inorganic compounds
(Thiocyanato-κS)tris(thiourea-κS)mercury(II) chloride
aResearch and Development Center, Bharathiar University, Coimbatore 641 046, India, bDepartment of Physics, Rajeswari Vedachalam Government Arts College, Chengalpet 603 001, India, and cDepartment of Physics, The New College (Autonomous), Chennai 600 014, India
*Correspondence e-mail: drkrr2007@gmail.com, mnizam_new@yahoo.in
In the title salt, [Hg(NCS)(CH4N2S)3]Cl, the Hg2+ ion is coordinated in a severely distorted tetrahedral manner by three thiourea groups and one thiocyanate anion through their S atoms. The S—Hg—S angles vary widely from 87.39 (5) to 128.02 (4)°. Weak intramolecular N—H⋯S hydrogen bonds are observed, which form S(6) ring motifs. In the crystal, the ions are linked by N—H⋯N and weak N—H⋯Cl interactions, generating a three-dimensional network.
Related literature
For background to mercury(II) complexes with thiourea and thiocyanate ligands, see: Nawaz et al. (2010). For hard and soft acids and bases, see: Ozutsmi et al. (1989); Bell et al. (2001). For related structures, see: Safari et al. (2009); Nawaz et al. (2010); Ramesh et al. (2012). For graph-set notation, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2004); cell APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536813011847/jj2165sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813011847/jj2165Isup2.hkl
A mixture of thiourea, ammonium thiocyanate and mercury (II) choloride were dissolved in aqueous solution in the molar ratio 3:1:1 and thoroughly mixed for an hour to obtain a homogenous mixture. The solution was allowed to evaporate slowly at ambient temperature. Colourless single crystals suitable for single-crystal XRD were obtained in 12 days.
All H atoms were positioned geometrically with N—H = 0.86 Å and constrained to ride on their parent atoms with Uiso(H)=1.2Ueq.
Data collection: APEX2 (Bruker, 2004); cell
APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).Fig. 1. View of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms are presented as a small spheres of arbitrary radius. | |
Fig. 2. Packing diagram of (I) viewed along the a axis. Intramolecular N—H···S hydrogen bonds and weak N—H···Cl, and N—H···N intermolecular interactions are shown as dashed lines. |
[Hg(NCS)(CH4N2S)3]Cl | F(000) = 1968 |
Mr = 522.49 | Dx = 2.281 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 5125 reflections |
a = 8.2175 (3) Å | θ = 2.4–31.2° |
b = 16.3257 (8) Å | µ = 10.83 mm−1 |
c = 22.6793 (10) Å | T = 293 K |
V = 3042.6 (2) Å3 | Block, colorless |
Z = 8 | 0.30 × 0.25 × 0.20 mm |
Bruker Kappa APEXII CCD diffractometer | 5125 independent reflections |
Radiation source: fine-focus sealed tube | 3579 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.057 |
ω and ϕ scans | θmax = 31.8°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −12→6 |
Tmin = 0.140, Tmax = 0.221 | k = −23→24 |
38987 measured reflections | l = −32→33 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.082 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0291P)2 + 7.0058P] where P = (Fo2 + 2Fc2)/3 |
5125 reflections | (Δ/σ)max = 0.001 |
155 parameters | Δρmax = 2.17 e Å−3 |
0 restraints | Δρmin = −1.21 e Å−3 |
[Hg(NCS)(CH4N2S)3]Cl | V = 3042.6 (2) Å3 |
Mr = 522.49 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 8.2175 (3) Å | µ = 10.83 mm−1 |
b = 16.3257 (8) Å | T = 293 K |
c = 22.6793 (10) Å | 0.30 × 0.25 × 0.20 mm |
Bruker Kappa APEXII CCD diffractometer | 5125 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 3579 reflections with I > 2σ(I) |
Tmin = 0.140, Tmax = 0.221 | Rint = 0.057 |
38987 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.082 | H-atom parameters constrained |
S = 1.05 | Δρmax = 2.17 e Å−3 |
5125 reflections | Δρmin = −1.21 e Å−3 |
155 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 1.2410 (5) | 0.1993 (3) | 0.42350 (17) | 0.0280 (8) | |
C2 | 1.0389 (5) | 0.3016 (3) | 0.2771 (2) | 0.0321 (9) | |
C3 | 0.7067 (6) | 0.0234 (3) | 0.43089 (19) | 0.0333 (9) | |
C4 | 1.2429 (7) | −0.0184 (3) | 0.3691 (2) | 0.0498 (13) | |
N1 | 1.3113 (5) | 0.1934 (3) | 0.37245 (16) | 0.0488 (12) | |
H1A | 1.4063 | 0.2142 | 0.3671 | 0.059* | |
H1B | 1.2628 | 0.1687 | 0.3439 | 0.059* | |
N2 | 1.3169 (5) | 0.2370 (3) | 0.46633 (17) | 0.0445 (10) | |
H2A | 1.4119 | 0.2575 | 0.4604 | 0.053* | |
H2B | 1.2718 | 0.2414 | 0.5004 | 0.053* | |
N3 | 1.0072 (6) | 0.3302 (3) | 0.32922 (19) | 0.0511 (11) | |
H3A | 1.0352 | 0.3794 | 0.3383 | 0.061* | |
H3B | 0.9582 | 0.2999 | 0.3547 | 0.061* | |
N4 | 1.1131 (6) | 0.3476 (3) | 0.2386 (2) | 0.0541 (12) | |
H4A | 1.1409 | 0.3967 | 0.2477 | 0.065* | |
H4B | 1.1342 | 0.3287 | 0.2040 | 0.065* | |
N5 | 0.6681 (6) | 0.0872 (3) | 0.46201 (18) | 0.0496 (11) | |
H5A | 0.6676 | 0.0844 | 0.4999 | 0.060* | |
H5B | 0.6430 | 0.1324 | 0.4448 | 0.060* | |
N6 | 0.7440 (8) | −0.0438 (3) | 0.4576 (2) | 0.0667 (15) | |
H6A | 0.7430 | −0.0458 | 0.4955 | 0.080* | |
H6B | 0.7698 | −0.0865 | 0.4375 | 0.080* | |
N7 | 1.2853 (8) | −0.0407 (4) | 0.4142 (2) | 0.0779 (18) | |
Hg1 | 0.92567 (2) | 0.123362 (12) | 0.340864 (7) | 0.03933 (7) | |
S1 | 1.05319 (12) | 0.15817 (7) | 0.43857 (4) | 0.0313 (2) | |
S2 | 1.18864 (19) | 0.01386 (9) | 0.30317 (6) | 0.0529 (4) | |
S3 | 0.70350 (17) | 0.02592 (8) | 0.35487 (5) | 0.0430 (3) | |
S4 | 0.98486 (18) | 0.20568 (7) | 0.25448 (5) | 0.0411 (3) | |
Cl1 | 0.66976 (13) | 0.27345 (7) | 0.39858 (4) | 0.0323 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.025 (2) | 0.034 (2) | 0.0245 (18) | 0.0005 (16) | −0.0007 (15) | 0.0005 (16) |
C2 | 0.029 (2) | 0.028 (2) | 0.040 (2) | −0.0008 (16) | 0.0019 (17) | −0.0016 (17) |
C3 | 0.039 (3) | 0.029 (2) | 0.031 (2) | −0.0060 (18) | 0.0015 (18) | 0.0054 (17) |
C4 | 0.060 (3) | 0.044 (3) | 0.046 (3) | 0.022 (3) | 0.006 (2) | −0.005 (2) |
N1 | 0.032 (2) | 0.090 (3) | 0.0248 (18) | −0.021 (2) | 0.0068 (15) | −0.010 (2) |
N2 | 0.036 (2) | 0.066 (3) | 0.0310 (19) | −0.019 (2) | 0.0034 (16) | −0.0137 (19) |
N3 | 0.061 (3) | 0.037 (2) | 0.055 (3) | −0.013 (2) | 0.019 (2) | −0.0159 (19) |
N4 | 0.076 (3) | 0.030 (2) | 0.057 (3) | −0.015 (2) | 0.024 (2) | −0.0046 (19) |
N5 | 0.078 (3) | 0.034 (2) | 0.037 (2) | 0.007 (2) | 0.002 (2) | 0.0028 (18) |
N6 | 0.123 (5) | 0.037 (3) | 0.040 (2) | 0.026 (3) | 0.002 (3) | 0.008 (2) |
N7 | 0.110 (5) | 0.079 (4) | 0.044 (3) | 0.043 (4) | 0.005 (3) | 0.008 (3) |
Hg1 | 0.04559 (12) | 0.04260 (11) | 0.02981 (9) | −0.01684 (8) | −0.00241 (7) | 0.00517 (7) |
S1 | 0.0253 (5) | 0.0458 (6) | 0.0226 (4) | −0.0040 (4) | 0.0020 (4) | −0.0053 (4) |
S2 | 0.0672 (10) | 0.0556 (8) | 0.0358 (6) | 0.0222 (7) | −0.0004 (6) | −0.0097 (6) |
S3 | 0.0545 (8) | 0.0436 (7) | 0.0310 (5) | −0.0259 (6) | −0.0047 (5) | 0.0018 (5) |
S4 | 0.0683 (8) | 0.0323 (6) | 0.0227 (5) | −0.0161 (6) | −0.0053 (5) | 0.0020 (4) |
Cl1 | 0.0305 (5) | 0.0362 (5) | 0.0301 (5) | −0.0054 (4) | −0.0013 (4) | 0.0004 (4) |
C1—N1 | 1.297 (5) | N2—H2B | 0.8600 |
C1—N2 | 1.309 (5) | N3—H3A | 0.8600 |
C1—S1 | 1.717 (4) | N3—H3B | 0.8600 |
C2—N3 | 1.297 (6) | N4—H4A | 0.8600 |
C2—N4 | 1.302 (6) | N4—H4B | 0.8600 |
C2—S4 | 1.707 (4) | N5—H5A | 0.8600 |
C3—N6 | 1.290 (6) | N5—H5B | 0.8600 |
C3—N5 | 1.298 (6) | N6—H6A | 0.8600 |
C3—S3 | 1.725 (4) | N6—H6B | 0.8600 |
C4—N7 | 1.141 (7) | Hg1—S4 | 2.4250 (11) |
C4—S2 | 1.647 (6) | Hg1—S3 | 2.4422 (12) |
C4—S2 | 1.647 (6) | Hg1—S1 | 2.5162 (10) |
N1—H1A | 0.8600 | Hg1—S2 | 2.9320 (14) |
N1—H1B | 0.8600 | Hg1—S2 | 2.9320 (14) |
N2—H2A | 0.8600 | ||
N1—C1—N2 | 119.0 (4) | C2—N4—H4B | 120.0 |
N1—C1—S1 | 123.3 (3) | H4A—N4—H4B | 120.0 |
N2—C1—S1 | 117.7 (3) | C3—N5—H5A | 120.0 |
N3—C2—N4 | 119.9 (4) | C3—N5—H5B | 120.0 |
N3—C2—S4 | 123.4 (4) | H5A—N5—H5B | 120.0 |
N4—C2—S4 | 116.7 (4) | C3—N6—H6A | 120.0 |
N6—C3—N5 | 119.1 (4) | C3—N6—H6B | 120.0 |
N6—C3—S3 | 119.6 (4) | H6A—N6—H6B | 120.0 |
N5—C3—S3 | 121.4 (4) | S4—Hg1—S3 | 128.02 (4) |
N7—C4—S2 | 177.9 (6) | S4—Hg1—S1 | 120.18 (4) |
N7—C4—S2 | 177.9 (6) | S3—Hg1—S1 | 110.11 (4) |
C1—N1—H1A | 120.0 | S4—Hg1—S2 | 87.39 (5) |
C1—N1—H1B | 120.0 | S3—Hg1—S2 | 101.05 (5) |
H1A—N1—H1B | 120.0 | S1—Hg1—S2 | 95.02 (4) |
C1—N2—H2A | 120.0 | S4—Hg1—S2 | 87.39 (5) |
C1—N2—H2B | 120.0 | S3—Hg1—S2 | 101.05 (5) |
H2A—N2—H2B | 120.0 | S1—Hg1—S2 | 95.02 (4) |
C2—N3—H3A | 120.0 | C1—S1—Hg1 | 106.69 (14) |
C2—N3—H3B | 120.0 | C4—S2—Hg1 | 97.45 (18) |
H3A—N3—H3B | 120.0 | C3—S3—Hg1 | 97.71 (15) |
C2—N4—H4A | 120.0 | C2—S4—Hg1 | 108.55 (16) |
N1—C1—S1—Hg1 | −14.6 (4) | S2—Hg1—S2—C4 | 0 (9) |
N2—C1—S1—Hg1 | 166.6 (3) | N6—C3—S3—Hg1 | −115.5 (4) |
S4—Hg1—S1—C1 | −32.03 (16) | N5—C3—S3—Hg1 | 66.4 (4) |
S3—Hg1—S1—C1 | 161.59 (16) | S4—Hg1—S3—C3 | −160.34 (16) |
S2—Hg1—S1—C1 | 57.87 (16) | S1—Hg1—S3—C3 | 4.69 (17) |
S2—Hg1—S1—C1 | 57.87 (16) | S2—Hg1—S3—C3 | 104.27 (17) |
S2—C4—S2—Hg1 | 0 (100) | S2—Hg1—S3—C3 | 104.27 (17) |
S4—Hg1—S2—S2 | 0.00 (8) | N3—C2—S4—Hg1 | −17.9 (5) |
S3—Hg1—S2—S2 | 0.00 (8) | N4—C2—S4—Hg1 | 163.4 (4) |
S1—Hg1—S2—S2 | 0.00 (8) | S3—Hg1—S4—C2 | 138.25 (16) |
S4—Hg1—S2—C4 | 150.5 (2) | S1—Hg1—S4—C2 | −25.45 (17) |
S3—Hg1—S2—C4 | −81.2 (2) | S2—Hg1—S4—C2 | −119.74 (17) |
S1—Hg1—S2—C4 | 30.5 (2) | S2—Hg1—S4—C2 | −119.74 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl1i | 0.86 | 2.48 | 3.277 (4) | 155 |
N1—H1B···S2 | 0.86 | 2.76 | 3.475 (5) | 142 |
N2—H2A···Cl1i | 0.86 | 2.55 | 3.335 (4) | 152 |
N3—H3B···Cl1 | 0.86 | 2.61 | 3.320 (5) | 141 |
N4—H4B···Cl1ii | 0.86 | 2.51 | 3.370 (5) | 175 |
N5—H5B···Cl1 | 0.86 | 2.54 | 3.363 (4) | 161 |
N5—H5A···N7iii | 0.86 | 2.11 | 2.933 (7) | 160 |
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y, −z+1/2; (iii) −x+2, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Hg(NCS)(CH4N2S)3]Cl |
Mr | 522.49 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 293 |
a, b, c (Å) | 8.2175 (3), 16.3257 (8), 22.6793 (10) |
V (Å3) | 3042.6 (2) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 10.83 |
Crystal size (mm) | 0.30 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.140, 0.221 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 38987, 5125, 3579 |
Rint | 0.057 |
(sin θ/λ)max (Å−1) | 0.741 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.082, 1.05 |
No. of reflections | 5125 |
No. of parameters | 155 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 2.17, −1.21 |
Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl1i | 0.86 | 2.48 | 3.277 (4) | 155.2 |
N1—H1B···S2 | 0.86 | 2.76 | 3.475 (5) | 141.5 |
N2—H2A···Cl1i | 0.86 | 2.55 | 3.335 (4) | 151.5 |
N3—H3B···Cl1 | 0.86 | 2.61 | 3.320 (5) | 141.0 |
N4—H4B···Cl1ii | 0.86 | 2.51 | 3.370 (5) | 175.0 |
N5—H5B···Cl1 | 0.86 | 2.54 | 3.363 (4) | 160.8 |
N5—H5A···N7iii | 0.86 | 2.11 | 2.933 (7) | 160.0 |
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y, −z+1/2; (iii) −x+2, −y, −z+1. |
Acknowledgements
The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help in collecting the
data. KR thanks the University Grants Commission, Government of India, for financial support granted under a Major Research Project [F. No.41–1008/2012 (SR)].References
Bell, N. A., Branston, T. N., Clegg, W., Parker, L., Raper, E. S., Sammon, C. & Constable, C. P. (2001). Inorg. Chim. Acta, 319, 130–136. Web of Science CSD CrossRef CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nawaz, S., Sadaf, H., Fettouhi, M., Fazal, A. & Ahmad, S. (2010). Acta Cryst. E66, m952. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ozutsmi, K., Takamuku, T., Ishiguro, S. & Ohraki, H. (1989). Bull. Chem. Soc. Jpn, 62, 1875–1879. CrossRef Web of Science Google Scholar
Ramesh, V., Rajarajan, K., Kumar, K. S., Subashini, A. & NizamMohideen, M. (2012). Acta Cryst. E68, m335–m336. CSD CrossRef CAS IUCr Journals Google Scholar
Safari, N., Amani, V., Abedi, A., Notash, B. & Ng, S. W. (2009). Acta Cryst. E65, m372. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
This work is part of a research project concerning the investigation of thiourea (N2H4CS) and thiocyanate (SCN) based metal organic crystalline materials and their derivatives (Ramesh et al., 2012). Transition metal thiourea and thiocyanate coordination complexes are candidate materials for device applications including their nonlinear optical properties. As ligands, both thiourea and thiocyanate are interesting due to their potential formation of metalcoordination complexes as they exhibit multifunctional coordination modes due to the presence of 'S' and 'N' donor atoms. With reference to the hard and soft acids and bases) concept (Ozutsmi et al., 1989; Bell et al., 2001), thesoft cations show a pronounced affinity for coordination with the softer ligands, while hard cations prefer coordination with harder ligands. Several crystallographic reports about mercury(II) complexes usually consist of discrete monomeric molecules with tetrahedral (somewhat distorted) coordination environments around mercury(II) (Nawaz et al., 2010). Here, we report the synthesis and structure of the title salt, [(SC(2NH2))3(SCN-)Hg(2+]+ . Cl-,(I).
In (I), the Hg2+ ion is coordinated to three softer S atoms of thiourea and one softer S atom of a thiocyanate anion in addition to the isolated chlorine ion (Fig. 1). Intramolecular N—H···S hydrogen bonds are observed which form S(6) ring motifs (Bernstein et al., 1995). Bond distances and angles are in agreement with those reported for related compounds (Safari et al., 2009; Nawaz et al., 2010). The S—Hg—S angles vary widely from 87.39 (5)° to 128.02 (4)°, indicative of a distorted tetrahedral arrangement. The SCN- moiety is planar [to within 0.007 (1) Å] with the C—N and C—S bond lengths corresponding to the values intermediate between single and double bonds. The S2—C4—N7 unit is nearly linear with a bond angle of 177.9 (6)°. In the crystal, the ions are stabilized by weak N—H···Cl, and N—H···N intermolecular interactions (Table.1) which form a three-dimensional network (Fig. 2).