organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Iso­propyl-5-methyl-2-sulfanyl­idene­imidazolidin-4-one

aDivision of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
*Correspondence e-mail: kunimoto@se.kanazawa-u.ac.jp

(Received 13 May 2013; accepted 17 May 2013; online 25 May 2013)

In the title compound, C7H12N2OS, the 2-sulfanylideneimidazolidin-4-one moiety is nearly planar, with a maximum deviation of 0.054 (2) Å. In the crystal, a pair of N—H⋯O hydrogen bonds and a pair of N—H⋯S hydrogen bonds each form a centrosymmetric ring with an R22(8) graph-set motif. The enanti­omeric R and S mol­ecules are alternately linked into a tape along [1-10] via these pairs of hydrogen bonds.

Related literature

For applications and the biological activity of 2-sulfanylideneimidazolidin-4-ones, see: Marton et al. (1993[Marton, J., Enisz, J., Hosztafi, S. & Timar, T. (1993). J. Agric. Food Chem. 41, 148-152.]). For the crystal structures of related compounds, see: Devillanova et al. (1987[Devillanova, F. A., Isaia, F., Verani, G., Battaglia, L. P. & Corradi, A. B. (1987). J. Chem. Res. 6, 192-193.]); Ogawa et al. (2009[Ogawa, T., Okumura, H., Honda, M., Suda, M., Fujinami, S., Kuwae, A., Hanai, K. & Kunimoto, K.-K. (2009). Anal. Sci. X-ray Struct. Anal. Online, 25, 91-92.]); Walker et al. (1969[Walker, L. A., Folting, K. & Merritt, L. L. (1969). Acta Cryst. B25, 88-93.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For hydrogen-bond motifs, see: Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]). For the synthetic procedure, see: Wang et al. (2006[Wang, Z. D., Sheikh, S. O. & Zhang, Y. (2006). Molecules, 11, 739-750.]).

[Scheme 1]

Experimental

Crystal data
  • C7H12N2OS

  • Mr = 172.26

  • Monoclinic, P 21 /c

  • a = 5.8317 (5) Å

  • b = 9.2114 (8) Å

  • c = 16.8967 (16) Å

  • β = 95.855 (3)°

  • V = 902.92 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 123 K

  • 0.20 × 0.10 × 0.04 mm

Data collection
  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.795, Tmax = 0.988

  • 9484 measured reflections

  • 2051 independent reflections

  • 1660 reflections with F2 > 2σ(F2)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.126

  • S = 1.14

  • 2051 reflections

  • 111 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.78 (3) 2.63 (3) 3.383 (2) 162 (3)
N2—H2⋯O1ii 0.91 (4) 1.93 (4) 2.820 (3) 166 (3)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y, -z+1.

Data collection: CrystalClear (Rigaku, 2006[Rigaku (2006). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2008 in Il Milione (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Comment top

2-Sulfanylideneimidazolidin-4-one (2-thiohydantoin) derivatives are useful synthetic intermediates with a wide range of applications, such as therapeutics, fungicides and herbicides (Marton et al., 1993). Furthermore, 2-sulfanylideneimidazolidin-4-ones have an interesting structural feature. These compounds commonly carry a thioamide and an amide group in a molecule, which provide equal numbers of the proton donor (D) and the acceptor (A) in a D–A–D–A sequence. Because of this unique structural feature, 2-sulfanylideneimidazolidin-4-ones are expected to form intricate hydrogen bonding networks in crystals. We have been studying the polymorphism and molecular conformations of 2-sulfanylideneimidazolidin-4-one (Ogawa et al., 2009) and their derivatives. In this paper, we report on the crystal structure of the title compound, C7H12N2OS.

In the title molecule (Fig. 1), the 2-sulfanylideneimidazolidin-4-one moiety (S1/O1/N1/N2/C1–C3) is nearly planar, with a maximum deviation of 0.054 (2) Å for atom N2. The N1—C1 distance [1.328 (3) Å] is shorter than the N2—C1 distance [1.389 (3) Å], and the S1—C1—N1 angle [128.62 (17)°] is greater than the S1—C1—N2 angle [124.27 (16)°]. These structural features are similar to those observed in 2-thiohydantoin (Devillanova et al., 1987; Ogawa et al., 2009; Walker et al., 1969) and other 2-thiohydantoin derivatives reported in the Cambridge Structural Database (Version 5.34; Allen, 2002) with both unsubstituted NH groups and sp3-hybridization at C3.

In the crystal structure (Fig. 2), the enantiomeric R- and S-molecules are connected via intermoleculer N1—H1···S1 hydrogen bonds of the neighboring thioamide moieties to form centrosymmetric R22(8) rings (Etter et al., 1990) (Table 1). Furthermore, the other centrosymmetric R22(8) rings are formed via intermolecular N2—H2···O1 hydrogen bonds of the neighboring amide moieties (Table 1). These two different rings are linked alternately into infinite one-dimensional tapes.

Related literature top

For applications and the biological activity of 2-sulfanylideneimidazolidin-4-ones, see: Marton et al. (1993). For the crystal structures of related compounds, see: Devillanova et al. (1987); Ogawa et al. (2009); Walker et al. (1969). For a description of the Cambridge Structural Database, see: Allen (2002). For hydrogen-bond motifs, see: Etter (1990). For the synthetic procedure, see: Wang et al. (2006).

Experimental top

The title compound was synthesized by slight modification of a reported method (Wang et al., 2006). A mixture of α-methyl-DL-valine (0.20 g, 1.53 mmol) and thiourea (0.35 g, 4.57 mmol) were allowed to react directly in the absence of any solvent at 180 °C for 5 h. The crude products were further purified by flash column chromatography using hexane and ethyl acetate as eluents (yield: 60%). Colorless crystals suitable for X-ray diffraction analysis were grown by slow evaporation from an aqueous solution.

Refinement top

H atoms bonded to N atoms were located in a difference map and refined freely [N1—H1 = 0.78 (3); N2—H2 = 0.91 (4)]. The remaining H atoms were positioned geometrically (C—H = 0.98 or 1.00 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C). A rotating group model was applied to the methyl groups.

Computing details top

Data collection: CrystalClear (Rigaku, 2006); cell refinement: CrystalClear (Rigaku, 2006); data reduction: CrystalClear (Rigaku, 2006); program(s) used to solve structure: SIR2008 in Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound, viewed down the a axis. Hydrogen bonds are shown as dashed cyan lines (see Table 1 for details).
5-Isopropyl-5-methyl-2-sulfanylideneimidazolidin-4-one top
Crystal data top
C7H12N2OSF(000) = 368
Mr = 172.26Dx = 1.267 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 2692 reflections
a = 5.8317 (5) Åθ = 3.5–27.5°
b = 9.2114 (8) ŵ = 0.31 mm1
c = 16.8967 (16) ÅT = 123 K
β = 95.855 (3)°Plate, colorless
V = 902.92 (14) Å30.20 × 0.10 × 0.04 mm
Z = 4
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
1660 reflections with F2 > 2σ(F2)
Detector resolution: 7.314 pixels mm-1Rint = 0.038
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 77
Tmin = 0.795, Tmax = 0.988k = 1110
9484 measured reflectionsl = 2121
2051 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0462P)2 + 1.0263P]
where P = (Fo2 + 2Fc2)/3
2051 reflections(Δ/σ)max < 0.001
111 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.31 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C7H12N2OSV = 902.92 (14) Å3
Mr = 172.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.8317 (5) ŵ = 0.31 mm1
b = 9.2114 (8) ÅT = 123 K
c = 16.8967 (16) Å0.20 × 0.10 × 0.04 mm
β = 95.855 (3)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
2051 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
1660 reflections with F2 > 2σ(F2)
Tmin = 0.795, Tmax = 0.988Rint = 0.038
9484 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.63 e Å3
2051 reflectionsΔρmin = 0.31 e Å3
111 parameters
Special details top

Experimental. m.p. 145 °C; 1H NMR (500 MHz, CDCl3): δ 9.11 (br s, 1H), 8.09 (br s, 1H), 2.07 (sep, 1H, J = 6.9 Hz), 1.46 (s, 3H), 1.03 (d, 3H, J = 6.9 Hz), 0.95 (d, 3H, J = 6.9 Hz); 13C NMR (125 MHz, CDCl3): δ 181.13, 177.71, 70.15, 34.82, 20.97, 16.86, 16.42; IR (KBr, cm-1): 3182 (ν(N—H)), 1743 (ν(CO)), 1532 (ν(C—N)+δ(N—H)).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.05936 (9)0.28891 (6)0.42364 (3)0.02414 (18)
O10.6264 (3)0.09152 (17)0.58845 (10)0.0278 (4)
N10.2019 (4)0.3572 (2)0.55956 (10)0.0204 (4)
N20.3053 (4)0.1562 (2)0.50439 (11)0.0244 (5)
C10.1488 (4)0.2702 (3)0.49775 (12)0.0192 (5)
C20.4673 (4)0.1723 (3)0.56850 (13)0.0219 (5)
C30.4068 (4)0.3105 (3)0.61121 (12)0.0190 (5)
C40.6026 (4)0.4209 (3)0.61059 (14)0.0259 (5)
C50.3484 (4)0.2730 (3)0.69649 (12)0.0225 (5)
C60.1683 (5)0.1524 (3)0.69600 (14)0.0300 (6)
C70.2715 (5)0.4046 (3)0.74022 (15)0.0331 (6)
H10.140 (5)0.431 (4)0.5650 (16)0.026 (7)*
H20.320 (6)0.086 (4)0.468 (2)0.049 (9)*
H4A0.73350.38960.64760.0310*
H4B0.54900.51610.62690.0310*
H4C0.65060.42770.55680.0310*
H50.49290.23610.72680.0270*
H6A0.22760.06430.67260.0360*
H6B0.02650.18330.66440.0360*
H6C0.13550.13210.75070.0360*
H7A0.13590.44760.71000.0397*
H7B0.39660.47610.74600.0397*
H7C0.23230.37550.79300.0397*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0281 (3)0.0216 (3)0.0209 (3)0.0062 (3)0.0060 (2)0.0030 (2)
O10.0281 (9)0.0245 (9)0.0290 (9)0.0104 (7)0.0057 (7)0.0047 (7)
N10.0255 (10)0.0156 (9)0.0193 (9)0.0067 (8)0.0011 (7)0.0018 (7)
N20.0315 (11)0.0185 (9)0.0219 (10)0.0086 (8)0.0039 (8)0.0053 (8)
C10.0223 (10)0.0177 (10)0.0171 (10)0.0037 (8)0.0005 (8)0.0013 (8)
C20.0245 (11)0.0192 (11)0.0212 (11)0.0008 (9)0.0016 (8)0.0017 (8)
C30.0205 (10)0.0178 (10)0.0179 (10)0.0024 (8)0.0017 (8)0.0007 (8)
C40.0254 (11)0.0231 (11)0.0286 (12)0.0014 (9)0.0001 (9)0.0003 (9)
C50.0223 (11)0.0258 (11)0.0188 (10)0.0012 (9)0.0004 (8)0.0001 (9)
C60.0306 (12)0.0296 (13)0.0295 (12)0.0072 (10)0.0010 (10)0.0047 (10)
C70.0376 (14)0.0332 (14)0.0286 (13)0.0006 (11)0.0035 (10)0.0060 (10)
Geometric parameters (Å, º) top
S1—C11.662 (2)N2—H20.91 (4)
O1—C21.210 (3)C4—H4A0.980
N1—C11.328 (3)C4—H4B0.980
N1—C31.470 (3)C4—H4C0.980
N2—C11.389 (3)C5—H51.000
N2—C21.371 (3)C6—H6A0.980
C2—C31.523 (3)C6—H6B0.980
C3—C41.529 (3)C6—H6C0.980
C3—C51.553 (3)C7—H7A0.980
C5—C61.528 (4)C7—H7B0.980
C5—C71.512 (4)C7—H7C0.980
N1—H10.78 (3)
C1—N1—C3113.63 (18)C3—C4—H4A109.471
C1—N2—C2112.12 (18)C3—C4—H4B109.469
S1—C1—N1128.62 (17)C3—C4—H4C109.469
S1—C1—N2124.27 (16)H4A—C4—H4B109.470
N1—C1—N2107.11 (18)H4A—C4—H4C109.476
O1—C2—N2126.9 (2)H4B—C4—H4C109.473
O1—C2—C3126.2 (2)C3—C5—H5107.349
N2—C2—C3106.89 (18)C6—C5—H5107.356
N1—C3—C2100.18 (16)C7—C5—H5107.359
N1—C3—C4111.34 (17)C5—C6—H6A109.476
N1—C3—C5111.94 (17)C5—C6—H6B109.471
C2—C3—C4110.09 (18)C5—C6—H6C109.465
C2—C3—C5109.67 (18)H6A—C6—H6B109.480
C4—C3—C5112.89 (17)H6A—C6—H6C109.472
C3—C5—C6111.88 (17)H6B—C6—H6C109.463
C3—C5—C7112.26 (19)C5—C7—H7A109.475
C6—C5—C7110.4 (2)C5—C7—H7B109.480
C1—N1—H1123.2 (19)C5—C7—H7C109.472
C3—N1—H1122.7 (19)H7A—C7—H7B109.474
C1—N2—H2126 (2)H7A—C7—H7C109.465
C2—N2—H2121 (2)H7B—C7—H7C109.461
C1—N1—C3—C21.1 (3)O1—C2—C3—C561.8 (3)
C1—N1—C3—C4115.27 (19)N2—C2—C3—N10.6 (2)
C1—N1—C3—C5117.31 (18)N2—C2—C3—C4117.96 (18)
C3—N1—C1—S1176.53 (17)N2—C2—C3—C5117.24 (18)
C3—N1—C1—N22.4 (3)N1—C3—C5—C658.7 (3)
C1—N2—C2—O1178.9 (2)N1—C3—C5—C766.0 (2)
C1—N2—C2—C32.1 (3)C2—C3—C5—C651.5 (2)
C2—N2—C1—S1176.16 (17)C2—C3—C5—C7176.24 (15)
C2—N2—C1—N12.9 (3)C4—C3—C5—C6174.68 (16)
O1—C2—C3—N1179.6 (2)C4—C3—C5—C760.6 (3)
O1—C2—C3—C463.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.78 (3)2.63 (3)3.383 (2)162 (3)
N2—H2···O1ii0.91 (4)1.93 (4)2.820 (3)166 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC7H12N2OS
Mr172.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)5.8317 (5), 9.2114 (8), 16.8967 (16)
β (°) 95.855 (3)
V3)902.92 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.20 × 0.10 × 0.04
Data collection
DiffractometerRigaku/MSC Mercury CCD
diffractometer
Absorption correctionMulti-scan
(REQAB; Rigaku, 1998)
Tmin, Tmax0.795, 0.988
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
9484, 2051, 1660
Rint0.038
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.126, 1.14
No. of reflections2051
No. of parameters111
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.63, 0.31

Computer programs: CrystalClear (Rigaku, 2006), SIR2008 in Il Milione (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006), CrystalStructure (Rigaku, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.78 (3)2.63 (3)3.383 (2)162 (3)
N2—H2···O1ii0.91 (4)1.93 (4)2.820 (3)166 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1.
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDevillanova, F. A., Isaia, F., Verani, G., Battaglia, L. P. & Corradi, A. B. (1987). J. Chem. Res. 6, 192–193.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarton, J., Enisz, J., Hosztafi, S. & Timar, T. (1993). J. Agric. Food Chem. 41, 148–152.  CrossRef CAS Web of Science Google Scholar
First citationOgawa, T., Okumura, H., Honda, M., Suda, M., Fujinami, S., Kuwae, A., Hanai, K. & Kunimoto, K.-K. (2009). Anal. Sci. X-ray Struct. Anal. Online, 25, 91–92.  CSD CrossRef CAS Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2006). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWalker, L. A., Folting, K. & Merritt, L. L. (1969). Acta Cryst. B25, 88–93.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWang, Z. D., Sheikh, S. O. & Zhang, Y. (2006). Molecules, 11, 739–750.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds