organic compounds
Methyl 2-[(2-chloroquinolin-3-yl)(hydroxy)methyl]acrylate
aPost Graduate and Research Department of Physics, Agurchand Manmull Jain College, Chennai 600 114, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: seshadri_pr@yahoo.com
There are two independent molecules (A and B) in the of the title compound, C14H12ClNO3. The mean planes of the methyl ester unit (Cmethyl—O—C=O; r.m.s. deviation = 0.051 Å for molecule A and 0.016 Å for molecule B) and the chloroquilonine ring system (r.m.s. deviation = 0.023 Å for molecule A and 0.014 Å for molecule B) form dihedral angles of 63.5 (1)° in molecule A and 78.1 (1)° in molecule B. The main difference between the two independent molecules is reflected in the (H)O—C—C=C(H2) torsion angle which is −109.7 (2)° in molecule A and 10.6 (2)° in molecule B. An intramolecular O—H⋯O hydrogen bond is observed in molecule A. In the crystal, molecules A and B are linked into pairs via bifurcated O—H⋯(N,Cl) hydrogen bonds and a weak C—H⋯O hydrogen bond links pairs of molecules into chains along [100].
Related literature
For the biological activity of quilonine compounds, see: Biavatti et al. (2002); Towers et al. (1981); Shen et al. (1999). For their luminescent properties, see: Montes et al. (2006). For applications of acrylate compounds, see: Bhatia et al. (2007); Sharma (2011). For conformational aspects of methyl see: Dunitz & Schweizer (1982). For resonance effects in acrylates, see: Merlino (1971); Varghese et al. (1986).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97, PLATON and publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536813014050/lh5607sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813014050/lh5607Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813014050/lh5607Isup3.cml
A mixture of 2-chloroquinoline-3-carbaldehyde (0.1 g, 0.52 mmol), methyl acrylate (0.071 ml, 0.78 mmol), and DABCO (0.017 g, 0.15 mmol), was kept at room temperature for 7 days. After completion of the reaction (indicated by TLC), the reaction mixture was extracted with ethylacetate (3 τimes 15 ml). The combined organic layer subsequently washed with dil.HCl and dried over anhydrous Na2SO4. The solvent was evaporated under reduced pressure. The crude product was obtained and purified by eluting with 8% ethylacetate in hexane afforded the alcohol methyl 2-((2-chloroquinolin-3-yl)(hydroxy)methyl)acrylate as a colourless solid. X-ray quality crystals were obtained by slow evaporation of a solution of the title compound in ethylacetate.
Hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93-0.98 Å, O—H = 0.82° and Uiso(H) = 1.5Ueq(C) for methyl and hydroxyl H atoms and 1.2Ueq(C) for other H atoms.
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).Fig. 1. The asymmetric unit of the title compound showing 30% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radius. | |
Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines. |
C14H12ClNO3 | Z = 4 |
Mr = 277.70 | F(000) = 576 |
Triclinic, P1 | Dx = 1.423 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.2614 (4) Å | Cell parameters from 4551 reflections |
b = 11.0309 (4) Å | θ = 2.0–25.0° |
c = 13.8161 (6) Å | µ = 0.30 mm−1 |
α = 102.557 (2)° | T = 293 K |
β = 100.646 (2)° | Block, colourless |
γ = 103.704 (2)° | 0.35 × 0.30 × 0.25 mm |
V = 1296.29 (9) Å3 |
Bruker SMART APEXII diffractometer | 3767 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.022 |
Graphite monochromator | θmax = 25.0°, θmin = 2.0° |
ω and ϕ scans | h = −11→10 |
14402 measured reflections | k = −12→13 |
4466 independent reflections | l = −16→16 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.032 | H-atom parameters constrained |
wR(F2) = 0.093 | w = 1/[σ2(Fo2) + (0.0462P)2 + 0.4048P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
4466 reflections | Δρmax = 0.29 e Å−3 |
344 parameters | Δρmin = −0.25 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0040 (11) |
C14H12ClNO3 | γ = 103.704 (2)° |
Mr = 277.70 | V = 1296.29 (9) Å3 |
Triclinic, P1 | Z = 4 |
a = 9.2614 (4) Å | Mo Kα radiation |
b = 11.0309 (4) Å | µ = 0.30 mm−1 |
c = 13.8161 (6) Å | T = 293 K |
α = 102.557 (2)° | 0.35 × 0.30 × 0.25 mm |
β = 100.646 (2)° |
Bruker SMART APEXII diffractometer | 3767 reflections with I > 2σ(I) |
14402 measured reflections | Rint = 0.022 |
4466 independent reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.093 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.29 e Å−3 |
4466 reflections | Δρmin = −0.25 e Å−3 |
344 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1A | 0.14491 (5) | 0.05724 (5) | 0.40164 (4) | 0.05417 (16) | |
O1A | 0.36327 (14) | −0.23933 (11) | 0.28015 (10) | 0.0504 (3) | |
H1A | 0.3051 | −0.3109 | 0.2473 | 0.076* | |
O2A | 0.05490 (17) | −0.36860 (13) | 0.16879 (12) | 0.0655 (4) | |
O3A | −0.03759 (16) | −0.26279 (14) | 0.06395 (11) | 0.0626 (4) | |
N1A | 0.42615 (15) | 0.19802 (13) | 0.45982 (10) | 0.0356 (3) | |
C1A | 0.33952 (18) | 0.08303 (15) | 0.40781 (12) | 0.0338 (4) | |
C2A | 0.58039 (18) | 0.22445 (15) | 0.46705 (12) | 0.0342 (4) | |
C3A | 0.6764 (2) | 0.35052 (17) | 0.51704 (13) | 0.0443 (4) | |
H3A | 0.6352 | 0.4153 | 0.5445 | 0.053* | |
C4A | 0.8297 (2) | 0.37743 (19) | 0.52515 (15) | 0.0520 (5) | |
H4A | 0.8929 | 0.4611 | 0.5583 | 0.062* | |
C5A | 0.8944 (2) | 0.2818 (2) | 0.48466 (15) | 0.0521 (5) | |
H5A | 0.9999 | 0.3017 | 0.4921 | 0.062* | |
C6A | 0.8037 (2) | 0.16025 (19) | 0.43468 (14) | 0.0456 (4) | |
H6A | 0.8474 | 0.0973 | 0.4073 | 0.055* | |
C7A | 0.64369 (18) | 0.12781 (16) | 0.42366 (12) | 0.0350 (4) | |
C8A | 0.54251 (18) | 0.00498 (16) | 0.36909 (12) | 0.0356 (4) | |
H8A | 0.5817 | −0.0604 | 0.3401 | 0.043* | |
C9A | 0.38875 (18) | −0.02014 (15) | 0.35779 (12) | 0.0321 (3) | |
C10A | 0.27692 (18) | −0.14936 (15) | 0.29730 (12) | 0.0352 (4) | |
H10A | 0.2067 | −0.1775 | 0.3385 | 0.042* | |
C11A | 0.18355 (18) | −0.14703 (15) | 0.19609 (12) | 0.0368 (4) | |
C12A | 0.2087 (2) | −0.05086 (19) | 0.15361 (15) | 0.0547 (5) | |
H12A | 0.1496 | −0.0596 | 0.0889 | 0.066* | |
H12B | 0.2855 | 0.0259 | 0.1883 | 0.066* | |
C13A | 0.0617 (2) | −0.27074 (17) | 0.14275 (14) | 0.0433 (4) | |
C14A | −0.1553 (3) | −0.3815 (2) | 0.00547 (18) | 0.0770 (7) | |
H14A | −0.2208 | −0.3645 | −0.0494 | 0.116* | |
H14B | −0.2151 | −0.4134 | 0.0493 | 0.116* | |
H14C | −0.1082 | −0.4451 | −0.0223 | 0.116* | |
Cl1B | 0.34205 (5) | 0.35070 (5) | 0.27784 (4) | 0.05394 (16) | |
N1B | 0.52758 (16) | 0.22798 (12) | 0.21855 (10) | 0.0386 (3) | |
O1B | 0.71157 (13) | 0.63179 (11) | 0.42717 (8) | 0.0422 (3) | |
H1B | 0.7063 | 0.7033 | 0.4560 | 0.063* | |
O2B | 0.45974 (15) | 0.56659 (12) | 0.12824 (10) | 0.0530 (3) | |
O3B | 0.59711 (17) | 0.75707 (12) | 0.11953 (9) | 0.0553 (4) | |
C1B | 0.51958 (18) | 0.34408 (15) | 0.25490 (12) | 0.0342 (4) | |
C2B | 0.66394 (19) | 0.21585 (15) | 0.19986 (12) | 0.0357 (4) | |
C3B | 0.6778 (2) | 0.09090 (17) | 0.16220 (14) | 0.0482 (5) | |
H3B | 0.5944 | 0.0184 | 0.1500 | 0.058* | |
C4B | 0.8116 (3) | 0.07581 (18) | 0.14373 (16) | 0.0560 (5) | |
H4B | 0.8196 | −0.0072 | 0.1191 | 0.067* | |
C5B | 0.9382 (3) | 0.1835 (2) | 0.16113 (18) | 0.0607 (6) | |
H5B | 1.0297 | 0.1717 | 0.1483 | 0.073* | |
C6B | 0.9281 (2) | 0.30528 (18) | 0.19672 (16) | 0.0532 (5) | |
H6B | 1.0125 | 0.3764 | 0.2074 | 0.064* | |
C7B | 0.79075 (19) | 0.32456 (15) | 0.21766 (13) | 0.0369 (4) | |
C8B | 0.77249 (18) | 0.44774 (15) | 0.25652 (12) | 0.0364 (4) | |
H8B | 0.8541 | 0.5215 | 0.2686 | 0.044* | |
C9B | 0.63788 (17) | 0.46076 (14) | 0.27667 (11) | 0.0316 (3) | |
C10B | 0.62325 (18) | 0.59300 (14) | 0.32479 (12) | 0.0328 (4) | |
H10B | 0.5155 | 0.5844 | 0.3250 | 0.039* | |
C11B | 0.67326 (18) | 0.68846 (14) | 0.26558 (12) | 0.0335 (4) | |
C12B | 0.7998 (2) | 0.78554 (17) | 0.29927 (15) | 0.0470 (4) | |
H12C | 0.8246 | 0.8416 | 0.2595 | 0.056* | |
H12D | 0.8646 | 0.7982 | 0.3629 | 0.056* | |
C13B | 0.5651 (2) | 0.66278 (15) | 0.16500 (13) | 0.0375 (4) | |
C14B | 0.4924 (3) | 0.7379 (2) | 0.02265 (16) | 0.0765 (7) | |
H14D | 0.5241 | 0.8104 | −0.0041 | 0.115* | |
H14E | 0.3909 | 0.7304 | 0.0321 | 0.115* | |
H14F | 0.4924 | 0.6599 | −0.0246 | 0.115* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1A | 0.0291 (2) | 0.0501 (3) | 0.0697 (3) | 0.00871 (19) | 0.0111 (2) | −0.0073 (2) |
O1A | 0.0485 (7) | 0.0334 (6) | 0.0626 (8) | 0.0161 (6) | 0.0061 (6) | 0.0011 (6) |
O2A | 0.0628 (9) | 0.0374 (8) | 0.0763 (10) | −0.0048 (6) | 0.0039 (8) | 0.0076 (7) |
O3A | 0.0484 (8) | 0.0571 (9) | 0.0545 (8) | −0.0067 (6) | −0.0094 (7) | 0.0015 (7) |
N1A | 0.0342 (7) | 0.0321 (7) | 0.0354 (7) | 0.0073 (6) | 0.0065 (6) | 0.0029 (6) |
C1A | 0.0290 (8) | 0.0363 (9) | 0.0329 (8) | 0.0085 (7) | 0.0059 (7) | 0.0052 (7) |
C2A | 0.0332 (9) | 0.0356 (9) | 0.0300 (8) | 0.0054 (7) | 0.0042 (7) | 0.0093 (7) |
C3A | 0.0472 (11) | 0.0356 (9) | 0.0436 (10) | 0.0040 (8) | 0.0095 (8) | 0.0079 (8) |
C4A | 0.0425 (11) | 0.0462 (11) | 0.0518 (11) | −0.0086 (9) | 0.0031 (9) | 0.0129 (9) |
C5A | 0.0308 (9) | 0.0623 (13) | 0.0565 (12) | 0.0009 (9) | 0.0039 (8) | 0.0225 (10) |
C6A | 0.0335 (9) | 0.0544 (11) | 0.0499 (11) | 0.0135 (8) | 0.0089 (8) | 0.0166 (9) |
C7A | 0.0326 (8) | 0.0394 (9) | 0.0323 (8) | 0.0097 (7) | 0.0046 (7) | 0.0122 (7) |
C8A | 0.0359 (9) | 0.0357 (9) | 0.0355 (9) | 0.0129 (7) | 0.0089 (7) | 0.0075 (7) |
C9A | 0.0322 (8) | 0.0316 (8) | 0.0301 (8) | 0.0085 (7) | 0.0063 (6) | 0.0057 (6) |
C10A | 0.0358 (9) | 0.0288 (8) | 0.0383 (9) | 0.0085 (7) | 0.0101 (7) | 0.0042 (7) |
C11A | 0.0329 (9) | 0.0328 (9) | 0.0377 (9) | 0.0039 (7) | 0.0079 (7) | 0.0024 (7) |
C12A | 0.0561 (12) | 0.0461 (11) | 0.0455 (11) | −0.0004 (9) | −0.0049 (9) | 0.0104 (9) |
C13A | 0.0383 (10) | 0.0398 (10) | 0.0422 (10) | 0.0030 (8) | 0.0108 (8) | −0.0001 (8) |
C14A | 0.0527 (13) | 0.0717 (15) | 0.0651 (14) | −0.0098 (11) | −0.0082 (11) | −0.0158 (12) |
Cl1B | 0.0352 (2) | 0.0458 (3) | 0.0787 (4) | 0.0054 (2) | 0.0187 (2) | 0.0156 (2) |
N1B | 0.0413 (8) | 0.0290 (7) | 0.0403 (8) | 0.0030 (6) | 0.0077 (6) | 0.0087 (6) |
O1B | 0.0493 (7) | 0.0388 (7) | 0.0343 (6) | 0.0170 (6) | 0.0034 (5) | 0.0026 (5) |
O2B | 0.0555 (8) | 0.0369 (7) | 0.0473 (7) | 0.0006 (6) | −0.0073 (6) | 0.0035 (6) |
O3B | 0.0787 (10) | 0.0391 (7) | 0.0404 (7) | 0.0100 (7) | 0.0008 (6) | 0.0144 (6) |
C1B | 0.0328 (8) | 0.0326 (9) | 0.0348 (9) | 0.0054 (7) | 0.0058 (7) | 0.0110 (7) |
C2B | 0.0450 (10) | 0.0278 (8) | 0.0326 (8) | 0.0078 (7) | 0.0078 (7) | 0.0093 (7) |
C3B | 0.0625 (12) | 0.0281 (9) | 0.0502 (11) | 0.0083 (8) | 0.0157 (9) | 0.0068 (8) |
C4B | 0.0755 (14) | 0.0349 (10) | 0.0615 (13) | 0.0233 (10) | 0.0231 (11) | 0.0080 (9) |
C5B | 0.0591 (13) | 0.0498 (12) | 0.0796 (15) | 0.0261 (10) | 0.0275 (11) | 0.0107 (11) |
C6B | 0.0438 (11) | 0.0393 (10) | 0.0747 (14) | 0.0113 (8) | 0.0193 (10) | 0.0088 (9) |
C7B | 0.0401 (9) | 0.0314 (8) | 0.0385 (9) | 0.0105 (7) | 0.0092 (7) | 0.0085 (7) |
C8B | 0.0337 (9) | 0.0264 (8) | 0.0430 (9) | 0.0032 (7) | 0.0061 (7) | 0.0065 (7) |
C9B | 0.0330 (8) | 0.0287 (8) | 0.0307 (8) | 0.0065 (7) | 0.0044 (7) | 0.0090 (6) |
C10B | 0.0308 (8) | 0.0291 (8) | 0.0348 (9) | 0.0074 (6) | 0.0047 (7) | 0.0051 (7) |
C11B | 0.0350 (9) | 0.0252 (8) | 0.0367 (9) | 0.0089 (7) | 0.0063 (7) | 0.0033 (7) |
C12B | 0.0444 (10) | 0.0370 (10) | 0.0510 (11) | 0.0017 (8) | 0.0039 (8) | 0.0124 (8) |
C13B | 0.0450 (10) | 0.0274 (8) | 0.0376 (9) | 0.0121 (8) | 0.0072 (8) | 0.0047 (7) |
C14B | 0.115 (2) | 0.0619 (14) | 0.0432 (12) | 0.0268 (14) | −0.0072 (12) | 0.0172 (10) |
Cl1A—C1A | 1.7396 (16) | Cl1B—C1B | 1.7459 (17) |
O1A—C10A | 1.4228 (19) | N1B—C1B | 1.295 (2) |
O1A—H1A | 0.8200 | N1B—C2B | 1.366 (2) |
O2A—C13A | 1.202 (2) | O1B—C10B | 1.4130 (18) |
O3A—C13A | 1.322 (2) | O1B—H1B | 0.8200 |
O3A—C14A | 1.447 (2) | O2B—C13B | 1.195 (2) |
N1A—C1A | 1.295 (2) | O3B—C13B | 1.331 (2) |
N1A—C2A | 1.369 (2) | O3B—C14B | 1.441 (2) |
C1A—C9A | 1.415 (2) | C1B—C9B | 1.410 (2) |
C2A—C3A | 1.404 (2) | C2B—C7B | 1.406 (2) |
C2A—C7A | 1.410 (2) | C2B—C3B | 1.408 (2) |
C3A—C4A | 1.358 (3) | C3B—C4B | 1.351 (3) |
C3A—H3A | 0.9300 | C3B—H3B | 0.9300 |
C4A—C5A | 1.397 (3) | C4B—C5B | 1.399 (3) |
C4A—H4A | 0.9300 | C4B—H4B | 0.9300 |
C5A—C6A | 1.353 (3) | C5B—C6B | 1.358 (3) |
C5A—H5A | 0.9300 | C5B—H5B | 0.9300 |
C6A—C7A | 1.410 (2) | C6B—C7B | 1.409 (2) |
C6A—H6A | 0.9300 | C6B—H6B | 0.9300 |
C7A—C8A | 1.406 (2) | C7B—C8B | 1.410 (2) |
C8A—C9A | 1.357 (2) | C8B—C9B | 1.359 (2) |
C8A—H8A | 0.9300 | C8B—H8B | 0.9300 |
C9A—C10A | 1.505 (2) | C9B—C10B | 1.514 (2) |
C10A—C11A | 1.511 (2) | C10B—C11B | 1.509 (2) |
C10A—H10A | 0.9800 | C10B—H10B | 0.9800 |
C11A—C12A | 1.315 (3) | C11B—C12B | 1.313 (2) |
C11A—C13A | 1.485 (2) | C11B—C13B | 1.481 (2) |
C12A—H12A | 0.9300 | C12B—H12C | 0.9300 |
C12A—H12B | 0.9300 | C12B—H12D | 0.9300 |
C14A—H14A | 0.9600 | C14B—H14D | 0.9600 |
C14A—H14B | 0.9600 | C14B—H14E | 0.9600 |
C14A—H14C | 0.9600 | C14B—H14F | 0.9600 |
C10A—O1A—H1A | 109.5 | C1B—N1B—C2B | 117.42 (14) |
C13A—O3A—C14A | 116.51 (17) | C10B—O1B—H1B | 109.5 |
C1A—N1A—C2A | 117.75 (14) | C13B—O3B—C14B | 115.36 (15) |
N1A—C1A—C9A | 126.31 (15) | N1B—C1B—C9B | 126.51 (15) |
N1A—C1A—Cl1A | 115.01 (12) | N1B—C1B—Cl1B | 114.43 (12) |
C9A—C1A—Cl1A | 118.68 (12) | C9B—C1B—Cl1B | 119.06 (12) |
N1A—C2A—C3A | 119.28 (15) | N1B—C2B—C7B | 121.77 (14) |
N1A—C2A—C7A | 121.07 (14) | N1B—C2B—C3B | 119.00 (15) |
C3A—C2A—C7A | 119.64 (15) | C7B—C2B—C3B | 119.23 (16) |
C4A—C3A—C2A | 119.69 (18) | C4B—C3B—C2B | 120.34 (18) |
C4A—C3A—H3A | 120.2 | C4B—C3B—H3B | 119.8 |
C2A—C3A—H3A | 120.2 | C2B—C3B—H3B | 119.8 |
C3A—C4A—C5A | 121.23 (17) | C3B—C4B—C5B | 120.76 (17) |
C3A—C4A—H4A | 119.4 | C3B—C4B—H4B | 119.6 |
C5A—C4A—H4A | 119.4 | C5B—C4B—H4B | 119.6 |
C6A—C5A—C4A | 120.03 (17) | C6B—C5B—C4B | 120.30 (19) |
C6A—C5A—H5A | 120.0 | C6B—C5B—H5B | 119.9 |
C4A—C5A—H5A | 120.0 | C4B—C5B—H5B | 119.9 |
C5A—C6A—C7A | 120.83 (18) | C5B—C6B—C7B | 120.46 (18) |
C5A—C6A—H6A | 119.6 | C5B—C6B—H6B | 119.8 |
C7A—C6A—H6A | 119.6 | C7B—C6B—H6B | 119.8 |
C8A—C7A—C6A | 123.60 (16) | C2B—C7B—C8B | 117.38 (15) |
C8A—C7A—C2A | 117.83 (15) | C2B—C7B—C6B | 118.91 (15) |
C6A—C7A—C2A | 118.54 (15) | C8B—C7B—C6B | 123.71 (16) |
C9A—C8A—C7A | 121.35 (15) | C9B—C8B—C7B | 121.30 (15) |
C9A—C8A—H8A | 119.3 | C9B—C8B—H8B | 119.3 |
C7A—C8A—H8A | 119.3 | C7B—C8B—H8B | 119.3 |
C8A—C9A—C1A | 115.59 (14) | C8B—C9B—C1B | 115.61 (14) |
C8A—C9A—C10A | 122.69 (14) | C8B—C9B—C10B | 120.66 (14) |
C1A—C9A—C10A | 121.72 (14) | C1B—C9B—C10B | 123.64 (14) |
O1A—C10A—C9A | 107.26 (13) | O1B—C10B—C11B | 112.74 (13) |
O1A—C10A—C11A | 109.72 (13) | O1B—C10B—C9B | 106.54 (12) |
C9A—C10A—C11A | 113.64 (13) | C11B—C10B—C9B | 111.38 (13) |
O1A—C10A—H10A | 108.7 | O1B—C10B—H10B | 108.7 |
C9A—C10A—H10A | 108.7 | C11B—C10B—H10B | 108.7 |
C11A—C10A—H10A | 108.7 | C9B—C10B—H10B | 108.7 |
C12A—C11A—C13A | 121.29 (16) | C12B—C11B—C13B | 122.74 (16) |
C12A—C11A—C10A | 125.54 (15) | C12B—C11B—C10B | 123.77 (15) |
C13A—C11A—C10A | 113.06 (14) | C13B—C11B—C10B | 113.50 (13) |
C11A—C12A—H12A | 120.0 | C11B—C12B—H12C | 120.0 |
C11A—C12A—H12B | 120.0 | C11B—C12B—H12D | 120.0 |
H12A—C12A—H12B | 120.0 | H12C—C12B—H12D | 120.0 |
O2A—C13A—O3A | 123.47 (17) | O2B—C13B—O3B | 123.36 (15) |
O2A—C13A—C11A | 122.95 (17) | O2B—C13B—C11B | 123.22 (15) |
O3A—C13A—C11A | 113.58 (16) | O3B—C13B—C11B | 113.42 (14) |
O3A—C14A—H14A | 109.5 | O3B—C14B—H14D | 109.5 |
O3A—C14A—H14B | 109.5 | O3B—C14B—H14E | 109.5 |
H14A—C14A—H14B | 109.5 | H14D—C14B—H14E | 109.5 |
O3A—C14A—H14C | 109.5 | O3B—C14B—H14F | 109.5 |
H14A—C14A—H14C | 109.5 | H14D—C14B—H14F | 109.5 |
H14B—C14A—H14C | 109.5 | H14E—C14B—H14F | 109.5 |
C2A—N1A—C1A—C9A | 0.7 (2) | C2B—N1B—C1B—C9B | 0.6 (2) |
C2A—N1A—C1A—Cl1A | −179.69 (11) | C2B—N1B—C1B—Cl1B | −179.34 (11) |
C1A—N1A—C2A—C3A | 175.82 (15) | C1B—N1B—C2B—C7B | −0.9 (2) |
C1A—N1A—C2A—C7A | −3.1 (2) | C1B—N1B—C2B—C3B | 178.77 (15) |
N1A—C2A—C3A—C4A | 179.57 (16) | N1B—C2B—C3B—C4B | −179.50 (17) |
C7A—C2A—C3A—C4A | −1.5 (2) | C7B—C2B—C3B—C4B | 0.2 (3) |
C2A—C3A—C4A—C5A | 0.0 (3) | C2B—C3B—C4B—C5B | −0.3 (3) |
C3A—C4A—C5A—C6A | 1.2 (3) | C3B—C4B—C5B—C6B | −0.2 (3) |
C4A—C5A—C6A—C7A | −0.7 (3) | C4B—C5B—C6B—C7B | 0.7 (3) |
C5A—C6A—C7A—C8A | 177.30 (17) | N1B—C2B—C7B—C8B | 0.4 (2) |
C5A—C6A—C7A—C2A | −0.8 (3) | C3B—C2B—C7B—C8B | −179.26 (15) |
N1A—C2A—C7A—C8A | 2.6 (2) | N1B—C2B—C7B—C6B | −179.98 (16) |
C3A—C2A—C7A—C8A | −176.31 (15) | C3B—C2B—C7B—C6B | 0.3 (2) |
N1A—C2A—C7A—C6A | −179.18 (15) | C5B—C6B—C7B—C2B | −0.8 (3) |
C3A—C2A—C7A—C6A | 1.9 (2) | C5B—C6B—C7B—C8B | 178.76 (19) |
C6A—C7A—C8A—C9A | −177.76 (16) | C2B—C7B—C8B—C9B | 0.5 (2) |
C2A—C7A—C8A—C9A | 0.4 (2) | C6B—C7B—C8B—C9B | −179.11 (17) |
C7A—C8A—C9A—C1A | −2.5 (2) | C7B—C8B—C9B—C1B | −0.8 (2) |
C7A—C8A—C9A—C10A | 178.19 (15) | C7B—C8B—C9B—C10B | 176.02 (14) |
N1A—C1A—C9A—C8A | 2.1 (2) | N1B—C1B—C9B—C8B | 0.3 (2) |
Cl1A—C1A—C9A—C8A | −177.49 (12) | Cl1B—C1B—C9B—C8B | −179.82 (12) |
N1A—C1A—C9A—C10A | −178.61 (16) | N1B—C1B—C9B—C10B | −176.42 (15) |
Cl1A—C1A—C9A—C10A | 1.8 (2) | Cl1B—C1B—C9B—C10B | 3.5 (2) |
C8A—C9A—C10A—O1A | 14.0 (2) | C8B—C9B—C10B—O1B | −70.40 (18) |
C1A—C9A—C10A—O1A | −165.25 (14) | C1B—C9B—C10B—O1B | 106.14 (16) |
C8A—C9A—C10A—C11A | −107.46 (17) | C8B—C9B—C10B—C11B | 52.92 (19) |
C1A—C9A—C10A—C11A | 73.3 (2) | C1B—C9B—C10B—C11B | −130.54 (15) |
O1A—C10A—C11A—C12A | −109.7 (2) | O1B—C10B—C11B—C12B | 10.6 (2) |
C9A—C10A—C11A—C12A | 10.4 (2) | C9B—C10B—C11B—C12B | −109.15 (18) |
O1A—C10A—C11A—C13A | 66.52 (18) | O1B—C10B—C11B—C13B | −169.19 (12) |
C9A—C10A—C11A—C13A | −173.42 (13) | C9B—C10B—C11B—C13B | 71.10 (17) |
C14A—O3A—C13A—O2A | −2.5 (3) | C14B—O3B—C13B—O2B | 1.8 (3) |
C14A—O3A—C13A—C11A | 177.18 (17) | C14B—O3B—C13B—C11B | −178.39 (16) |
C12A—C11A—C13A—O2A | 164.7 (2) | C12B—C11B—C13B—O2B | 170.78 (18) |
C10A—C11A—C13A—O2A | −11.7 (2) | C10B—C11B—C13B—O2B | −9.5 (2) |
C12A—C11A—C13A—O3A | −15.0 (3) | C12B—C11B—C13B—O3B | −9.0 (2) |
C10A—C11A—C13A—O3A | 168.60 (15) | C10B—C11B—C13B—O3B | 170.72 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1A—H1A···O2A | 0.82 | 2.24 | 2.8372 (19) | 130 |
O1B—H1B···Cl1Ai | 0.82 | 2.79 | 3.5040 (12) | 147 |
O1B—H1B···N1Ai | 0.82 | 2.16 | 2.8609 (17) | 144 |
C5A—H5A···O1Bii | 0.93 | 2.56 | 3.451 (2) | 162 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C14H12ClNO3 |
Mr | 277.70 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 9.2614 (4), 11.0309 (4), 13.8161 (6) |
α, β, γ (°) | 102.557 (2), 100.646 (2), 103.704 (2) |
V (Å3) | 1296.29 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.30 |
Crystal size (mm) | 0.35 × 0.30 × 0.25 |
Data collection | |
Diffractometer | Bruker SMART APEXII diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14402, 4466, 3767 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.093, 1.03 |
No. of reflections | 4466 |
No. of parameters | 344 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.29, −0.25 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
O1A—H1A···O2A | 0.82 | 2.24 | 2.8372 (19) | 129.8 |
O1B—H1B···Cl1Ai | 0.82 | 2.79 | 3.5040 (12) | 147.4 |
O1B—H1B···N1Ai | 0.82 | 2.16 | 2.8609 (17) | 144.0 |
C5A—H5A···O1Bii | 0.93 | 2.56 | 3.451 (2) | 161.5 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1. |
Acknowledgements
The authors thank Dr Babu Varghese, SAIF, IIT-Madras, India, for the data collection.
References
Bhatia, S. P., Wellington, G. A., Cocchiara, J., Lalko, J., Letizia, C. S. & Api, A. M. (2007). J. Food Chem. Toxicol. 45, S113–S119. Web of Science CrossRef Google Scholar
Biavatti, M. W., Vieira, P. C., da Silva, M. F. G. F., Fernandes, J. B., Victor, S. R., Pagnocca, F. C., Albuquerque, S., Caracelli, I. & Zukerman-Schpector, J. (2002). J. Braz. Chem. Soc. 13, 66–70. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2008). APEX2 and SAINT. Bruker AXS Ins., Madison, Wisconsin, USA. Google Scholar
Dunitz, J. D. & Schweizer, B. W. (1982). Helv. Chim. Acta, 65, 1547–1554. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Merlino, S. (1971). Acta Cryst. B27, 2491–2492. CrossRef CAS IUCr Journals Web of Science Google Scholar
Montes, V. A., Pohl, R., Shinar, J. & Anzenbacher, P. Jr (2006). Chem. Eur. J. 12, 4523–4535. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sharma, P. (2011). J. Chem. Pharm. Res. 3, 403–423. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shen, A. Y., Wu, S. N. & Chiu, C. T. (1999). J. Pharm. Pharmacol. 51, 543–548. Web of Science CrossRef PubMed CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Towers, G. H. N., Graham, E. A., Spenser, I. D. & Abramowski, Z. (1981). Planta Med. 41, 136–142. CrossRef CAS PubMed Web of Science Google Scholar
Varghese, B., Srinivasan, S., Padmanabhan, P. V. & Ramadas, S. R. (1986). Acta Cryst. C42, 1544–1546. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The quinoline ring is found in compounds with antifungal (Biavatti et al., 2002), antibacterial (Towers et al., 1981) and anticancer (Shen et al., 1999) properties. Quinoline derivatives have been used for their luminescent properties as organic light-emitting diode (OLED) materials (Montes et al., 2006). Methyl acrylate is an ingredient used in many fragrances and decorative cosmetics (Bhatia et al., 2007; Sharma, 2011). In view of the potential importance of the title compound its crystal structure is presented herein.
The asymmetric unit of the title compound contains the two independent molecules, A and B (Fig. 1). The dihedral angle between the mean plane of methyl ester unit (C13/C14/O2/O3, r.m.s deviation = -0.051 Å for A and -0.016 Å for B) and the chloroquilonin ring system (C1—C9/N1/Cl1, r.m.s deviation = 0.023 Å for A and -0.014 Å for B) is 63.5 (1)° in molecule A and 78.6 (1)° in molecule B. The main difference between the two independent molecules is reflected in the O1—C10—C11—C12 torsion angle which is -109.7 (2)° in molecule A and 10.6 (2)° in molecule B.
The methyl ester moiety adopts an extended conformation as reflected by the torsion angles for C11—C13—C14—O3 = 177.7 (2)° in A and 178.4 (1)° in B. The extended conformation is supported by the fact that the bond angles involving the carbonyl O atoms are invariably expanded (Dunitz & Schweizer, 1982). The significant difference in the bond lengths of the C13—O3 = 1.322 (3) Å (A) 1.331 (3) Å (B) versus C14—O3 = 1.447 (3) Å (A) and 1.447 (2) Å (B) can be attributed to a partial contribution from the O-–C═O+–C resonance structure of the O2—C13—O3—C14 group (Merlino, 1971). This feature, commonly observed in the carboxylic ester group of these substituents in various compounds has been shown to give average values of 1.340 Å and 1.447 Å respectively for these bonds (Varghese et al., 1986).
In the crystal molecule A and B are linked into pairs via bifurcated O—H···(N,Cl) hydrogen bonds (Fig. 2) and a weak C—H···O hydrogen bond links pairs of molecules into chains along [100].