R. & Sykes, A. G. (2008). Inorg. Chem. 47, 11644-11655.]). For similar compounds, see: Afrakssou et al. (2010[Afrakssou, Z., Rodi, Y. K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1851.], 2011[Afrakssou, Z., Kandri Rodi, Y., Capet, F., Essassi, E. M. & El Ammari, L. (2011). Acta Cryst. E67, o1253-o1254.]); Guimarães et al. (2009[Guimarães, T. T., Da Silva Júnior, E. N., Carvalho, C. E. M., De Simone, C. A. & Pinto, A. V. (2009). Acta Cryst. E65, o1063.]).

[Scheme 1]

Experimental

Crystal data
  • C21H12N2O3

  • Mr = 340.33

  • Monoclinic, P 21 /c

  • a = 16.6972 (5) Å

  • b = 4.5602 (1) Å

  • c = 21.2500 (5) Å

  • β = 96.352 (2)°

  • V = 1608.10 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.46 × 0.14 × 0.05 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 20426 measured reflections

  • 3177 independent reflections

  • 2301 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.129

  • S = 1.02

  • 3177 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O2i 0.93 2.31 3.165 (3) 152
C21—H21⋯O1ii 0.93 2.38 3.275 (3) 161
C2—H2⋯O3iii 0.93 2.62 3.333 (3) 134
Symmetry codes: (i) [-x, y+{\script{3\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Anthraquinone-containing extracts from different plant sources such as senna, cascara, aloe, frangula, and rhubarb have been found to have a wide variety of pharmacological activities such as antiinflammatory, wound healing, analgesic, antipyretic, antimicrobial, and antitumor activities (Alves et al., 2004). Anthraquinone containing compounds are also important due to their potential applications as DNA intercalators (Ellis et al., 2003; Boseggia et al., 2004), as selective luminescent sensors of oxo-acids and metal ions when integrated into polyether chains (Mariappan & Basa, 2011) and as molecular switches (Kadarkaraisamy et al., 2008).

So we are interested in the synthesis of new derivatives of anthra [1,2-d]imidazole-2,6, 11–trione and their biological activities (Afrakssou et al., 2010; Afrakssou et al., (2011); Guimarães et al., 2009). The reactivity of propargyl bromide towards 1H-anthra [2, 1 - d] imidazole-2, 6, 11(3H)-trione under phase-transfer catalysis conditions using tetra n-butyl ammonium bromide (TBAB) as catalyst and potassium carbonate as base, leads to the formation of title compound in good yields (Scheme 1).

The four fused rings forming the molecule of the title compound are approximately planar, the largest deviation from the mean plane being 0.084 (2) Å at C10 (Fig. 1). The two prop-2-yn-1-yl (C16 to C18 and C19 to C21) groups are situated on opposite sides of the imidazole ring and are almost perpendicular to the fused rings plane, making C17–C16–N1–C15 and C20–C19–N2–C15 torsion angles of -103.4 (2) ° and -105.3 (2) °, respectively.

In the crystal, each molecule is linked to three adjacent molecules by intermolecular weak C18–H18···O2, C21–H21···O1 and C2–H2···O3 hydrogen bonds, forming a three-dimensional network (Fig. 2 and Table 2).

Related literature top

For background to the pharmacological activity and potential applications of anthraquinones, see: Alves et al. (2004); Ellis et al. (2003); Boseggia et al. (2004); Mariappan & Basa (2011); Kadarkaraisamy et al. (2008). For similar compounds, see: Afrakssou et al. (2010, 2011); Guimarães et al. (2009).

Experimental top

To a solution of 1H-anthra [2, 1 - d] imidazole-2, 6, 11(3H)-trione (0.05 g, 0.18 mmol), potassium carbonate (0.08 g, 0.56 mmol) and tetra n-butylammonium bromide (0.06 g, 0.018 mmol) in DMF (15 ml)) was added propargyl bromide (0.06 ml, 0.8 mmol). Stirring was continued at room temperature for 24 h. The mixture was filtered and the solvent removed. The residue was extracted with water. The organic compound was chromatographed on a column of silica gel with ethyl acetate-hexane (1/1) as eluent. Orange crystals were isolated when the solvent was allowed to evaporate (Yield: 65%).

Refinement top

All H atoms could be located in a difference Fourier map. However, they were placed in calculated positions with C—H = 0.93 Å (aromatic and methyne), and C—H = 0.97 Å (methylene) and refined as riding on their parent atoms with Uiso(H) = 1.2 Ueq (C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. : Intermolecular interactions in the crystal structure of title compound. Hydrogen bonds are shown as dashed lines.
1,3-Bis(prop-2-yn-1-yl)-1H-anthra[1,2-d]imidazole-2,6,11(3H)-trione top
Crystal data top
C21H12N2O3F(000) = 704
Mr = 340.33Dx = 1.406 Mg m3
Monoclinic, P21/cMelting point: 463 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 16.6972 (5) ÅCell parameters from 3177 reflections
b = 4.5602 (1) Åθ = 2.5–26.0°
c = 21.2500 (5) ŵ = 0.10 mm1
β = 96.352 (2)°T = 296 K
V = 1608.10 (7) Å3Irregular shape, yellow
Z = 40.46 × 0.14 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
2301 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 26.0°, θmin = 2.4°
ϕ and ω scansh = 2019
20426 measured reflectionsk = 55
3177 independent reflectionsl = 2625
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: difference Fourier map
wR(F2) = 0.129H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0555P)2 + 0.5235P]
where P = (Fo2 + 2Fc2)/3
3177 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C21H12N2O3V = 1608.10 (7) Å3
Mr = 340.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.6972 (5) ŵ = 0.10 mm1
b = 4.5602 (1) ÅT = 296 K
c = 21.2500 (5) Å0.46 × 0.14 × 0.05 mm
β = 96.352 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2301 reflections with I > 2σ(I)
20426 measured reflectionsRint = 0.033
3177 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.02Δρmax = 0.33 e Å3
3177 reflectionsΔρmin = 0.25 e Å3
235 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.27182 (12)0.6098 (4)0.40077 (9)0.0604 (5)
C20.28450 (15)0.4803 (6)0.46051 (10)0.0812 (7)
H20.24800.34270.47250.097*
C30.35059 (19)0.5550 (7)0.50163 (11)0.0980 (9)
H30.35810.47110.54170.118*
C40.40550 (18)0.7526 (7)0.48372 (12)0.1005 (9)
H40.45070.79950.51150.121*
C50.39427 (14)0.8828 (6)0.42474 (10)0.0811 (7)
H50.43201.01640.41300.097*
C60.32708 (12)0.8154 (4)0.38289 (8)0.0581 (5)
C70.31375 (10)0.9681 (4)0.32094 (8)0.0521 (5)
C80.24435 (9)0.8852 (4)0.27529 (8)0.0447 (4)
C90.18813 (10)0.6776 (4)0.29414 (8)0.0505 (4)
C100.20212 (12)0.5247 (4)0.35604 (9)0.0595 (5)
C110.22732 (9)1.0111 (4)0.21489 (8)0.0444 (4)
C120.15499 (10)0.9328 (4)0.17752 (8)0.0500 (4)
C130.09989 (11)0.7381 (4)0.19747 (10)0.0596 (5)
H130.05210.69550.17230.072*
C140.11783 (11)0.6094 (4)0.25560 (10)0.0603 (5)
H140.08220.47350.26960.072*
C150.21803 (11)1.2631 (4)0.12116 (9)0.0551 (5)
C160.09096 (12)1.0549 (5)0.06690 (9)0.0677 (6)
H16A0.07760.84900.06100.081*
H16B0.11331.12260.02930.081*
C170.01719 (12)1.2201 (5)0.07407 (9)0.0592 (5)
C180.04129 (13)1.3540 (5)0.07967 (11)0.0738 (6)
H180.08781.46040.08410.089*
C190.34510 (10)1.3565 (4)0.18615 (9)0.0546 (5)
H19A0.34651.50730.15410.066*
H19B0.35301.45110.22720.066*
C200.41099 (11)1.1519 (4)0.18097 (9)0.0565 (5)
C210.46571 (13)0.9943 (6)0.17751 (11)0.0821 (7)
H210.50920.86910.17480.099*
N10.15159 (9)1.0865 (4)0.12144 (7)0.0558 (4)
N20.26525 (8)1.2155 (3)0.17856 (7)0.0482 (4)
O10.35778 (9)1.1731 (4)0.31003 (6)0.0812 (5)
O20.15706 (10)0.3264 (3)0.36931 (8)0.0825 (5)
O30.23256 (9)1.4307 (4)0.07918 (6)0.0718 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0692 (12)0.0584 (12)0.0556 (11)0.0081 (10)0.0164 (9)0.0032 (9)
C20.1003 (18)0.0830 (16)0.0623 (13)0.0040 (14)0.0186 (13)0.0081 (12)
C30.126 (2)0.107 (2)0.0583 (14)0.0071 (19)0.0008 (15)0.0138 (14)
C40.108 (2)0.119 (2)0.0669 (15)0.0052 (19)0.0214 (14)0.0100 (16)
C50.0779 (15)0.0963 (18)0.0649 (13)0.0095 (13)0.0110 (11)0.0053 (13)
C60.0610 (11)0.0617 (12)0.0516 (10)0.0051 (10)0.0058 (8)0.0054 (9)
C70.0453 (10)0.0593 (11)0.0525 (10)0.0035 (9)0.0084 (8)0.0054 (9)
C80.0409 (9)0.0431 (9)0.0511 (9)0.0031 (7)0.0096 (7)0.0088 (8)
C90.0474 (10)0.0460 (10)0.0600 (10)0.0002 (8)0.0138 (8)0.0108 (9)
C100.0631 (12)0.0512 (11)0.0681 (12)0.0017 (9)0.0243 (10)0.0045 (10)
C110.0377 (8)0.0418 (9)0.0541 (9)0.0030 (7)0.0073 (7)0.0110 (8)
C120.0442 (9)0.0505 (10)0.0548 (10)0.0048 (8)0.0028 (7)0.0144 (9)
C130.0439 (10)0.0633 (12)0.0702 (12)0.0056 (9)0.0003 (8)0.0207 (10)
C140.0505 (10)0.0568 (11)0.0754 (13)0.0096 (9)0.0145 (9)0.0127 (10)
C150.0545 (11)0.0581 (11)0.0528 (10)0.0102 (9)0.0059 (8)0.0075 (10)
C160.0679 (13)0.0758 (14)0.0558 (11)0.0085 (11)0.0094 (9)0.0183 (10)
C170.0515 (11)0.0669 (13)0.0565 (10)0.0073 (10)0.0066 (8)0.0058 (10)
C180.0527 (12)0.0854 (16)0.0807 (14)0.0005 (12)0.0038 (10)0.0060 (13)
C190.0516 (10)0.0524 (11)0.0604 (10)0.0036 (8)0.0082 (8)0.0000 (9)
C200.0461 (10)0.0659 (12)0.0573 (10)0.0024 (9)0.0049 (8)0.0042 (10)
C210.0526 (12)0.1004 (18)0.0918 (16)0.0151 (13)0.0003 (11)0.0172 (14)
N10.0493 (9)0.0611 (10)0.0550 (9)0.0049 (7)0.0038 (7)0.0128 (8)
N20.0423 (8)0.0501 (8)0.0519 (8)0.0013 (6)0.0036 (6)0.0032 (7)
O10.0712 (9)0.1062 (13)0.0632 (8)0.0379 (9)0.0060 (7)0.0079 (8)
O20.0878 (11)0.0711 (10)0.0930 (11)0.0163 (9)0.0289 (9)0.0080 (9)
O30.0808 (10)0.0764 (10)0.0579 (8)0.0050 (8)0.0058 (7)0.0079 (8)
Geometric parameters (Å, º) top
C1—C21.395 (3)C12—N11.378 (2)
C1—C61.397 (3)C12—C131.379 (3)
C1—C101.471 (3)C13—C141.370 (3)
C2—C31.373 (3)C13—H130.9300
C2—H20.9300C14—H140.9300
C3—C41.369 (4)C15—O31.219 (2)
C3—H30.9300C15—N11.371 (2)
C4—C51.381 (3)C15—N21.394 (2)
C4—H40.9300C16—N11.459 (2)
C5—C61.387 (3)C16—C171.466 (3)
C5—H50.9300C16—H16A0.9700
C6—C71.484 (3)C16—H16B0.9700
C7—O11.227 (2)C17—C181.169 (3)
C7—C81.476 (2)C18—H180.9300
C8—C111.406 (2)C19—C201.456 (3)
C8—C91.421 (2)C19—N21.473 (2)
C9—C141.390 (3)C19—H19A0.9700
C9—C101.484 (3)C19—H19B0.9700
C10—O21.229 (2)C20—C211.171 (3)
C11—N21.405 (2)C21—H210.9300
C11—C121.416 (2)
C2—C1—C6119.6 (2)N1—C12—C11107.92 (16)
C2—C1—C10120.4 (2)C13—C12—C11123.15 (18)
C6—C1—C10120.03 (18)C14—C13—C12117.79 (17)
C3—C2—C1120.3 (2)C14—C13—H13121.1
C3—C2—H2119.9C12—C13—H13121.1
C1—C2—H2119.9C13—C14—C9121.41 (18)
C4—C3—C2120.2 (2)C13—C14—H14119.3
C4—C3—H3119.9C9—C14—H14119.3
C2—C3—H3119.9O3—C15—N1126.71 (18)
C3—C4—C5120.5 (2)O3—C15—N2126.79 (18)
C3—C4—H4119.8N1—C15—N2106.50 (16)
C5—C4—H4119.8N1—C16—C17112.56 (15)
C4—C5—C6120.4 (2)N1—C16—H16A109.1
C4—C5—H5119.8C17—C16—H16A109.1
C6—C5—H5119.8N1—C16—H16B109.1
C5—C6—C1119.07 (19)C17—C16—H16B109.1
C5—C6—C7119.76 (19)H16A—C16—H16B107.8
C1—C6—C7121.15 (17)C18—C17—C16179.4 (3)
O1—C7—C8120.95 (17)C17—C18—H18180.0
O1—C7—C6119.40 (17)C20—C19—N2113.23 (15)
C8—C7—C6119.51 (16)C20—C19—H19A108.9
C11—C8—C9117.12 (15)N2—C19—H19A108.9
C11—C8—C7124.07 (15)C20—C19—H19B108.9
C9—C8—C7118.71 (16)N2—C19—H19B108.9
C14—C9—C8121.60 (18)H19A—C19—H19B107.7
C14—C9—C10117.17 (17)C21—C20—C19177.8 (2)
C8—C9—C10121.23 (16)C20—C21—H21180.0
O2—C10—C1120.4 (2)C15—N1—C12110.27 (15)
O2—C10—C9120.58 (19)C15—N1—C16123.02 (17)
C1—C10—C9118.97 (17)C12—N1—C16126.52 (17)
N2—C11—C8135.60 (15)C15—N2—C11109.78 (14)
N2—C11—C12105.52 (15)C15—N2—C19116.43 (15)
C8—C11—C12118.87 (16)C11—N2—C19133.40 (14)
N1—C12—C13128.92 (16)
C6—C1—C2—C30.3 (3)C9—C8—C11—C122.0 (2)
C10—C1—C2—C3178.5 (2)C7—C8—C11—C12174.30 (15)
C1—C2—C3—C41.4 (4)N2—C11—C12—N10.18 (18)
C2—C3—C4—C51.2 (5)C8—C11—C12—N1179.18 (14)
C3—C4—C5—C60.1 (4)N2—C11—C12—C13178.94 (15)
C4—C5—C6—C11.3 (4)C8—C11—C12—C130.1 (3)
C4—C5—C6—C7177.0 (2)N1—C12—C13—C14179.16 (18)
C2—C1—C6—C51.0 (3)C11—C12—C13—C141.9 (3)
C10—C1—C6—C5177.15 (19)C12—C13—C14—C91.7 (3)
C2—C1—C6—C7177.14 (18)C8—C9—C14—C130.4 (3)
C10—C1—C6—C74.7 (3)C10—C9—C14—C13179.65 (17)
C5—C6—C7—O17.3 (3)N1—C16—C17—C1878 (22)
C1—C6—C7—O1170.83 (18)N2—C19—C20—C21169 (100)
C5—C6—C7—C8176.98 (18)O3—C15—N1—C12178.55 (18)
C1—C6—C7—C84.8 (3)N2—C15—N1—C120.87 (19)
O1—C7—C8—C115.9 (3)O3—C15—N1—C166.1 (3)
C6—C7—C8—C11178.50 (16)N2—C15—N1—C16174.45 (15)
O1—C7—C8—C9170.35 (17)C13—C12—N1—C15178.39 (17)
C6—C7—C8—C95.3 (2)C11—C12—N1—C150.67 (19)
C11—C8—C9—C142.3 (2)C13—C12—N1—C166.5 (3)
C7—C8—C9—C14174.22 (16)C11—C12—N1—C16174.46 (16)
C11—C8—C9—C10177.82 (15)C17—C16—N1—C15103.4 (2)
C7—C8—C9—C105.7 (2)C17—C16—N1—C1282.1 (2)
C2—C1—C10—O24.4 (3)O3—C15—N2—C11178.67 (17)
C6—C1—C10—O2173.79 (18)N1—C15—N2—C110.75 (19)
C2—C1—C10—C9176.93 (18)O3—C15—N2—C197.5 (3)
C6—C1—C10—C94.9 (3)N1—C15—N2—C19173.08 (14)
C14—C9—C10—O26.9 (3)C8—C11—N2—C15178.39 (18)
C8—C9—C10—O2173.18 (17)C12—C11—N2—C150.35 (18)
C14—C9—C10—C1174.42 (16)C8—C11—N2—C199.2 (3)
C8—C9—C10—C15.5 (3)C12—C11—N2—C19172.03 (16)
C9—C8—C11—N2179.39 (17)C20—C19—N2—C15105.30 (18)
C7—C8—C11—N24.3 (3)C20—C19—N2—C1166.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O2i0.932.313.165 (3)152
C21—H21···O1ii0.932.383.275 (3)161
C2—H2···O3iii0.932.623.333 (3)134
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H12N2O3
Mr340.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)16.6972 (5), 4.5602 (1), 21.2500 (5)
β (°) 96.352 (2)
V3)1608.10 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.46 × 0.14 × 0.05
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20426, 3177, 2301
Rint0.033
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.129, 1.02
No. of reflections3177
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.25

Computer programs: APEX2 (Bruker, 2009), SAINT-Plus (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O2i0.932.313.165 (3)152.0
C21—H21···O1ii0.932.383.275 (3)160.7
C2—H2···O3iii0.932.623.333 (3)133.5
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+3/2, z+1/2.
 

References

First citationAfrakssou, Z., Kandri Rodi, Y., Capet, F., Essassi, E. M. & El Ammari, L. (2011). Acta Cryst. E67, o1253–o1254.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAfrakssou, Z., Rodi, Y. K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1851.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlves, D. S., Perez-Fons, L., Estepa, A. & Micol, V. (2004). Biochem. Pharmacol. 68, 549–561.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBoseggia, E., Gatos, M., Lucatello, L., Mancin, F., Moro, S., Palumbo, M., Sissi, C., Tecilla, P., Tonellato, U. & Zagotto, G. (2004). J. Am. Chem. Soc. 126, 4543–4549.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEllis, L. T., Perkins, D. F., Turner, P. & Hambley, T. W. (2003). Dalton Trans. pp. 2728–2736.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGuimarães, T. T., Da Silva Júnior, E. N., Carvalho, C. E. M., De Simone, C. A. & Pinto, A. V. (2009). Acta Cryst. E65, o1063.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKadarkaraisamy, M., Caple, G., Gorden, A. R. & Sykes, A. G. (2008). Inorg. Chem. 47, 11644–11655.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMariappan, K. & Basa, P. N. (2011). Inorg. Chim. Acta, 366, 344–349.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds