metal-organic compounds
Bis(but-2-enoato-κO)triphenylbismuth(V)
aDepartment of Physics, N. I. Lobachevsky State University of Nizhni Novgorod, 603950, pr. Gagarina, 23-3 Nizhni Novgorod, Russian Federation, and bDepartment of Chemistry, N. I. Lobachevsky State University of Nizhni Novgorod, 603950, pr. Gagarina, 23-2 Nizhni Novgorod, Russian Federation
*Correspondence e-mail: andreev@phys.unn.ru
In the title molecule, [Bi(C6H5)3(C4H5O2)2], the BiV atom is in a distorted trigonal–bipyramidal environment with carboxylate O atoms in axial positions and phenyl C atoms in the equatorial plane. The Bi—O bond lengths are 2.283 (3) and 2.309 (2) Å, but as a result of additional long Bi⋯O interactions [2.787 (3) and 2.734 (3) Å], one of the C—Bi—C angles is 148.62 (13)°. In the crystal, weak C—H⋯O hydrogen bonds connect pairs of molecules into inversion dimers. These dimers are further connected by weak C—H⋯π interactions into chains along [100] .
Related literature
For the isotypic (C6H5)3Sb(C4H5O2)2 structure, see: Gushchin et al. (2013). For closely related structures, see: Andreev et al. (2013); Belsky (1996). For the chemistry of triphenyantimony diacylates, see: Gushchin et al. (2011), for their thermodynamic properties, see: Letyanina et al. (2012); Markin et al. (2011) and for their applications, see: Dodonov & Gushchin (2004). For van der Waals radii, see: Batsanov (2001).
Experimental
Crystal data
|
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536813013317/lh5612sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813013317/lh5612Isup2.hkl
The synthesis was carried out on the oxidation
of triphenylbismuth, crotonic acid and tert-butyl hydroperoxide. To a solution of 0.56 ml of 92.6% aqueous tert-butyl hydroperoxide and 0.86 g of crotonic acid in 20 ml of diethyl ether was added a solution of 2.2 g of triphenylbismuth. The mixture was kept for 24 h at room temperature. The yellow crystals formed were filtered off and dried to obtain 1.91 g (73%) of triphenylbismuth bis(but-2-enoate). The product was recrystallized twice from chloroform-hexane mixture (1:4), m.p. 426 K. A crystal for X-ray was obtained from benzene solution.H atoms were positioned geometrically (C—H=0.95–1.00 Å) and refined using a riding model with the Uiso(H)=1.2Ueq(C) (1.5Ueq(C) for methyl groups). In the refinment the anisotropic displacment parameters of atoms pairs C9/C10 and C16/C17 were restrained using the DELU instruction in SHELXL (Sheldrick, 2008).
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis RED (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[Bi(C6H5)3(C4H5O2)2] | Z = 2 |
Mr = 610.44 | F(000) = 592 |
Triclinic, P1 | Dx = 1.661 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 10.4710 (3) Å | Cell parameters from 9953 reflections |
b = 10.4957 (3) Å | θ = 3.4–32.8° |
c = 11.9774 (3) Å | µ = 7.25 mm−1 |
α = 84.941 (2)° | T = 293 K |
β = 83.633 (2)° | Sphere, colourless |
γ = 69.084 (3)° | 0.09 mm (radius) |
V = 1220.32 (6) Å3 |
Agilent Xcalibur (Sapphire3, Gemini) diffractometer | 4946 independent reflections |
Graphite monochromator | 4620 reflections with I > 2σ(I) |
Detector resolution: 16.0302 pixels mm-1 | Rint = 0.024 |
ω scans | θmax = 26.4°, θmin = 3.4° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | h = −13→13 |
Tmin = 0.810, Tmax = 1 | k = −13→13 |
17262 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.020 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.050 | H-atom parameters constrained |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0212P)2 + 0.9058P] where P = (Fo2 + 2Fc2)/3 |
4946 reflections | (Δ/σ)max = 0.001 |
280 parameters | Δρmax = 0.65 e Å−3 |
2 restraints | Δρmin = −0.84 e Å−3 |
[Bi(C6H5)3(C4H5O2)2] | γ = 69.084 (3)° |
Mr = 610.44 | V = 1220.32 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 10.4710 (3) Å | Mo Kα radiation |
b = 10.4957 (3) Å | µ = 7.25 mm−1 |
c = 11.9774 (3) Å | T = 293 K |
α = 84.941 (2)° | 0.09 mm (radius) |
β = 83.633 (2)° |
Agilent Xcalibur (Sapphire3, Gemini) diffractometer | 4946 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 4620 reflections with I > 2σ(I) |
Tmin = 0.810, Tmax = 1 | Rint = 0.024 |
17262 measured reflections |
R[F2 > 2σ(F2)] = 0.020 | 2 restraints |
wR(F2) = 0.050 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.65 e Å−3 |
4946 reflections | Δρmin = −0.84 e Å−3 |
280 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Bi | 0.714269 (12) | 0.636573 (11) | 0.737494 (10) | 0.03886 (5) | |
O1A | 0.4935 (3) | 0.6470 (3) | 0.7972 (2) | 0.0561 (7) | |
O1B | 0.9413 (3) | 0.5981 (3) | 0.6880 (2) | 0.0595 (7) | |
O2A | 0.4728 (3) | 0.8624 (3) | 0.7607 (2) | 0.0574 (7) | |
O2B | 0.8411 (3) | 0.8212 (3) | 0.6718 (2) | 0.0552 (6) | |
C1 | 0.6556 (3) | 0.6872 (3) | 0.5635 (3) | 0.0416 (7) | |
C2 | 0.6338 (4) | 0.8145 (4) | 0.5113 (3) | 0.0564 (9) | |
H2 | 0.6465 | 0.8833 | 0.5476 | 0.068* | |
C1A | 0.4227 (4) | 0.7768 (4) | 0.7950 (3) | 0.0479 (8) | |
C1B | 0.9455 (4) | 0.7179 (4) | 0.6631 (3) | 0.0485 (8) | |
C3 | 0.5922 (5) | 0.8372 (5) | 0.4026 (4) | 0.0679 (12) | |
H3 | 0.5777 | 0.922 | 0.3652 | 0.082* | |
C2A | 0.2745 (4) | 0.8208 (5) | 0.8375 (3) | 0.0598 (10) | |
H2A | 0.2218 | 0.9128 | 0.8278 | 0.072* | |
C2B | 1.0828 (4) | 0.7244 (5) | 0.6218 (4) | 0.0641 (11) | |
H2B | 1.1585 | 0.644 | 0.6247 | 0.077* | |
C4 | 0.5722 (4) | 0.7356 (5) | 0.3504 (3) | 0.0663 (12) | |
H4 | 0.5431 | 0.7525 | 0.2782 | 0.08* | |
C3A | 0.2156 (5) | 0.7417 (6) | 0.8858 (4) | 0.0697 (12) | |
H3A | 0.2683 | 0.6494 | 0.8926 | 0.084* | |
C3B | 1.1031 (4) | 0.8329 (5) | 0.5829 (3) | 0.0617 (11) | |
H3B | 1.0262 | 0.9124 | 0.5813 | 0.074* | |
C5 | 0.5947 (5) | 0.6103 (5) | 0.4032 (4) | 0.0650 (11) | |
H5 | 0.5815 | 0.5421 | 0.3664 | 0.078* | |
C4A | 0.0675 (5) | 0.7837 (6) | 0.9334 (4) | 0.0850 (16) | |
H4A1 | 0.0634 | 0.753 | 1.0111 | 0.127* | |
H4A2 | 0.0192 | 0.7435 | 0.8922 | 0.127* | |
H4A3 | 0.0258 | 0.8814 | 0.927 | 0.127* | |
C4B | 1.2384 (5) | 0.8463 (6) | 0.5391 (4) | 0.0845 (16) | |
H4B3 | 1.2241 | 0.9396 | 0.5143 | 0.127* | |
H4B2 | 1.2778 | 0.7886 | 0.477 | 0.127* | |
H4B1 | 1.2995 | 0.8194 | 0.5979 | 0.127* | |
C6 | 0.6372 (4) | 0.5830 (4) | 0.5115 (3) | 0.0553 (9) | |
H6 | 0.6529 | 0.4975 | 0.5478 | 0.066* | |
C7 | 0.7323 (3) | 0.7074 (4) | 0.9006 (3) | 0.0424 (7) | |
C8 | 0.7989 (5) | 0.6056 (5) | 0.9773 (3) | 0.0664 (11) | |
H8 | 0.8324 | 0.5141 | 0.9602 | 0.08* | |
C9 | 0.8137 (6) | 0.6466 (7) | 1.0826 (4) | 0.0850 (16) | |
H9 | 0.8588 | 0.5815 | 1.1364 | 0.102* | |
C10 | 0.7615 (6) | 0.7831 (7) | 1.1063 (4) | 0.0817 (16) | |
H10 | 0.7706 | 0.8091 | 1.1764 | 0.098* | |
C11 | 0.6975 (5) | 0.8790 (6) | 1.0283 (5) | 0.0787 (14) | |
H11 | 0.6639 | 0.9705 | 1.0452 | 0.094* | |
C12 | 0.6811 (4) | 0.8437 (4) | 0.9245 (4) | 0.0620 (11) | |
H12 | 0.6365 | 0.9102 | 0.8714 | 0.074* | |
C13 | 0.7740 (5) | 0.4106 (4) | 0.7598 (3) | 0.0580 (11) | |
C14 | 0.8981 (6) | 0.3282 (4) | 0.7091 (4) | 0.0794 (15) | |
H14 | 0.9579 | 0.367 | 0.6695 | 0.095* | |
C15 | 0.9322 (8) | 0.1884 (5) | 0.7176 (6) | 0.105 (2) | |
H15 | 1.0151 | 0.1318 | 0.684 | 0.126* | |
C16 | 0.8411 (10) | 0.1335 (6) | 0.7771 (6) | 0.121 (3) | |
H16 | 0.8641 | 0.0391 | 0.7828 | 0.145* | |
C17 | 0.7176 (8) | 0.2141 (6) | 0.8281 (6) | 0.105 (2) | |
H17 | 0.6576 | 0.1751 | 0.8671 | 0.126* | |
C18 | 0.6848 (6) | 0.3539 (5) | 0.8202 (4) | 0.0782 (15) | |
H18 | 0.6027 | 0.4101 | 0.8553 | 0.094* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Bi | 0.04616 (8) | 0.02998 (7) | 0.04346 (8) | −0.01683 (5) | −0.00534 (5) | −0.00091 (5) |
O1A | 0.0565 (16) | 0.0633 (17) | 0.0606 (16) | −0.0385 (14) | −0.0047 (12) | 0.0079 (13) |
O1B | 0.0508 (15) | 0.0522 (16) | 0.0720 (18) | −0.0142 (12) | 0.0046 (13) | −0.0134 (14) |
O2A | 0.0568 (16) | 0.0524 (16) | 0.0637 (17) | −0.0219 (13) | −0.0041 (13) | 0.0029 (13) |
O2B | 0.0543 (16) | 0.0501 (15) | 0.0643 (17) | −0.0235 (13) | −0.0009 (12) | −0.0026 (12) |
C1 | 0.0444 (18) | 0.0370 (17) | 0.0413 (18) | −0.0136 (14) | −0.0008 (14) | 0.0014 (14) |
C2 | 0.064 (2) | 0.046 (2) | 0.060 (2) | −0.0233 (18) | −0.0027 (19) | 0.0064 (18) |
C1A | 0.0438 (19) | 0.059 (2) | 0.0399 (18) | −0.0153 (17) | −0.0087 (15) | −0.0013 (16) |
C1B | 0.0429 (19) | 0.056 (2) | 0.0445 (19) | −0.0155 (17) | 0.0027 (15) | −0.0108 (16) |
C3 | 0.072 (3) | 0.067 (3) | 0.057 (3) | −0.021 (2) | −0.004 (2) | 0.024 (2) |
C2A | 0.057 (2) | 0.067 (3) | 0.056 (2) | −0.021 (2) | −0.0122 (18) | 0.003 (2) |
C2B | 0.045 (2) | 0.067 (3) | 0.078 (3) | −0.0170 (19) | 0.005 (2) | −0.012 (2) |
C4 | 0.057 (2) | 0.096 (4) | 0.043 (2) | −0.025 (2) | −0.0034 (18) | 0.007 (2) |
C3A | 0.064 (3) | 0.092 (3) | 0.062 (3) | −0.039 (3) | −0.013 (2) | 0.010 (2) |
C3B | 0.057 (2) | 0.087 (3) | 0.049 (2) | −0.036 (2) | −0.0039 (18) | 0.000 (2) |
C5 | 0.068 (3) | 0.078 (3) | 0.054 (2) | −0.029 (2) | −0.008 (2) | −0.011 (2) |
C4A | 0.052 (3) | 0.129 (5) | 0.078 (3) | −0.042 (3) | 0.000 (2) | 0.008 (3) |
C4B | 0.066 (3) | 0.133 (5) | 0.070 (3) | −0.059 (3) | 0.000 (2) | 0.005 (3) |
C6 | 0.069 (3) | 0.048 (2) | 0.053 (2) | −0.0231 (19) | −0.0108 (19) | −0.0015 (17) |
C7 | 0.0435 (18) | 0.0462 (19) | 0.0433 (18) | −0.0229 (15) | 0.0007 (14) | −0.0077 (15) |
C8 | 0.094 (3) | 0.063 (3) | 0.051 (2) | −0.040 (2) | −0.007 (2) | 0.003 (2) |
C9 | 0.116 (4) | 0.119 (4) | 0.043 (2) | −0.070 (4) | −0.014 (2) | 0.011 (3) |
C10 | 0.097 (4) | 0.124 (4) | 0.050 (3) | −0.071 (4) | 0.021 (3) | −0.036 (3) |
C11 | 0.068 (3) | 0.089 (4) | 0.086 (4) | −0.030 (3) | 0.005 (3) | −0.049 (3) |
C12 | 0.056 (2) | 0.056 (2) | 0.078 (3) | −0.0197 (19) | −0.006 (2) | −0.025 (2) |
C13 | 0.092 (3) | 0.0321 (18) | 0.056 (2) | −0.0221 (19) | −0.034 (2) | 0.0034 (16) |
C14 | 0.111 (4) | 0.039 (2) | 0.081 (3) | −0.010 (2) | −0.031 (3) | −0.011 (2) |
C15 | 0.156 (6) | 0.042 (3) | 0.106 (4) | −0.007 (3) | −0.048 (4) | −0.014 (3) |
C16 | 0.206 (8) | 0.043 (3) | 0.126 (5) | −0.036 (4) | −0.104 (5) | 0.017 (3) |
C17 | 0.172 (6) | 0.055 (3) | 0.114 (5) | −0.061 (4) | −0.079 (4) | 0.034 (3) |
C18 | 0.117 (4) | 0.049 (2) | 0.085 (3) | −0.044 (3) | −0.043 (3) | 0.022 (2) |
Bi—C7 | 2.201 (3) | C5—H5 | 0.93 |
Bi—C1 | 2.205 (3) | C4A—H4A1 | 0.96 |
Bi—C13 | 2.226 (4) | C4A—H4A2 | 0.96 |
Bi—O1B | 2.283 (3) | C4A—H4A3 | 0.96 |
Bi—O1A | 2.309 (2) | C4B—H4B3 | 0.96 |
Bi—O2A | 2.787 (3) | C4B—H4B2 | 0.96 |
Bi—O2B | 2.734 (3) | C4B—H4B1 | 0.96 |
O1A—C1A | 1.297 (5) | C6—H6 | 0.93 |
O1B—C1B | 1.281 (5) | C7—C12 | 1.380 (5) |
O2A—C1A | 1.215 (4) | C7—C8 | 1.382 (6) |
O2B—C1B | 1.237 (4) | C8—C9 | 1.409 (6) |
C1—C2 | 1.376 (5) | C8—H8 | 0.93 |
C1—C6 | 1.385 (5) | C9—C10 | 1.381 (8) |
C2—C3 | 1.392 (6) | C9—H9 | 0.93 |
C2—H2 | 0.93 | C10—C11 | 1.352 (8) |
C1A—C2A | 1.495 (5) | C10—H10 | 0.93 |
C1B—C2B | 1.491 (5) | C11—C12 | 1.373 (6) |
C3—C4 | 1.369 (7) | C11—H11 | 0.93 |
C3—H3 | 0.93 | C12—H12 | 0.93 |
C2A—C3A | 1.268 (6) | C13—C14 | 1.386 (7) |
C2A—H2A | 0.93 | C13—C18 | 1.386 (6) |
C2B—C3B | 1.271 (6) | C14—C15 | 1.377 (7) |
C2B—H2B | 0.93 | C14—H14 | 0.93 |
C4—C5 | 1.360 (6) | C15—C16 | 1.385 (10) |
C4—H4 | 0.93 | C15—H15 | 0.93 |
C3A—C4A | 1.511 (6) | C16—C17 | 1.377 (11) |
C3A—H3A | 0.93 | C16—H16 | 0.93 |
C3B—C4B | 1.506 (6) | C17—C18 | 1.380 (7) |
C3B—H3B | 0.93 | C17—H17 | 0.93 |
C5—C6 | 1.391 (6) | C18—H18 | 0.93 |
C7—Bi—C1 | 148.62 (13) | C3A—C4A—H4A1 | 109.5 |
C7—Bi—C13 | 106.20 (13) | C3A—C4A—H4A2 | 109.5 |
C1—Bi—C13 | 105.10 (13) | H4A1—C4A—H4A2 | 109.5 |
C7—Bi—O1B | 90.15 (11) | C3A—C4A—H4A3 | 109.5 |
C1—Bi—O1B | 94.14 (11) | H4A1—C4A—H4A3 | 109.5 |
C13—Bi—O1B | 86.30 (14) | H4A2—C4A—H4A3 | 109.5 |
C7—Bi—O1A | 89.80 (11) | C3B—C4B—H4B3 | 109.5 |
C1—Bi—O1A | 89.73 (11) | C3B—C4B—H4B2 | 109.5 |
C13—Bi—O1A | 86.65 (14) | H4B3—C4B—H4B2 | 109.5 |
O1B—Bi—O1A | 172.64 (9) | C3B—C4B—H4B1 | 109.5 |
C7—Bi—O2B | 78.59 (10) | H4B3—C4B—H4B1 | 109.5 |
C1—Bi—O2B | 80.12 (11) | H4B2—C4B—H4B1 | 109.5 |
C13—Bi—O2B | 137.31 (14) | C1—C6—C5 | 117.9 (4) |
O1B—Bi—O2B | 51.02 (9) | C1—C6—H6 | 121 |
O1A—Bi—O2B | 136.05 (9) | C5—C6—H6 | 121 |
C1A—O1A—Bi | 104.0 (2) | C12—C7—C8 | 122.4 (4) |
C1B—O1B—Bi | 103.8 (2) | C12—C7—Bi | 122.4 (3) |
C1B—O2B—Bi | 83.6 (2) | C8—C7—Bi | 115.1 (3) |
C2—C1—C6 | 122.2 (3) | C7—C8—C9 | 117.0 (5) |
C2—C1—Bi | 122.7 (3) | C7—C8—H8 | 121.5 |
C6—C1—Bi | 115.1 (2) | C9—C8—H8 | 121.5 |
C1—C2—C3 | 118.0 (4) | C10—C9—C8 | 120.4 (5) |
C1—C2—H2 | 121 | C10—C9—H9 | 119.8 |
C3—C2—H2 | 121 | C8—C9—H9 | 119.8 |
O2A—C1A—O1A | 122.4 (3) | C11—C10—C9 | 120.4 (4) |
O2A—C1A—C2A | 119.5 (4) | C11—C10—H10 | 119.8 |
O1A—C1A—C2A | 118.1 (3) | C9—C10—H10 | 119.8 |
O2B—C1B—O1B | 121.6 (3) | C10—C11—C12 | 121.2 (5) |
O2B—C1B—C2B | 122.4 (4) | C10—C11—H11 | 119.4 |
O1B—C1B—C2B | 115.9 (3) | C12—C11—H11 | 119.4 |
C4—C3—C2 | 120.5 (4) | C11—C12—C7 | 118.6 (5) |
C4—C3—H3 | 119.7 | C11—C12—H12 | 120.7 |
C2—C3—H3 | 119.7 | C7—C12—H12 | 120.7 |
C3A—C2A—C1A | 124.7 (4) | C14—C13—C18 | 120.7 (4) |
C3A—C2A—H2A | 117.6 | C14—C13—Bi | 119.4 (3) |
C1A—C2A—H2A | 117.6 | C18—C13—Bi | 119.9 (3) |
C3B—C2B—C1B | 124.2 (4) | C15—C14—C13 | 119.6 (6) |
C3B—C2B—H2B | 117.9 | C15—C14—H14 | 120.2 |
C1B—C2B—H2B | 117.9 | C13—C14—H14 | 120.2 |
C5—C4—C3 | 120.6 (4) | C14—C15—C16 | 119.0 (7) |
C5—C4—H4 | 119.7 | C14—C15—H15 | 120.5 |
C3—C4—H4 | 119.7 | C16—C15—H15 | 120.5 |
C2A—C3A—C4A | 126.0 (5) | C17—C16—C15 | 122.1 (5) |
C2A—C3A—H3A | 117 | C17—C16—H16 | 118.9 |
C4A—C3A—H3A | 117 | C15—C16—H16 | 118.9 |
C2B—C3B—C4B | 126.8 (5) | C16—C17—C18 | 118.6 (7) |
C2B—C3B—H3B | 116.6 | C16—C17—H17 | 120.7 |
C4B—C3B—H3B | 116.6 | C18—C17—H17 | 120.7 |
C4—C5—C6 | 120.7 (4) | C17—C18—C13 | 120.0 (6) |
C4—C5—H5 | 119.6 | C17—C18—H18 | 120 |
C6—C5—H5 | 119.6 | C13—C18—H18 | 120 |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O2Ai | 0.93 | 2.53 | 3.450 (6) | 171 |
C4B—H4B1···C1Aii | 0.96 | 2.74 | 3.683 (6) | 167 |
C4B—H4B1···C2Aii | 0.96 | 2.85 | 3.613 (7) | 137 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Bi(C6H5)3(C4H5O2)2] |
Mr | 610.44 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 10.4710 (3), 10.4957 (3), 11.9774 (3) |
α, β, γ (°) | 84.941 (2), 83.633 (2), 69.084 (3) |
V (Å3) | 1220.32 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 7.25 |
Crystal size (mm) | 0.09 (radius) |
Data collection | |
Diffractometer | Agilent Xcalibur (Sapphire3, Gemini) diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.810, 1 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17262, 4946, 4620 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.020, 0.050, 1.11 |
No. of reflections | 4946 |
No. of parameters | 280 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.65, −0.84 |
Computer programs: CrysAlis PRO (Agilent, 2011), CrysAlis RED (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O2Ai | 0.93 | 2.53 | 3.450 (6) | 171 |
C4B—H4B1···C1Aii | 0.96 | 2.74 | 3.683 (6) | 167.0 |
C4B—H4B1···C2Aii | 0.96 | 2.85 | 3.613 (7) | 136.7 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x+1, y, z. |
Acknowledgements
The work was supported financially by the Ministry of Education and Science of the Russian Federation, project 14.B37.21.1158.
References
Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England. Google Scholar
Andreev, P. V., Somov, N. V., Kalistratova, O. S., Gushchin, A. V. & Chuprunov, E. V. (2013). Acta Cryst. E69, m167. CSD CrossRef IUCr Journals Google Scholar
Batsanov, S. S. (2001). Inorg. Mater. 37, 871–885. Web of Science CrossRef CAS Google Scholar
Belsky, V. K. (1996). Private communication (refcode NAGXOI). CCDC, Cambridge, England. Google Scholar
Dodonov, V. A. & Gushchin, A. V. (2004). Vestn. NNovg. Univ. 82, 86–94. Google Scholar
Gushchin, A. V., Kalistratova, O. S., Verkhovykh, R. A., Somov, N. V., Shashkin, D. V. & Dodonov, V. A. (2013). Vestn. NNovg. Univ. 1, 86–90. Google Scholar
Gushchin, A. V., Shashkin, D. V., Prytkova, L. K., Somov, N. V., Baranov, E. V., Shavyrin, A. S. & Rykalin, V. I. (2011). Russ. J. General Chem. 81, 493–496. Web of Science CrossRef CAS Google Scholar
Letyanina, I. A., Markin, A. V., Smirnova, N. N., Gushchin, A. V. & Shashkin, D. V. (2012). Russ. J. Phys. Chem. A86, 1189–1195. Web of Science CrossRef Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Markin, A. V., Letyanina, I. A., Ruchenin, V. A., Smirnova, N. N., Gushchin, A. V. & Shashkin, D. V. (2011). J. Chem. Eng. Data, 56, 3657–3662. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Bis(but-2-enoate) triphenylbismuth C26H25O4Bi belongs to the family of triphenylbismuth diacylates. Compounds of triphenylbismuth and triphenylantimony diacylates contain two double bonds C═C in the molecule, due to which they can be used for polymerization filling of polystyrene and polymethylmethacrylate. The title compound is a very promising monomer for developing metal-containing organic scintillators which have recently attracted much attention in high-energy physics. It was found that the participation of both acrylate groups in polymerization leads to cross-linking, considerably decreasing the thermooxidative destruction of the resulting polymer (Dodonov et al., 2004). Organic glasses based on triphenylantimony diacrylate and methylmethacrylate having increased fungal resistance are now available (Dodonov et al., 2004). The thermodynamic properties of triphenylantimony diacylates have been studied (Letyanina et al., 2012; Markin et al., 2011). The crystal structure and chemistry of a similar orgaonmetallic compound of antimony has been reported by Gushchin et al. (2013).
In the molecule of title compound the O—Bi—O angle is 172.64 (9)° and the Cphenyl—Bi—Cphenyl angles are 148.62 (13)°, 106.20 (13)°, 150.10 (13)°. Such a deviation for the latter from the ideal 120° is typical for triphenylantomony diacylates because of additional long Bi···O interactions. A similar geometries were observed in triphenylantomony diacylates (Gushchin et al., 2011; Gushchin et al., 2013; Andreev et al., 2013). The Bi–O2A and Bi–O2B distances are 2.787 (3) Å and 2.734 (3) Å, respectively and are significantly shorter than the sum of the van der Waals radii of these atoms (3.85 Å) (Batsanov, 2001). A similar interaction was observed in triphenylantimony dimetacrylate (Gushchin et al., 2011), bis[(E)-3-(4-methoxyphenyl)prop-2-enoato]triphenylantimony(V) (Andreev et al., 2013), triphenylantimony dicrotonate (Gushchin et al., 2013) and triphenylantimony-bis(cinnamate) (Belsky, 1996). In the crystal, weak C—H···O hydrogen bonds connect pairs of molecules into inversion dimers. These dimers are further connected by weak C—H···π interactions into chains along [100] (see Fig.2).