organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Fluoro­phen­yl)-5-iodo-7-methyl-3-phenyl­sulfinyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 17 April 2013; accepted 30 April 2013; online 4 May 2013)

In the title compound, C21H14FIO2S, the dihedral angles between the mean plane [r.m.s. deviation = 0.007 (1) Å] of the benzo­furan fragment and the pendant 4-fluoro­phenyl and phenyl rings are 3.66 (7) and 82.37 (6)°, respectively. In the crystal, mol­ecules are linked by pairs of C—H⋯I hydrogen bonds into centrosymmetric dimers, which are further packed into stacks along the b axis by C—H⋯O hydrogen bonds. In addition, the stacked mol­ecules exhibit inversion-related S⋯O contacts [2.9627 (14) Å] involving the sulfinyl groups.

Related literature

For background information and the crystal structures of related compounds, see: Choi et al. (2009[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o1809.], 2012[Choi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o1237.]). For details of sulfin­yl–sulfinyl inter­actions, see: Choi et al. (2008[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o1061.]) and for a review of carbon­yl–carbonyl inter­actions, see: Allen et al. (1998[Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320-329.]).

[Scheme 1]

Experimental

Crystal data
  • C21H14FIO2S

  • Mr = 476.28

  • Triclinic, [P \overline 1]

  • a = 8.1060 (3) Å

  • b = 10.7771 (4) Å

  • c = 11.2639 (4) Å

  • α = 71.814 (2)°

  • β = 74.496 (2)°

  • γ = 79.038 (2)°

  • V = 894.69 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.93 mm−1

  • T = 173 K

  • 0.36 × 0.28 × 0.19 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.562, Tmax = 0.746

  • 16292 measured reflections

  • 4404 independent reflections

  • 4125 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.062

  • S = 1.05

  • 4404 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯O2i 0.95 2.36 3.314 (3) 177
C17—H17⋯I1ii 0.95 2.97 3.705 (2) 135
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our continuing study of 5-iodo-3-phenylsulfinyl-1-benzofuran derivatives containing phenyl (Choi et al., 2009) and 4-fluorophenyl (Choi et al., 2012) substituents in 2-position, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.007 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angles between the mean plane of the benzofuran fragment and the pendant 4-fluorophenyl and phenyl rings are 3.66 (7) and 82.37 (6)°, respectively. In the crystal structure (Fig. 2), molecules are linked by pairs of C—H···I hydrogen bonds into centrosymmetric dimers, which are further packed into stacks along the b axis by C—H···O hydrogen bonds (Table 1). In addition, the crystal packing (Fig. 2) exhibits a sulfinyl–sulfinyl interaction (Choi et al., 2008) interpreted as similar to a type-II carbonyl–carbonyl interaction (Allen et al., 1998), with S1···O2iii and O2..S1iii distance of 2.9627 (14) Å .

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2009, 2012). For details of sulfinyl–sulfinyl interactions, see: Choi et al. (2008) and for a review of carbonyl–carbonyl interactions, see: Allen et al. (1998).

Experimental top

3-Chloroperoxybenzoic acid (77%, 179 mg, 0.8 mmol) was added in small portions to a stirred solution of 2-(4-fluorophenyl)-5-iodo-7-methyl-3-phenylsulfanyl-1-benzofuran (322 mg, 0.7 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 70%, m.p. 473–474 K; Rf = 0.74 (hexane-ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in benzene at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms. The positions of methyl hydrogens were optimized rotationally.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H..I, C—H···O and S···O interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) x - 1, y, z; (ii) - x + 2, - y, - z + 2; (iii) - x + 2, - y, - z + 1; (iv) x + 1, y, z.]
2-(4-Fluorophenyl)-5-iodo-7-methyl-3-phenylsulfinyl-1-benzofuran top
Crystal data top
C21H14FIO2SZ = 2
Mr = 476.28F(000) = 468
Triclinic, P1Dx = 1.768 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1060 (3) ÅCell parameters from 6652 reflections
b = 10.7771 (4) Åθ = 2.6–28.4°
c = 11.2639 (4) ŵ = 1.93 mm1
α = 71.814 (2)°T = 173 K
β = 74.496 (2)°Block, colourless
γ = 79.038 (2)°0.36 × 0.28 × 0.19 mm
V = 894.69 (6) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
4404 independent reflections
Radiation source: rotating anode4125 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.036
Detector resolution: 10.0 pixels mm-1θmax = 28.3°, θmin = 2.0°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1414
Tmin = 0.562, Tmax = 0.746l = 1414
16292 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: difference Fourier map
wR(F2) = 0.062H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0291P)2 + 0.4238P]
where P = (Fo2 + 2Fc2)/3
4404 reflections(Δ/σ)max = 0.002
236 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
C21H14FIO2Sγ = 79.038 (2)°
Mr = 476.28V = 894.69 (6) Å3
Triclinic, P1Z = 2
a = 8.1060 (3) ÅMo Kα radiation
b = 10.7771 (4) ŵ = 1.93 mm1
c = 11.2639 (4) ÅT = 173 K
α = 71.814 (2)°0.36 × 0.28 × 0.19 mm
β = 74.496 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4404 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4125 reflections with I > 2σ(I)
Tmin = 0.562, Tmax = 0.746Rint = 0.036
16292 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.062H-atom parameters constrained
S = 1.05Δρmax = 0.37 e Å3
4404 reflectionsΔρmin = 0.63 e Å3
236 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I11.038283 (17)0.207761 (13)1.022854 (12)0.03450 (6)
S10.88164 (6)0.15272 (4)0.52014 (4)0.02267 (9)
F10.52793 (19)0.62193 (14)0.03604 (12)0.0432 (3)
O10.76006 (17)0.52135 (12)0.54415 (12)0.0240 (3)
O21.03200 (17)0.08292 (13)0.57680 (14)0.0297 (3)
C10.8377 (2)0.30667 (17)0.55547 (17)0.0219 (3)
C20.8726 (2)0.32977 (17)0.66597 (17)0.0226 (3)
C30.9380 (2)0.25313 (18)0.77187 (18)0.0256 (4)
H30.97540.16190.78360.031*
C40.9455 (2)0.31737 (19)0.85932 (18)0.0263 (4)
C50.8945 (3)0.45161 (19)0.84379 (18)0.0274 (4)
H50.90380.49030.90650.033*
C60.8304 (2)0.52953 (18)0.73849 (18)0.0256 (4)
C70.8216 (2)0.46343 (17)0.65298 (17)0.0232 (3)
C80.7708 (2)0.42461 (17)0.48521 (17)0.0224 (3)
C90.7725 (3)0.67397 (19)0.7182 (2)0.0336 (4)
H9A0.77830.71630.62670.050*
H9B0.84790.71320.74800.050*
H9C0.65360.68680.76650.050*
C100.7072 (2)0.47139 (17)0.36758 (17)0.0234 (3)
C110.7151 (3)0.39187 (19)0.28875 (19)0.0285 (4)
H110.76260.30240.31200.034*
C120.6542 (3)0.4420 (2)0.17688 (19)0.0313 (4)
H120.65950.38800.12330.038*
C130.5866 (3)0.5714 (2)0.14591 (18)0.0305 (4)
C140.5757 (3)0.6538 (2)0.22019 (19)0.0315 (4)
H140.52790.74310.19580.038*
C150.6363 (3)0.60277 (19)0.33112 (18)0.0287 (4)
H150.62980.65800.38390.034*
C160.6935 (2)0.08351 (17)0.62724 (19)0.0253 (4)
C170.7012 (3)0.0107 (2)0.7511 (2)0.0351 (4)
H170.80530.00280.77940.042*
C180.5561 (3)0.0422 (2)0.8336 (3)0.0457 (6)
H180.55980.09210.91910.055*
C190.4053 (3)0.0223 (2)0.7911 (3)0.0484 (6)
H190.30530.05790.84810.058*
C200.3990 (3)0.0487 (3)0.6670 (3)0.0465 (6)
H200.29520.06110.63850.056*
C210.5442 (3)0.1020 (2)0.5834 (2)0.0343 (4)
H210.54110.15050.49750.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.03624 (9)0.04058 (9)0.02868 (8)0.00585 (6)0.01368 (6)0.00611 (6)
S10.0228 (2)0.01980 (19)0.0283 (2)0.00242 (16)0.00949 (17)0.01045 (16)
F10.0501 (8)0.0477 (7)0.0309 (6)0.0013 (6)0.0206 (6)0.0025 (5)
O10.0290 (7)0.0186 (6)0.0250 (6)0.0013 (5)0.0063 (5)0.0078 (5)
O20.0234 (6)0.0282 (7)0.0422 (8)0.0057 (5)0.0148 (6)0.0153 (6)
C10.0216 (8)0.0206 (8)0.0248 (8)0.0013 (6)0.0050 (7)0.0091 (6)
C20.0213 (8)0.0227 (8)0.0259 (8)0.0038 (6)0.0048 (7)0.0092 (7)
C30.0254 (9)0.0249 (8)0.0288 (9)0.0039 (7)0.0085 (7)0.0077 (7)
C40.0248 (9)0.0311 (9)0.0241 (9)0.0067 (7)0.0074 (7)0.0056 (7)
C50.0277 (9)0.0314 (9)0.0269 (9)0.0091 (8)0.0030 (7)0.0126 (7)
C60.0275 (9)0.0243 (8)0.0264 (9)0.0079 (7)0.0016 (7)0.0098 (7)
C70.0235 (8)0.0226 (8)0.0237 (8)0.0042 (7)0.0031 (7)0.0076 (7)
C80.0218 (8)0.0217 (8)0.0246 (8)0.0024 (6)0.0025 (7)0.0099 (7)
C90.0434 (12)0.0249 (9)0.0352 (10)0.0051 (8)0.0064 (9)0.0135 (8)
C100.0221 (8)0.0227 (8)0.0237 (8)0.0007 (7)0.0031 (7)0.0067 (7)
C110.0322 (10)0.0255 (9)0.0281 (9)0.0015 (7)0.0095 (8)0.0083 (7)
C120.0342 (10)0.0354 (10)0.0260 (9)0.0029 (8)0.0076 (8)0.0110 (8)
C130.0279 (9)0.0365 (10)0.0236 (9)0.0027 (8)0.0078 (8)0.0022 (8)
C140.0312 (10)0.0271 (9)0.0303 (10)0.0030 (8)0.0073 (8)0.0031 (8)
C150.0312 (10)0.0255 (9)0.0273 (9)0.0001 (7)0.0050 (8)0.0076 (7)
C160.0244 (9)0.0195 (8)0.0358 (10)0.0003 (7)0.0100 (8)0.0121 (7)
C170.0366 (11)0.0256 (9)0.0420 (12)0.0042 (8)0.0141 (9)0.0031 (8)
C180.0474 (14)0.0339 (11)0.0486 (14)0.0100 (10)0.0034 (11)0.0043 (10)
C190.0365 (12)0.0406 (13)0.0661 (17)0.0133 (10)0.0050 (12)0.0207 (12)
C200.0274 (11)0.0477 (13)0.0755 (18)0.0037 (9)0.0134 (11)0.0312 (13)
C210.0285 (10)0.0350 (10)0.0471 (12)0.0010 (8)0.0162 (9)0.0186 (9)
Geometric parameters (Å, º) top
I1—C42.0974 (19)C9—H9C0.9800
S1—O2i2.9627 (14)C10—C111.397 (3)
S1—O21.4920 (14)C10—C151.399 (3)
S1—C11.7748 (17)C11—C121.389 (3)
S1—C161.796 (2)C11—H110.9500
F1—C131.360 (2)C12—C131.369 (3)
O1—C71.368 (2)C12—H120.9500
O1—C81.379 (2)C13—C141.375 (3)
C1—C81.369 (2)C14—C151.379 (3)
C1—C21.449 (2)C14—H140.9500
C2—C71.393 (2)C15—H150.9500
C2—C31.394 (3)C16—C171.382 (3)
C3—C41.388 (3)C16—C211.383 (3)
C3—H30.9500C17—C181.383 (3)
C4—C51.396 (3)C17—H170.9500
C5—C61.387 (3)C18—C191.385 (4)
C5—H50.9500C18—H180.9500
C6—C71.387 (2)C19—C201.378 (4)
C6—C91.501 (3)C19—H190.9500
C8—C101.458 (3)C20—C211.390 (3)
C9—H9A0.9800C20—H200.9500
C9—H9B0.9800C21—H210.9500
O2—S1—C1105.04 (8)C11—C10—C15118.34 (17)
O2—S1—C16106.95 (9)C11—C10—C8123.24 (16)
C1—S1—C1697.02 (8)C15—C10—C8118.41 (16)
O2—S1—O2i78.36 (6)C12—C11—C10120.83 (18)
C1—S1—O2i172.01 (7)C12—C11—H11119.6
C16—S1—O2i88.76 (6)C10—C11—H11119.6
C7—O1—C8107.21 (13)C13—C12—C11118.25 (19)
C8—C1—C2107.21 (15)C13—C12—H12120.9
C8—C1—S1127.99 (14)C11—C12—H12120.9
C2—C1—S1124.78 (13)F1—C13—C12118.80 (19)
C7—C2—C3119.35 (17)F1—C13—C14117.99 (18)
C7—C2—C1104.84 (16)C12—C13—C14123.21 (19)
C3—C2—C1135.81 (17)C13—C14—C15117.99 (18)
C4—C3—C2116.34 (17)C13—C14—H14121.0
C4—C3—H3121.8C15—C14—H14121.0
C2—C3—H3121.8C14—C15—C10121.38 (18)
C3—C4—C5123.24 (18)C14—C15—H15119.3
C3—C4—I1118.53 (14)C10—C15—H15119.3
C5—C4—I1118.23 (14)C17—C16—C21121.16 (19)
C6—C5—C4121.18 (17)C17—C16—S1119.54 (15)
C6—C5—H5119.4C21—C16—S1119.29 (16)
C4—C5—H5119.4C16—C17—C18119.5 (2)
C5—C6—C7114.83 (17)C16—C17—H17120.3
C5—C6—C9123.14 (17)C18—C17—H17120.3
C7—C6—C9122.02 (18)C17—C18—C19119.7 (2)
O1—C7—C6124.22 (16)C17—C18—H18120.1
O1—C7—C2110.72 (15)C19—C18—H18120.1
C6—C7—C2125.06 (18)C20—C19—C18120.6 (2)
C1—C8—O1110.02 (16)C20—C19—H19119.7
C1—C8—C10136.31 (16)C18—C19—H19119.7
O1—C8—C10113.67 (15)C19—C20—C21120.1 (2)
C6—C9—H9A109.5C19—C20—H20120.0
C6—C9—H9B109.5C21—C20—H20120.0
H9A—C9—H9B109.5C16—C21—C20119.0 (2)
C6—C9—H9C109.5C16—C21—H21120.5
H9A—C9—H9C109.5C20—C21—H21120.5
H9B—C9—H9C109.5
O2—S1—C1—C8149.12 (17)S1—C1—C8—C102.6 (3)
C16—S1—C1—C8101.17 (18)C7—O1—C8—C10.17 (19)
O2—S1—C1—C228.97 (18)C7—O1—C8—C10179.24 (15)
C16—S1—C1—C280.74 (17)C1—C8—C10—C115.0 (3)
C8—C1—C2—C70.3 (2)O1—C8—C10—C11176.23 (17)
S1—C1—C2—C7178.71 (13)C1—C8—C10—C15175.6 (2)
C8—C1—C2—C3179.5 (2)O1—C8—C10—C153.1 (2)
S1—C1—C2—C32.1 (3)C15—C10—C11—C120.1 (3)
C7—C2—C3—C40.8 (3)C8—C10—C11—C12179.26 (18)
C1—C2—C3—C4178.3 (2)C10—C11—C12—C130.1 (3)
C2—C3—C4—C51.2 (3)C11—C12—C13—F1179.46 (18)
C2—C3—C4—I1178.91 (13)C11—C12—C13—C140.1 (3)
C3—C4—C5—C60.7 (3)F1—C13—C14—C15179.55 (18)
I1—C4—C5—C6179.40 (14)C12—C13—C14—C150.0 (3)
C4—C5—C6—C70.2 (3)C13—C14—C15—C100.1 (3)
C4—C5—C6—C9179.44 (18)C11—C10—C15—C140.2 (3)
C8—O1—C7—C6179.63 (17)C8—C10—C15—C14179.19 (18)
C8—O1—C7—C20.02 (19)O2—S1—C16—C1716.79 (18)
C5—C6—C7—O1178.99 (16)C1—S1—C16—C1791.31 (16)
C9—C6—C7—O10.2 (3)O2—S1—C16—C21162.03 (15)
C5—C6—C7—C20.6 (3)C1—S1—C16—C2189.87 (16)
C9—C6—C7—C2179.84 (18)C21—C16—C17—C181.4 (3)
C3—C2—C7—O1179.54 (16)S1—C16—C17—C18179.85 (17)
C1—C2—C7—O10.2 (2)C16—C17—C18—C190.3 (3)
C3—C2—C7—C60.1 (3)C17—C18—C19—C200.7 (4)
C1—C2—C7—C6179.46 (17)C18—C19—C20—C210.6 (4)
C2—C1—C8—O10.3 (2)C17—C16—C21—C201.5 (3)
S1—C1—C8—O1178.64 (13)S1—C16—C21—C20179.72 (16)
C2—C1—C8—C10179.0 (2)C19—C20—C21—C160.5 (3)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···O2ii0.952.363.314 (3)177
C17—H17···I1iii0.952.973.705 (2)135
Symmetry codes: (ii) x1, y, z; (iii) x+2, y, z+2.

Experimental details

Crystal data
Chemical formulaC21H14FIO2S
Mr476.28
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.1060 (3), 10.7771 (4), 11.2639 (4)
α, β, γ (°)71.814 (2), 74.496 (2), 79.038 (2)
V3)894.69 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.93
Crystal size (mm)0.36 × 0.28 × 0.19
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.562, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
16292, 4404, 4125
Rint0.036
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.062, 1.05
No. of reflections4404
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.63

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···O2i0.952.363.314 (3)177.0
C17—H17···I1ii0.952.973.705 (2)135.2
Symmetry codes: (i) x1, y, z; (ii) x+2, y, z+2.
 

Acknowledgements

This work was supported by the Blue-Bio Industry Regional Innovation Center (RIC08-06-07) at Dongeui University as an RIC program under the Ministry of Knowledge Economy and Busan city.

References

First citationAllen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o1237.  CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o1061.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o1809.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds