organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o968-o969

6-(4-Methyl­phen­yl)-1,3,5-triazine-2,4-di­amine–benzoic acid (1/1)

aSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Government Arts College (Autonomous), Thanthonimalai, Karur 639 005, Tamil Nadu, India
*Correspondence e-mail: arazaki@usm.my

(Received 7 May 2013; accepted 20 May 2013; online 25 May 2013)

The benzoic acid mol­ecule of the title adduct, C10H11N5·C7H6O2, is approximately planar, with a dihedral angle of 7.2 (3)° between the carb­oxy­lic acid group and the benzene ring. In the triazine mol­ecule, the plane of the triazine ring makes a dihedral angle of 28.85 (9)° with that of the adjacent benzene ring. In the crystal, the two components are linked by N—H⋯O and O—H⋯N hydrogen bonds with an R22(8) motif, thus generating a 1 + 1 unit of triazine and benzoic acid mol­ecules. The acid–base units are further connected by N—H⋯N hydrogen bonds with R22(8) motifs, forming a supra­molecular ribbon along [101]. The crystal structure also features weak ππ [centroid–centroid distances = 3.7638 (12) and 3.6008 (12) Å] and C—H⋯π inter­actions.

Related literature

For the biological activity of triazine derivatives, see: Bork et al. (2003[Bork, J. T., Lee, J. W., Khersonsky, S. M., Moon, H. S. & Chang, Y. T. (2003). Org. Lett. 5, 117-120.]). For related structures, see: Thanigaimani et al. (2007[Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2007). Acta Cryst. E63, o4450-o4451.], 2012a[Thanigaimani, K., Razak, I. A., Arshad, S., Jagatheesan, R. & Santhanaraj, K. J. (2012a). Acta Cryst. E68, o2910.],b[Thanigaimani, K., Razak, I. A., Arshad, S., Jagatheesan, R. & Santhanaraj, K. J. (2012b). Acta Cryst. E68, o2938-o2939.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11N5·C7H6O2

  • Mr = 323.36

  • Triclinic, [P \overline 1]

  • a = 7.4324 (5) Å

  • b = 10.9717 (3) Å

  • c = 11.2267 (3) Å

  • α = 117.202 (1)°

  • β = 101.645 (2)°

  • γ = 94.032 (2)°

  • V = 783.47 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.53 × 0.43 × 0.21 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.952, Tmax = 0.980

  • 16402 measured reflections

  • 4578 independent reflections

  • 3744 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.157

  • S = 1.11

  • 4578 reflections

  • 238 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H1N4⋯N2i 0.839 (19) 2.19 (2) 3.021 (2) 172 (2)
N4—H2N4⋯O2ii 0.86 (3) 2.11 (3) 2.965 (3) 172 (3)
N5—H1N5⋯N3iii 0.85 (3) 2.14 (3) 2.984 (3) 169 (3)
O1—H1O1⋯N1iv 0.83 (3) 1.80 (3) 2.613 (2) 167 (3)
C1—H1BCg2v 0.98 2.75 3.661 (2) 156
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y+1, z+1; (iii) -x+2, -y+1, -z+2; (iv) x, y-1, z-1; (v) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Triazine derivatives show antitumor activity, as well as a broad range of biological activities, such as anti-angiogenesis and antimicrobial effects (Bork et al., 2003). Related crystal structures of 2,4-diamino-6-phenyl-1,3,5-triazine- sorbic acid (1/1) (Thanigaimani et al., 2007), 6-(4-methoxyphenyl)-1,3,5-triazine-2,4-diamine (Thanigaimani et al., 2012a) and adipic acid-2.4-diamino- 6-(4-methoxyphenyl)-1,3,5-triazine (1/2) (Thanigaimani et al., 2012b) have been reported. In the present study, hydrogen-bonding patterns in the 2,4-diamino-6-(4-methylphenyl)-1,3,5-triazine-benzoic acid (1/1) co-crystal are investigated.

The asymmetric unit (Fig. 1) contains one 2,4-diamino-6-(4-methylphenyl)-1,3,5-triazine molecule and one benzoic acid molecule. The dihedral angle between the triazine ring [N1/C10/N2/C8/N3/C9, maximum deviation = 0.006 (2) Å for atoms N2 & C10] and the plane formed by the benzoic acid molecule (O1/O2/C11–C17) is 11.16 (7)°. The triazine ring forms dihedral angle of 28.85 (9)° with the benzene ring (C2–C7). The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal (Fig. 2), the triazine molecules are base-paired [with a graph-set (Bernstein et al., 1995) of R22(8)] on either side via N4—H1N4···N2i and N5—H1N5···N3iii hydrogen bonds (symmetry codes in Table 1), forming a supramolecular ribbon. Each triazine molecule interacts with the carboxyl group of benzoic acid molecule via N4—H2N4···O2ii and O1—H1O1···N1iv hydrogen bonds (symmetry codes in Table 1), generating R22(8) ring motifs. The crystal structure is further stabilized by ππ interactions between the benzene (Cg2; C2–C7) rings [Cg2···Cg2= 3.7638 (12) Å; 1 - x, -y, 1 - z] and that between triazine (Cg1; N1/C9/N3/C8/N2/C10) and benzene rings (Cg3; C12–C17) [Cg1···Cg3= 3.6008 (12) Å; 2 - x,1 - y, 1 - z] and C—H···π interactions (Table 1) involving the C2–C7 (centroid Cg2) ring.

Related literature top

For the biological activity of triazine derivatives, see: Bork et al. (2003). For related structures, see: Thanigaimani et al. (2007, 2012a,b). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

Hot methanol solutions (20 ml) of 2,4-diamino-6-(4-methylphenyl)-1,3,5-triazine (50 mg, Aldrich) and benzoic acid (31 mg, Aldrich) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound (I) appeared after a few days.

Refinement top

O– and N-bound H atoms were located in a difference Fourier maps. Atoms H1N4, H2N4, H1N5 and H2N5 were refined freely, while atom H1O1 was refined with a bond restraint O—H = 0.82 (1) Å [refined distances: N4—H1N4 = 0.84 (2) Å, N4—H2N4 = 0.86 (3) Å, N5—H1N5 = 0.85 (3) Å, N5—H2N5 = 0.80 (3) Å and O1—H1O1 = 0.833 (10) Å]. The remaining hydrogen atoms were positioned geometrically (C—H = 0.95–0.98 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). A rotating-group model was used for the methyl group. Six outliers (-4 3 0, -2 1 0, -3 -8 13, -2 6 0, -3 -3 12 and -6 4 0) were omitted in the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
6-(4-Methylphenyl)-1,3,5-triazine-2,4-diamine–benzoic acid (1/1) top
Crystal data top
C10H11N5·C7H6O2Z = 2
Mr = 323.36F(000) = 340
Triclinic, P1Dx = 1.371 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4324 (5) ÅCell parameters from 7150 reflections
b = 10.9717 (3) Åθ = 2.9–30.0°
c = 11.2267 (3) ŵ = 0.09 mm1
α = 117.202 (1)°T = 100 K
β = 101.645 (2)°Block, colourless
γ = 94.032 (2)°0.53 × 0.43 × 0.21 mm
V = 783.47 (6) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4578 independent reflections
Radiation source: fine-focus sealed tube3744 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 30.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.952, Tmax = 0.980k = 1514
16402 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0412P)2 + 1.1661P]
where P = (Fo2 + 2Fc2)/3
4578 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.38 e Å3
1 restraintΔρmin = 0.40 e Å3
Crystal data top
C10H11N5·C7H6O2γ = 94.032 (2)°
Mr = 323.36V = 783.47 (6) Å3
Triclinic, P1Z = 2
a = 7.4324 (5) ÅMo Kα radiation
b = 10.9717 (3) ŵ = 0.09 mm1
c = 11.2267 (3) ÅT = 100 K
α = 117.202 (1)°0.53 × 0.43 × 0.21 mm
β = 101.645 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4578 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3744 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.980Rint = 0.028
16402 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0621 restraint
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.38 e Å3
4578 reflectionsΔρmin = 0.40 e Å3
238 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7322 (2)0.67180 (16)0.85847 (15)0.0142 (3)
N20.6434 (2)0.46349 (15)0.63917 (16)0.0134 (3)
N30.8105 (2)0.45860 (16)0.84190 (15)0.0143 (3)
N40.5792 (2)0.67431 (17)0.66117 (17)0.0174 (3)
N50.8918 (3)0.66235 (18)1.05089 (17)0.0183 (3)
O10.7991 (2)0.06107 (15)0.03289 (15)0.0225 (3)
O20.6262 (2)0.02682 (15)0.13338 (15)0.0238 (3)
C10.7538 (3)0.1872 (2)0.3826 (2)0.0216 (4)
H1A0.71170.23880.42680.032*
H1B0.88310.19590.37880.032*
H1C0.67320.22550.28810.032*
C20.7436 (2)0.03535 (19)0.4656 (2)0.0161 (4)
C30.7435 (3)0.02206 (19)0.6053 (2)0.0165 (4)
H3A0.74790.03570.64770.020*
C40.7371 (3)0.16236 (19)0.68307 (19)0.0154 (3)
H4A0.73770.19970.77800.018*
C50.7297 (2)0.24850 (18)0.62243 (18)0.0128 (3)
C60.7296 (3)0.19181 (19)0.48277 (19)0.0147 (3)
H6A0.72470.24950.44020.018*
C70.7367 (3)0.05171 (19)0.40579 (19)0.0169 (4)
H7A0.73690.01460.31100.020*
C80.7265 (2)0.39923 (18)0.70582 (18)0.0127 (3)
C90.8102 (2)0.59648 (18)0.91395 (18)0.0136 (3)
C100.6516 (2)0.60150 (18)0.72027 (18)0.0138 (3)
C110.7236 (3)0.0182 (2)0.01503 (19)0.0173 (4)
C120.7677 (3)0.17012 (19)0.0888 (2)0.0174 (4)
C130.8950 (3)0.2206 (2)0.2173 (2)0.0192 (4)
H13A0.95520.15820.24110.023*
C140.9343 (3)0.3624 (2)0.3110 (2)0.0224 (4)
H14A1.02180.39700.39880.027*
C150.8454 (3)0.4537 (2)0.2765 (2)0.0258 (5)
H15A0.87240.55070.34090.031*
C160.7172 (3)0.4037 (2)0.1480 (2)0.0256 (5)
H16A0.65700.46630.12450.031*
C170.6776 (3)0.2617 (2)0.0543 (2)0.0211 (4)
H17A0.58930.22690.03320.025*
H1N40.527 (3)0.638 (2)0.576 (2)0.012 (5)*
H2N40.584 (4)0.762 (3)0.715 (3)0.021 (6)*
H1N50.965 (4)0.621 (3)1.082 (3)0.026 (7)*
H2N50.909 (4)0.746 (3)1.090 (3)0.026 (7)*
H1O10.762 (5)0.1439 (16)0.029 (3)0.066 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0161 (7)0.0122 (7)0.0114 (7)0.0041 (5)0.0008 (5)0.0042 (6)
N20.0143 (7)0.0117 (7)0.0125 (7)0.0032 (5)0.0009 (5)0.0053 (6)
N30.0160 (7)0.0125 (7)0.0118 (7)0.0039 (6)0.0015 (5)0.0045 (6)
N40.0241 (8)0.0127 (7)0.0109 (7)0.0057 (6)0.0014 (6)0.0041 (6)
N50.0250 (9)0.0135 (7)0.0120 (7)0.0072 (6)0.0001 (6)0.0041 (6)
O10.0317 (8)0.0136 (6)0.0159 (7)0.0043 (6)0.0003 (6)0.0045 (5)
O20.0323 (8)0.0166 (7)0.0174 (7)0.0055 (6)0.0005 (6)0.0063 (6)
C10.0202 (9)0.0141 (8)0.0263 (10)0.0055 (7)0.0070 (8)0.0056 (8)
C20.0115 (8)0.0136 (8)0.0192 (9)0.0025 (6)0.0030 (6)0.0050 (7)
C30.0159 (8)0.0146 (8)0.0206 (9)0.0038 (7)0.0043 (7)0.0100 (7)
C40.0150 (8)0.0163 (8)0.0134 (8)0.0029 (6)0.0024 (6)0.0066 (7)
C50.0112 (7)0.0118 (7)0.0132 (8)0.0024 (6)0.0016 (6)0.0049 (6)
C60.0148 (8)0.0159 (8)0.0145 (8)0.0042 (6)0.0036 (6)0.0081 (7)
C70.0185 (9)0.0157 (8)0.0137 (8)0.0042 (7)0.0046 (7)0.0046 (7)
C80.0121 (8)0.0118 (7)0.0137 (8)0.0022 (6)0.0032 (6)0.0059 (6)
C90.0145 (8)0.0130 (8)0.0123 (8)0.0039 (6)0.0032 (6)0.0053 (6)
C100.0135 (8)0.0132 (8)0.0137 (8)0.0033 (6)0.0021 (6)0.0061 (7)
C110.0201 (9)0.0146 (8)0.0167 (8)0.0032 (7)0.0058 (7)0.0068 (7)
C120.0206 (9)0.0125 (8)0.0186 (9)0.0032 (7)0.0096 (7)0.0053 (7)
C130.0211 (9)0.0157 (9)0.0200 (9)0.0033 (7)0.0078 (7)0.0070 (7)
C140.0213 (9)0.0176 (9)0.0214 (9)0.0011 (7)0.0085 (8)0.0032 (8)
C150.0276 (11)0.0136 (9)0.0321 (11)0.0003 (8)0.0154 (9)0.0050 (8)
C160.0294 (11)0.0176 (9)0.0370 (12)0.0090 (8)0.0179 (9)0.0147 (9)
C170.0241 (10)0.0190 (9)0.0242 (10)0.0059 (7)0.0108 (8)0.0117 (8)
Geometric parameters (Å, º) top
N1—C91.341 (2)C3—C41.390 (3)
N1—C101.351 (2)C3—H3A0.9500
N2—C81.340 (2)C4—C51.393 (3)
N2—C101.353 (2)C4—H4A0.9500
N3—C81.340 (2)C5—C61.398 (2)
N3—C91.351 (2)C5—C81.487 (2)
N4—C101.330 (2)C6—C71.388 (3)
N4—H1N40.84 (2)C6—H6A0.9500
N4—H2N40.86 (3)C7—H7A0.9500
N5—C91.342 (2)C11—C121.495 (3)
N5—H1N50.85 (3)C12—C131.389 (3)
N5—H2N50.80 (3)C12—C171.398 (3)
O1—C111.318 (2)C13—C141.388 (3)
O1—H1O10.833 (10)C13—H13A0.9500
O2—C111.222 (2)C14—C151.392 (3)
C1—C21.509 (3)C14—H14A0.9500
C1—H1A0.9800C15—C161.392 (3)
C1—H1B0.9800C15—H15A0.9500
C1—H1C0.9800C16—C171.391 (3)
C2—C71.395 (3)C16—H16A0.9500
C2—C31.397 (3)C17—H17A0.9500
C9—N1—C10115.80 (15)C6—C7—H7A119.5
C8—N2—C10114.74 (15)C2—C7—H7A119.5
C8—N3—C9114.64 (15)N2—C8—N3126.06 (16)
C10—N4—H1N4122.6 (16)N2—C8—C5117.84 (15)
C10—N4—H2N4116.8 (17)N3—C8—C5116.10 (15)
H1N4—N4—H2N4121 (2)N1—C9—N5117.70 (16)
C9—N5—H1N5117.4 (18)N1—C9—N3124.60 (16)
C9—N5—H2N5117.2 (19)N5—C9—N3117.69 (17)
H1N5—N5—H2N5119 (3)N4—C10—N1117.28 (16)
C11—O1—H1O1108 (3)N4—C10—N2118.57 (16)
C2—C1—H1A109.5N1—C10—N2124.15 (16)
C2—C1—H1B109.5O2—C11—O1123.70 (18)
H1A—C1—H1B109.5O2—C11—C12122.39 (18)
C2—C1—H1C109.5O1—C11—C12113.91 (17)
H1A—C1—H1C109.5C13—C12—C17120.07 (18)
H1B—C1—H1C109.5C13—C12—C11121.28 (18)
C7—C2—C3118.31 (17)C17—C12—C11118.65 (18)
C7—C2—C1120.98 (18)C14—C13—C12119.9 (2)
C3—C2—C1120.70 (18)C14—C13—H13A120.0
C4—C3—C2121.04 (18)C12—C13—H13A120.0
C4—C3—H3A119.5C13—C14—C15120.1 (2)
C2—C3—H3A119.5C13—C14—H14A120.0
C3—C4—C5120.29 (17)C15—C14—H14A120.0
C3—C4—H4A119.9C14—C15—C16120.27 (19)
C5—C4—H4A119.9C14—C15—H15A119.9
C4—C5—C6119.00 (16)C16—C15—H15A119.9
C4—C5—C8120.53 (16)C17—C16—C15119.7 (2)
C6—C5—C8120.46 (16)C17—C16—H16A120.2
C7—C6—C5120.42 (17)C15—C16—H16A120.2
C7—C6—H6A119.8C16—C17—C12120.0 (2)
C5—C6—H6A119.8C16—C17—H17A120.0
C6—C7—C2120.94 (17)C12—C17—H17A120.0
C7—C2—C3—C40.1 (3)C10—N1—C9—N30.8 (3)
C1—C2—C3—C4179.00 (17)C8—N3—C9—N10.7 (3)
C2—C3—C4—C50.3 (3)C8—N3—C9—N5179.86 (17)
C3—C4—C5—C60.2 (3)C9—N1—C10—N4177.53 (17)
C3—C4—C5—C8178.82 (17)C9—N1—C10—N21.3 (3)
C4—C5—C6—C70.0 (3)C8—N2—C10—N4177.28 (17)
C8—C5—C6—C7178.61 (17)C8—N2—C10—N11.5 (3)
C5—C6—C7—C20.1 (3)O2—C11—C12—C13172.78 (19)
C3—C2—C7—C60.1 (3)O1—C11—C12—C137.2 (3)
C1—C2—C7—C6179.21 (17)O2—C11—C12—C177.3 (3)
C10—N2—C8—N31.4 (3)O1—C11—C12—C17172.72 (18)
C10—N2—C8—C5177.62 (16)C17—C12—C13—C140.7 (3)
C9—N3—C8—N21.0 (3)C11—C12—C13—C14179.43 (18)
C9—N3—C8—C5178.05 (16)C12—C13—C14—C150.3 (3)
C4—C5—C8—N2152.42 (17)C13—C14—C15—C160.1 (3)
C6—C5—C8—N229.0 (2)C14—C15—C16—C170.2 (3)
C4—C5—C8—N328.5 (2)C15—C16—C17—C120.6 (3)
C6—C5—C8—N3150.08 (17)C13—C12—C17—C160.8 (3)
C10—N1—C9—N5179.96 (17)C11—C12—C17—C16179.30 (18)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
N4—H1N4···N2i0.839 (19)2.19 (2)3.021 (2)172 (2)
N4—H2N4···O2ii0.86 (3)2.11 (3)2.965 (3)172 (3)
N5—H1N5···N3iii0.85 (3)2.14 (3)2.984 (3)169 (3)
O1—H1O1···N1iv0.83 (3)1.80 (3)2.613 (2)167 (3)
C1—H1B···Cg2v0.982.753.661 (2)156
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+2, y+1, z+2; (iv) x, y1, z1; (v) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC10H11N5·C7H6O2
Mr323.36
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.4324 (5), 10.9717 (3), 11.2267 (3)
α, β, γ (°)117.202 (1), 101.645 (2), 94.032 (2)
V3)783.47 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.53 × 0.43 × 0.21
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.952, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
16402, 4578, 3744
Rint0.028
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.157, 1.11
No. of reflections4578
No. of parameters238
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.40

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
N4—H1N4···N2i0.839 (19)2.19 (2)3.021 (2)172 (2)
N4—H2N4···O2ii0.86 (3)2.11 (3)2.965 (3)172 (3)
N5—H1N5···N3iii0.85 (3)2.14 (3)2.984 (3)169 (3)
O1—H1O1···N1iv0.83 (3)1.80 (3)2.613 (2)167 (3)
C1—H1B···Cg2v0.982.753.661 (2)156
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+2, y+1, z+2; (iv) x, y1, z1; (v) x+2, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research facilities and USM Short Term Grant (No. 304/PFIZIK/6312078) to conduct this work. KT thanks The Academy of Sciences for the Developing World and USM for a TWAS–USM fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBork, J. T., Lee, J. W., Khersonsky, S. M., Moon, H. S. & Chang, Y. T. (2003). Org. Lett. 5, 117–120.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2007). Acta Cryst. E63, o4450–o4451.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationThanigaimani, K., Razak, I. A., Arshad, S., Jagatheesan, R. & Santhanaraj, K. J. (2012a). Acta Cryst. E68, o2910.  CSD CrossRef IUCr Journals Google Scholar
First citationThanigaimani, K., Razak, I. A., Arshad, S., Jagatheesan, R. & Santhanaraj, K. J. (2012b). Acta Cryst. E68, o2938–o2939.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o968-o969
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds