organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o945-o946

1-(Prop-2-en-1-yl)-3-{[3-(pyridin-4-yl)-4,5-di­hydro­isoxazol-5-yl]meth­yl}-1H-anthra[1,2-d]imidazole-2,6,11(3H)-trione

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed, Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202 Fès, Morocco, bUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181 Ecole Nationale Supérieure de Chimie de Lille, France, cLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014, Avenue Ibn Batouta, Rabat , Morocco, dUSR 3290 Miniaturisation pour l'Analyse, la Synthèse et la Protéomique, 59655 Villeneuve d'Ascq Cedex, Université Lille 1, France, and eLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: afrassou@yahoo.fr

(Received 13 May 2013; accepted 17 May 2013; online 22 May 2013)

The fused five- and three six-membered rings of the anthra[1,2-d]imidazole­trione part of the title compound, C27H20N4O4, show two different substituents at the imidazole N atoms, viz. an allyl group and a [3-(pyridin-4-yl)-4,5-di­hydro­isoxazol-5-yl]methyl group. The fused-ring system is approximately planar [r.m.s. deviation = 0.232 (2) Å], but is slightly buckled along the common edge of the two pairs of adjacent rings, with a dihedral angle between them of 11.17 (6)°. The isoxazole ring makes dihedral angles of 27.2 (2) and 12.7 (2)° with the imidazole and pyridine rings, respectively. Weak C—H⋯O and C—H⋯N hydrogen bonds ensure the cohesion of the crystal structure, forming a three-dimensional network.

Related literature

For the use of anthra­quinone as an organic redox mediator, see: Campos-Martin et al. (2006[Campos-Martin, J. M., Blanco-Brieva, G. & Fierro, J. L. G. (2006). Angew. Chem. Int. Ed. 45, 6962-6984.]); Harish et al. (2009[Harish, S., Sridharan, D., Kumar, S. S., Joseph, J. & Phani, K. L. N. (2009). Electrochim. Acta, 54, 3618-3622.]); Jürmann et al. (2007[Jürmann, G., Schiffrin, D. J. & Tammeveski, K. (2007). Electrochim. Acta, 53, 390-399.]); Manisankar & Gomathi (2005[Manisankar, P. & Gomathi, A. (2005). J. Mol. Catal. A Chem. 232, 45-52.]). For the biological activity of anthra­quinone derivatives, see: Henderson et al. (1998[Henderson, P. T., Armitage, B. & Schuster, G. B. (1998). Biochemistry, 37, 2991-3000.]); Barasch et al. (1999[Barasch, D., Zipori, O., Ringel, I., Ginsbury, I., Samuni, A. & Katzhendler, J. (1999). Eur. J. Med. Chem. 34, 597-615.]); Dou et al. (2009[Dou, Y., Haswell, S., Greenman, J. & Wadhawan, J. (2009). Electrochem. Commun. 11, 1976-1981.]). For background to pH sensor applications, see: Wong et al. (2004[Wong, E. L. S., Erohkin, P. & Gooding, J. J. (2004). Electrochem. Commun. 6, 648-654.]); Lafitte et al. (2008[Lafitte, V. G. H., Wang, W., Yashina, A. S. & Lawrence, N. S. (2008). Electrochem. Commun. 10, 1831-1834.]); Wildgoose et al. (2003[Wildgoose, G. G., Pandurangappa, M., Lawrence, N. S., Jiang, L., Jones, T. G. J. & Compton, R. G. (2003). Talanta, 60, 887-893.]). For similar compounds, see: Afrakssou et al. (2010[Afrakssou, Z., Rodi, Y. K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1851.], 2011[Afrakssou, Z., Haoudi, A., Capet, F., Rolando, C. & El Ammari, L. (2011). Acta Cryst. E67, o1363-o1364.]).

[Scheme 1]

Experimental

Crystal data
  • C27H20N4O4

  • Mr = 464.47

  • Triclinic, [P \overline 1]

  • a = 8.0930 (2) Å

  • b = 12.1191 (3) Å

  • c = 12.2743 (2) Å

  • α = 87.109 (1)°

  • β = 73.612 (1)°

  • γ = 72.283 (1)°

  • V = 1099.35 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.14 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 36799 measured reflections

  • 5659 independent reflections

  • 3900 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.148

  • S = 1.02

  • 5659 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N3i 0.93 2.58 3.471 (2) 160
C3—H3⋯O4i 0.93 2.67 3.470 (2) 145
C19—H19A⋯O3ii 0.97 2.56 3.3356 (19) 137
C21—H21A⋯O3ii 0.97 2.45 3.350 (2) 154
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+3, -y, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Anthraquinone is a versatile organic redox mediator and is useful for applications such as selective H2O2 production through oxygen reduction reaction (Campos-Martin et al., 2006); photo-cleavage of DNA (Henderson et al., 1998); anticancer activity (anthraquinone as central building block) (Barasch et al., 1999) and enzyme/mediator (Dou et al., 2009) etc. Similarly, electrodes that were chemically modified with anthraquinone were useful for several electrochemical (Harish et al., 2009); electrocatalytic (Jürmann et al., 2007; Manisankar et al., 2005); and pH sensor applications (Wong et al., 2004; Lafitte et al., 2008; Wildgoose et al., 2003).

In this work, we aim to prepare new derivatives of anthra [1,2-d]imidazole- 2,6,11–trione for biological activities. In a previous study we have synthesized the 1,3-diallyl-1H-anthra [1,2-d] imidazole-2,6,11(3H)-trione (Afrakssou et al., 2010), and, here we have focused in the reactivity of the exocyclic C=C bond of the allyl substituent towards nitriloxides (Afrakssou et al., 2011). The latter are produced as intermediates in the dehydrohalogenation of (E)-isonicotinaldehyde oxime by a solution of sodium hypochlorite. The oxime then reacts with 1, 3-diallyl-1H-anthra [1, 2 - d] imidazole-2, 6, 11(3H)-trione in a biphasic medium (water-chloroform) at 273 K during 4 h to a unique cycloadduct 1-allyl-3-((3-(pyridin-4-yl)-4,5-dihydroisoxazol-5-yl)methyl)- 1H-anthra[1,2-d]imidazole-2,6,11(3H)-trione (Scheme 1).

The molecule of title compound, C27H20N4O4, contains four fused rings, three are six-membered rings and one is the five-membered imidazole ring. The imidazole ring is on one side attached to the allyl chain and on the other side to a (3-(pyridin-4-yl)-4,5-dihydroisoxazol-5-yl)methyl group (Fig.1). The fused ring system is almost planar with the largest deviation from the mean plane being 0.232 (2) A° at C7. In this system, the two pairs of adjacent rings are slightly folded along the common edge (C8–C9) making a dihedral angle of 11.17 (6) °. The isoxazole (N3-O4-C20-C21-C22) ring makes dihedral angles of 27.2 (2) ° and 12.7 (2) ° with the imidazole (N1-N2-C11-C12-C15) and pyridine (N4-C23 to C27) rings, respectively.

Weak intermolecular C19–H19A···O3, C21–H21A···O3, C3–H3···O4 and C3–H3···N3 hydrogen bondings ensures the cohesion of the crystal structure as shown in Fig. 2 and Table 2.

Related literature top

For the use of anthraquinone as an organic redox mediator, see: Campos-Martin et al. (2006); Harish et al. (2009); Jürmann et al. (2007); Manisankar & Gomathi (2005). For the biological activity of anthraquinone derivatives, see: Henderson et al. (1998); Barasch et al. (1999); Dou et al. (2009). For background to pH sensor applications, see: Wong et al. (2004); Lafitte et al. (2008); Wildgoose et al. (2003). For similar compounds, see: Afrakssou et al. (2010, 2011).

Experimental top

To a solution of 1,3-diallyl-1H-anthra[1,2-d]imidazole-2,6,11(3H) -trione (0.5 g, 1.45 mmol) and (E)-isonicotinaldehyde oxime (0.44 g, 3.62 mmol) in chloroform (16 ml) was added dropwise a 24% sodium hypochlorite solution (8 ml) at 273 K. Stirring was continued for 4 h. The organic layer was dried over Na2SO4 and the solvent was evaporated under reduced pressure. The residue was then purified by column chromatography on silica gel using a mixture of hexane/ethyl acetate (1/1) as eluent. The yield of the reaction is of 51%. Orange crystals were isolated after the solvent was allowed to evaporate.

Refinement top

All H atoms could be located in a difference Fourier map. However, they were placed in calculated positions with C—H = 0.93 Å (aromatic and methyne), and C—H = 0.97 Å (methylene) and refined as riding on their parent atoms with Uiso(H) = 1.2 Ueq (C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. : Intermolecular interactions in the title compound. Hydrogen bonds are shown as dashed lines. Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) -x + 3, -y, -z + 2.
1-(Prop-2-en-1-yl)-3-{[3-(pyridin-4-yl)-4,5-dihydroisoxazol-5-yl]methyl}-1H-anthra[1,2-d]imidazole-2,6,11(3H)-trione top
Crystal data top
C27H20N4O4Z = 2
Mr = 464.47F(000) = 484
Triclinic, P1Dx = 1.403 Mg m3
Hall symbol: -P 1Melting point: 443 K
a = 8.0930 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.1191 (3) ÅCell parameters from 8485 reflections
c = 12.2743 (2) Åθ = 2.8–26.0°
α = 87.109 (1)°µ = 0.10 mm1
β = 73.612 (1)°T = 296 K
γ = 72.283 (1)°Block, orange
V = 1099.35 (4) Å30.14 × 0.10 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
3900 reflections with I > 2σ(I)
Radiation source: microfocus sourceRint = 0.031
Graphite monochromatorθmax = 28.7°, θmin = 1.7°
ϕ and ω scansh = 1010
36799 measured reflectionsk = 1616
5659 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: difference Fourier map
wR(F2) = 0.148H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0711P)2 + 0.2464P]
where P = (Fo2 + 2Fc2)/3
5659 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C27H20N4O4γ = 72.283 (1)°
Mr = 464.47V = 1099.35 (4) Å3
Triclinic, P1Z = 2
a = 8.0930 (2) ÅMo Kα radiation
b = 12.1191 (3) ŵ = 0.10 mm1
c = 12.2743 (2) ÅT = 296 K
α = 87.109 (1)°0.14 × 0.10 × 0.08 mm
β = 73.612 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3900 reflections with I > 2σ(I)
36799 measured reflectionsRint = 0.031
5659 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.02Δρmax = 0.37 e Å3
5659 reflectionsΔρmin = 0.20 e Å3
316 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5114 (2)0.62606 (14)1.11854 (16)0.0495 (4)
C20.3824 (3)0.73461 (16)1.1261 (2)0.0637 (5)
H20.38640.78081.06310.076*
C30.2504 (3)0.77342 (18)1.2256 (2)0.0742 (7)
H30.16580.84621.23020.089*
C40.2421 (3)0.70528 (19)1.3189 (2)0.0739 (6)
H40.15090.73161.38600.089*
C50.3689 (3)0.59784 (17)1.31336 (19)0.0637 (5)
H50.36300.55211.37660.076*
C60.5051 (2)0.55819 (14)1.21343 (15)0.0488 (4)
C70.6385 (2)0.44158 (14)1.20925 (14)0.0463 (4)
C80.7922 (2)0.40617 (13)1.10555 (13)0.0383 (3)
C90.7841 (2)0.46768 (13)1.00512 (13)0.0417 (3)
C100.6459 (2)0.58148 (15)1.00850 (16)0.0498 (4)
C110.93761 (19)0.30551 (12)1.09642 (12)0.0362 (3)
C121.0529 (2)0.26122 (13)0.98806 (12)0.0376 (3)
C131.0379 (2)0.31860 (15)0.89005 (13)0.0464 (4)
H131.11440.28770.81940.056*
C140.9049 (2)0.42393 (15)0.90068 (14)0.0478 (4)
H140.89600.46660.83630.057*
C151.1529 (2)0.14078 (13)1.11712 (13)0.0382 (3)
C160.9718 (2)0.24952 (15)1.29631 (13)0.0481 (4)
H16A1.03530.17961.32740.058*
H16B0.84380.26701.33480.058*
C171.0362 (3)0.34735 (19)1.31752 (16)0.0659 (5)
H171.15520.34401.28070.079*
C180.9359 (5)0.4370 (2)1.3844 (2)0.1064 (10)
H18A0.81640.44281.42230.128*
H18B0.98360.49531.39420.128*
C191.3115 (2)0.07767 (14)0.91585 (13)0.0418 (4)
H19A1.42310.04920.93740.050*
H19B1.33600.11690.84500.050*
C201.2483 (2)0.02358 (14)0.89840 (13)0.0426 (4)
H201.21990.06300.96980.051*
C211.3846 (2)0.10974 (14)0.80505 (14)0.0473 (4)
H21A1.50440.10100.78850.057*
H21B1.39040.18910.82450.057*
C221.3037 (2)0.07338 (14)0.70869 (13)0.0433 (4)
C231.3916 (2)0.11054 (15)0.58912 (14)0.0464 (4)
C241.5579 (3)0.19406 (17)0.55610 (16)0.0622 (5)
H241.61450.23090.61010.075*
C251.6397 (3)0.2224 (2)0.44121 (19)0.0754 (6)
H251.75170.27890.42070.090*
C261.4083 (4)0.0959 (2)0.39166 (17)0.0716 (6)
H261.35500.06180.33540.086*
C271.3145 (3)0.06123 (18)0.50314 (15)0.0581 (5)
H271.20150.00570.52060.070*
N11.00212 (17)0.22965 (11)1.17475 (10)0.0385 (3)
N21.17735 (17)0.15961 (11)1.00326 (10)0.0391 (3)
N31.14308 (19)0.00366 (13)0.73868 (12)0.0502 (4)
N41.5695 (3)0.17468 (18)0.35938 (15)0.0773 (6)
O10.61239 (19)0.37492 (12)1.28523 (12)0.0702 (4)
O20.6424 (2)0.63732 (13)0.92318 (13)0.0750 (4)
O31.24659 (15)0.06244 (10)1.15952 (9)0.0478 (3)
O41.08962 (15)0.01876 (11)0.85700 (10)0.0524 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0437 (9)0.0358 (8)0.0712 (11)0.0073 (7)0.0243 (8)0.0000 (8)
C20.0596 (12)0.0400 (10)0.0947 (15)0.0030 (8)0.0391 (11)0.0001 (10)
C30.0565 (12)0.0461 (11)0.1142 (19)0.0086 (9)0.0374 (12)0.0199 (12)
C40.0505 (11)0.0595 (13)0.0962 (17)0.0019 (9)0.0117 (11)0.0244 (12)
C50.0499 (10)0.0529 (11)0.0731 (13)0.0035 (8)0.0046 (9)0.0098 (9)
C60.0404 (8)0.0387 (9)0.0618 (10)0.0068 (7)0.0107 (7)0.0039 (7)
C70.0421 (8)0.0378 (8)0.0510 (9)0.0075 (7)0.0056 (7)0.0013 (7)
C80.0387 (8)0.0332 (7)0.0417 (8)0.0095 (6)0.0105 (6)0.0011 (6)
C90.0428 (8)0.0371 (8)0.0479 (9)0.0112 (6)0.0186 (7)0.0064 (6)
C100.0497 (9)0.0415 (9)0.0625 (11)0.0120 (7)0.0259 (8)0.0115 (8)
C110.0379 (7)0.0337 (7)0.0350 (7)0.0096 (6)0.0086 (6)0.0019 (6)
C120.0368 (7)0.0378 (8)0.0374 (7)0.0095 (6)0.0107 (6)0.0015 (6)
C130.0504 (9)0.0511 (10)0.0351 (8)0.0126 (8)0.0109 (7)0.0002 (7)
C140.0559 (10)0.0498 (10)0.0400 (8)0.0161 (8)0.0184 (7)0.0104 (7)
C150.0361 (7)0.0371 (8)0.0392 (8)0.0081 (6)0.0102 (6)0.0004 (6)
C160.0589 (10)0.0446 (9)0.0329 (8)0.0097 (8)0.0073 (7)0.0039 (6)
C170.0908 (15)0.0682 (13)0.0444 (10)0.0304 (12)0.0208 (10)0.0021 (9)
C180.173 (3)0.0811 (18)0.0647 (15)0.0454 (19)0.0226 (17)0.0155 (13)
C190.0333 (7)0.0453 (9)0.0395 (8)0.0044 (6)0.0055 (6)0.0059 (6)
C200.0400 (8)0.0430 (8)0.0386 (8)0.0065 (6)0.0079 (6)0.0011 (6)
C210.0465 (9)0.0412 (9)0.0468 (9)0.0034 (7)0.0109 (7)0.0057 (7)
C220.0423 (8)0.0434 (9)0.0439 (8)0.0153 (7)0.0083 (7)0.0019 (7)
C230.0532 (9)0.0459 (9)0.0426 (8)0.0237 (8)0.0075 (7)0.0013 (7)
C240.0672 (12)0.0572 (11)0.0503 (10)0.0154 (9)0.0008 (9)0.0049 (8)
C250.0807 (15)0.0671 (14)0.0613 (13)0.0206 (12)0.0070 (11)0.0112 (11)
C260.1029 (18)0.0818 (15)0.0465 (10)0.0523 (15)0.0207 (11)0.0064 (10)
C270.0685 (12)0.0629 (12)0.0505 (10)0.0312 (10)0.0166 (9)0.0033 (9)
N10.0419 (7)0.0348 (6)0.0330 (6)0.0055 (5)0.0083 (5)0.0013 (5)
N20.0373 (6)0.0388 (7)0.0349 (6)0.0040 (5)0.0078 (5)0.0020 (5)
N30.0441 (8)0.0569 (9)0.0486 (8)0.0131 (7)0.0127 (6)0.0051 (7)
N40.1033 (16)0.0782 (13)0.0495 (10)0.0441 (12)0.0005 (10)0.0073 (9)
O10.0647 (8)0.0511 (8)0.0652 (8)0.0048 (6)0.0122 (6)0.0122 (6)
O20.0784 (10)0.0606 (9)0.0739 (9)0.0016 (7)0.0277 (8)0.0263 (7)
O30.0435 (6)0.0452 (6)0.0494 (6)0.0029 (5)0.0168 (5)0.0054 (5)
O40.0367 (6)0.0643 (8)0.0502 (7)0.0081 (5)0.0083 (5)0.0125 (6)
Geometric parameters (Å, º) top
C1—C61.390 (3)C16—C171.493 (3)
C1—C21.397 (2)C16—H16A0.9700
C1—C101.479 (3)C16—H16B0.9700
C2—C31.368 (3)C17—C181.300 (3)
C2—H20.9300C17—H170.9300
C3—C41.376 (3)C18—H18A0.9300
C3—H30.9300C18—H18B0.9300
C4—C51.382 (3)C19—N21.4525 (18)
C4—H40.9300C19—C201.511 (2)
C5—C61.387 (2)C19—H19A0.9700
C5—H50.9300C19—H19B0.9700
C6—C71.487 (2)C20—O41.453 (2)
C7—O11.218 (2)C20—C211.525 (2)
C7—C81.479 (2)C20—H200.9800
C8—C111.397 (2)C21—C221.494 (2)
C8—C91.415 (2)C21—H21A0.9700
C9—C141.388 (2)C21—H21B0.9700
C9—C101.482 (2)C22—N31.278 (2)
C10—O21.220 (2)C22—C231.465 (2)
C11—N11.3943 (19)C23—C241.380 (3)
C11—C121.412 (2)C23—C271.393 (3)
C12—C131.376 (2)C24—C251.389 (3)
C12—N21.3760 (19)C24—H240.9300
C13—C141.381 (2)C25—N41.315 (3)
C13—H130.9300C25—H250.9300
C14—H140.9300C26—N41.326 (3)
C15—O31.2171 (18)C26—C271.380 (3)
C15—N21.3726 (19)C26—H260.9300
C15—N11.3927 (19)C27—H270.9300
C16—N11.4621 (19)N3—O41.4084 (18)
C6—C1—C2119.35 (18)C18—C17—C16123.9 (2)
C6—C1—C10120.62 (15)C18—C17—H17118.1
C2—C1—C10119.92 (17)C16—C17—H17118.1
C3—C2—C1120.4 (2)C17—C18—H18A120.0
C3—C2—H2119.8C17—C18—H18B120.0
C1—C2—H2119.8H18A—C18—H18B120.0
C2—C3—C4120.29 (19)N2—C19—C20111.63 (12)
C2—C3—H3119.9N2—C19—H19A109.3
C4—C3—H3119.9C20—C19—H19A109.3
C3—C4—C5120.2 (2)N2—C19—H19B109.3
C3—C4—H4119.9C20—C19—H19B109.3
C5—C4—H4119.9H19A—C19—H19B108.0
C4—C5—C6120.1 (2)O4—C20—C19108.93 (13)
C4—C5—H5120.0O4—C20—C21104.00 (12)
C6—C5—H5120.0C19—C20—C21112.82 (13)
C5—C6—C1119.71 (17)O4—C20—H20110.3
C5—C6—C7118.96 (17)C19—C20—H20110.3
C1—C6—C7121.30 (15)C21—C20—H20110.3
O1—C7—C8121.68 (15)C22—C21—C20100.34 (13)
O1—C7—C6120.30 (15)C22—C21—H21A111.7
C8—C7—C6117.76 (14)C20—C21—H21A111.7
C11—C8—C9116.86 (13)C22—C21—H21B111.7
C11—C8—C7123.26 (14)C20—C21—H21B111.7
C9—C8—C7119.39 (14)H21A—C21—H21B109.5
C14—C9—C8121.33 (15)N3—C22—C23120.26 (16)
C14—C9—C10117.88 (15)N3—C22—C21113.77 (14)
C8—C9—C10120.79 (15)C23—C22—C21125.98 (15)
O2—C10—C1120.60 (16)C24—C23—C27116.82 (17)
O2—C10—C9121.25 (17)C24—C23—C22121.28 (17)
C1—C10—C9118.15 (15)C27—C23—C22121.87 (17)
N1—C11—C8134.04 (13)C23—C24—C25119.1 (2)
N1—C11—C12106.27 (12)C23—C24—H24120.4
C8—C11—C12119.68 (13)C25—C24—H24120.4
C13—C12—N2129.78 (14)N4—C25—C24124.4 (2)
C13—C12—C11122.57 (14)N4—C25—H25117.8
N2—C12—C11107.59 (13)C24—C25—H25117.8
C12—C13—C14117.41 (14)N4—C26—C27124.4 (2)
C12—C13—H13121.3N4—C26—H26117.8
C14—C13—H13121.3C27—C26—H26117.8
C13—C14—C9121.59 (15)C26—C27—C23119.0 (2)
C13—C14—H14119.2C26—C27—H27120.5
C9—C14—H14119.2C23—C27—H27120.5
O3—C15—N2126.58 (14)C15—N1—C11109.31 (12)
O3—C15—N1126.66 (14)C15—N1—C16118.49 (13)
N2—C15—N1106.75 (13)C11—N1—C16129.16 (13)
N1—C16—C17111.20 (13)C15—N2—C12109.96 (12)
N1—C16—H16A109.4C15—N2—C19122.55 (13)
C17—C16—H16A109.4C12—N2—C19127.42 (13)
N1—C16—H16B109.4C22—N3—O4109.39 (13)
C17—C16—H16B109.4C25—N4—C26116.19 (19)
H16A—C16—H16B108.0N3—O4—C20108.52 (11)
C6—C1—C2—C30.5 (3)N1—C16—C17—C18125.5 (2)
C10—C1—C2—C3175.79 (17)N2—C19—C20—O463.70 (16)
C1—C2—C3—C40.7 (3)N2—C19—C20—C21178.64 (13)
C2—C3—C4—C51.0 (3)O4—C20—C21—C2218.17 (16)
C3—C4—C5—C60.1 (3)C19—C20—C21—C2299.71 (15)
C4—C5—C6—C11.1 (3)C20—C21—C22—N312.02 (19)
C4—C5—C6—C7179.20 (18)C20—C21—C22—C23168.07 (15)
C2—C1—C6—C51.4 (3)N3—C22—C23—C24173.79 (16)
C10—C1—C6—C5174.83 (17)C21—C22—C23—C246.1 (3)
C2—C1—C6—C7179.42 (16)N3—C22—C23—C278.2 (3)
C10—C1—C6—C73.2 (3)C21—C22—C23—C27171.93 (16)
C5—C6—C7—O111.5 (3)C27—C23—C24—C251.2 (3)
C1—C6—C7—O1166.50 (18)C22—C23—C24—C25176.92 (17)
C5—C6—C7—C8174.24 (16)C23—C24—C25—N40.0 (3)
C1—C6—C7—C87.7 (2)N4—C26—C27—C230.3 (3)
O1—C7—C8—C1113.9 (3)C24—C23—C27—C261.4 (3)
C6—C7—C8—C11171.97 (15)C22—C23—C27—C26176.75 (16)
O1—C7—C8—C9157.86 (17)O3—C15—N1—C11176.95 (15)
C6—C7—C8—C916.3 (2)N2—C15—N1—C112.11 (16)
C11—C8—C9—C146.1 (2)O3—C15—N1—C1614.9 (2)
C7—C8—C9—C14166.19 (15)N2—C15—N1—C16164.21 (13)
C11—C8—C9—C10173.72 (14)C8—C11—N1—C15178.90 (16)
C7—C8—C9—C1014.0 (2)C12—C11—N1—C150.01 (16)
C6—C1—C10—O2174.24 (18)C8—C11—N1—C1621.5 (3)
C2—C1—C10—O22.0 (3)C12—C11—N1—C16159.59 (15)
C6—C1—C10—C95.8 (2)C17—C16—N1—C1599.02 (18)
C2—C1—C10—C9178.01 (15)C17—C16—N1—C1159.0 (2)
C14—C9—C10—O22.8 (3)O3—C15—N2—C12175.56 (15)
C8—C9—C10—O2176.99 (16)N1—C15—N2—C123.51 (17)
C14—C9—C10—C1177.19 (15)O3—C15—N2—C197.3 (2)
C8—C9—C10—C13.0 (2)N1—C15—N2—C19173.60 (13)
C9—C8—C11—N1172.45 (16)C13—C12—N2—C15173.53 (16)
C7—C8—C11—N115.6 (3)C11—C12—N2—C153.55 (17)
C9—C8—C11—C128.8 (2)C13—C12—N2—C199.5 (3)
C7—C8—C11—C12163.18 (14)C11—C12—N2—C19173.38 (13)
N1—C11—C12—C13175.20 (14)C20—C19—N2—C1578.33 (18)
C8—C11—C12—C135.7 (2)C20—C19—N2—C1298.24 (18)
N1—C11—C12—N22.14 (16)C23—C22—N3—O4179.88 (13)
C8—C11—C12—N2176.96 (13)C21—C22—N3—O40.2 (2)
N2—C12—C13—C14176.07 (16)C24—C25—N4—C261.1 (3)
C11—C12—C13—C140.6 (2)C27—C26—N4—C251.0 (3)
C12—C13—C14—C93.5 (3)C22—N3—O4—C2012.78 (18)
C8—C9—C14—C130.1 (3)C19—C20—O4—N3100.89 (14)
C10—C9—C14—C13179.91 (15)C21—C20—O4—N319.64 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N3i0.932.583.471 (2)160
C3—H3···O4i0.932.673.470 (2)145
C19—H19A···O3ii0.972.563.3356 (19)137
C21—H21A···O3ii0.972.453.350 (2)154
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+3, y, z+2.

Experimental details

Crystal data
Chemical formulaC27H20N4O4
Mr464.47
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.0930 (2), 12.1191 (3), 12.2743 (2)
α, β, γ (°)87.109 (1), 73.612 (1), 72.283 (1)
V3)1099.35 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.14 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
36799, 5659, 3900
Rint0.031
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.148, 1.02
No. of reflections5659
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.20

Computer programs: APEX2 (Bruker, 2009), SAINT-Plus (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N3i0.932.583.471 (2)160.0
C3—H3···O4i0.932.673.470 (2)145.1
C19—H19A···O3ii0.972.563.3356 (19)136.9
C21—H21A···O3ii0.972.453.350 (2)153.7
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+3, y, z+2.
 

References

First citationAfrakssou, Z., Haoudi, A., Capet, F., Rolando, C. & El Ammari, L. (2011). Acta Cryst. E67, o1363–o1364.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAfrakssou, Z., Rodi, Y. K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1851.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarasch, D., Zipori, O., Ringel, I., Ginsbury, I., Samuni, A. & Katzhendler, J. (1999). Eur. J. Med. Chem. 34, 597–615.  Web of Science PubMed CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampos-Martin, J. M., Blanco-Brieva, G. & Fierro, J. L. G. (2006). Angew. Chem. Int. Ed. 45, 6962–6984.  CAS Google Scholar
First citationDou, Y., Haswell, S., Greenman, J. & Wadhawan, J. (2009). Electrochem. Commun. 11, 1976–1981.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarish, S., Sridharan, D., Kumar, S. S., Joseph, J. & Phani, K. L. N. (2009). Electrochim. Acta, 54, 3618–3622.  Web of Science CrossRef CAS Google Scholar
First citationHenderson, P. T., Armitage, B. & Schuster, G. B. (1998). Biochemistry, 37, 2991–3000.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJürmann, G., Schiffrin, D. J. & Tammeveski, K. (2007). Electrochim. Acta, 53, 390–399.  Google Scholar
First citationLafitte, V. G. H., Wang, W., Yashina, A. S. & Lawrence, N. S. (2008). Electrochem. Commun. 10, 1831–1834.  Web of Science CrossRef CAS Google Scholar
First citationManisankar, P. & Gomathi, A. (2005). J. Mol. Catal. A Chem. 232, 45–52.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWildgoose, G. G., Pandurangappa, M., Lawrence, N. S., Jiang, L., Jones, T. G. J. & Compton, R. G. (2003). Talanta, 60, 887–893.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWong, E. L. S., Erohkin, P. & Gooding, J. J. (2004). Electrochem. Commun. 6, 648–654.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o945-o946
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds