organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-9-(But-2-en-1-yl)-6-chloro-9H-purine

aCentre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, PO Box 1126, 0315 Oslo, Norway, and bDepartment of Chemistry, University of Oslo, PO Box 1033, 0315 Oslo, Norway
*Correspondence e-mail: fredrik.lundvall@smn.uio.no, jindrich.kania@kjemi.uio.no

(Received 25 February 2013; accepted 16 April 2013; online 11 May 2013)

The asymmetric unit of the title compound, C9H9ClN4, contains two mol­ecules. In the crystal, the mol­ecules are ordered in a chain-like fashion along the a axis, and form layers offset relative to the C plane by approximately 30°. This ordering does not, however, appear to be directed by classical hydrogen bonding.The allylic side chains of both independent mol­ecules are disordered, with occupancies of 0.870 (4) and 0.934 (3) for the major components. The disorder components represent two possible spatial orientations of the atoms around the C=C double bond.

Related literature

For synthetic background and applications, see Kania & Gundersen (2013[Kania, J. & Gundersen, L.-L. (2013). Eur. J. Org. Chem. pp. 2008-2019.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9ClN4

  • Mr = 208.65

  • Triclinic, [P \overline 1]

  • a = 8.1818 (11) Å

  • b = 9.7103 (13) Å

  • c = 13.9435 (19) Å

  • α = 69.642 (1)°

  • β = 75.448 (1)°

  • γ = 67.032 (1)°

  • V = 947.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 100 K

  • 1.13 × 0.35 × 0.22 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.683, Tmax = 0.924

  • 10801 measured reflections

  • 4428 independent reflections

  • 4103 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.070

  • S = 1.04

  • 4428 reflections

  • 283 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2004[Brandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and ChemBioDraw Ultra (CambridgeSoft, 2009)[CambridgeSoft (2009). ChemBioDraw Ultra. CambridgeSoft Corporation, Cambridge, Massachusetts, USA.]; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound is an N-allyl substituted purine intended as a starting material for investigation of the double bond rearragement in N-allylic systems. (E)-9-(but-2-en-1-yl)-6-chloro-9H-purine was recrystallized from a mixture of E/Z-isomers in order to obtain the pure E-isomer for the following rearrangement study. The structure and purity of this compound was originally determined by NMR. Further structure elucidation by SXRD supports the conclusions in our previous report (compound 14a, Kania et al., 2013).

The structure of the title compound, C9H9ClN4, has a triclinic P -1 symmetry. The asymmetric unit consists of two molecules of the title compound, with the full content of the unit cell generated by symmetry operations. The molecule has a planar bicyclic motif with an N-allylic chain oriented out of the plane described by the bicyclic main body. During the initial refinement of the structure it became apparent that the N-allylic chain is slightly disordered, with two possible spacial orientations. By using the PART instruction in SHELXL, the two possible orientations of the chain (A and B) were refined individually for the two molecules that form the asymmetric unit (residue 1 and 2). Orientation A is clearly preferred in the solid state, with the minor orientation B present in about 13% and 6.6% abundance for residue 1 and 2 respectively. The limited occupancy of the minor components prompted the use of restraints to achieve satisfactory refinement of the structure. We employed the SADI instruction in SHELXL and restrained the C10, C11B—C13B and C20, C21B—C23B bond distances in the minor components to be the same as the corresponding distances in the major components (C10, C11A—C13A and C20, C21A—C23A). This ensured realistic bond distances in the chains. Furthermore, C11B—C13B and C21B—C23B were refined isotropically since anisotropic refinement did not give realistic thermal parameters due to the low occupancy of the sites.

Related literature top

For synthetic background and applications, see Kania & Gundersen (2013).

Experimental top

The title compound was synthesized by the method described in Kania et al. (2013) (compound 14a).

Refinement top

H-atoms were positioned geometrically at distances of 0.95 Å (CH), 0.99 Å (CH2) and 0.98 Å (CH3), and refined using a riding model with Uiso (H)=1.2 Ueq (CH and CH2) and Uiso (H)=1.5 Ueq (CH3)

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004) and ChemBioDraw Ultra (CambridgeSoft, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. [One molecular unit of the title compound (residue 1, both A and B orientation) with atom labels and 50% probability displacement ellipsoids. Hydrogen atoms are omitted for clarity.]
[Figure 2] Fig. 2. [Packing diagram of the title compound viewed along the a axis.]
[Figure 3] Fig. 3. [Graphical projection of the packing of (E)-9-(but-2-en-1-yl)-6-chloro-9H-purine, C9H9ClN4.]
(E)-9-(But-2-en-1-yl)-6-chloro-9H-purine top
Crystal data top
C9H9ClN4Z = 4
Mr = 208.65F(000) = 432
Triclinic, P1Dx = 1.462 Mg m3
Hall symbol: -P 1Melting point: 339 K
a = 8.1818 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.7103 (13) ÅCell parameters from 8169 reflections
c = 13.9435 (19) Åθ = 2.5–28.8°
α = 69.642 (1)°µ = 0.37 mm1
β = 75.448 (1)°T = 100 K
γ = 67.032 (1)°Rod, colourless
V = 947.6 (2) Å31.13 × 0.35 × 0.22 mm
Data collection top
Bruker APEXII CCD
diffractometer
4428 independent reflections
Radiation source: fine-focus sealed tube4103 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 28.8°, θmin = 1.6°
Absorption correction: numerical
(SADABS; Bruker, 2005)
h = 1110
Tmin = 0.683, Tmax = 0.924k = 1212
10801 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0292P)2 + 0.3823P]
where P = (Fo2 + 2Fc2)/3
4428 reflections(Δ/σ)max = 0.001
283 parametersΔρmax = 0.34 e Å3
4 restraintsΔρmin = 0.30 e Å3
Crystal data top
C9H9ClN4γ = 67.032 (1)°
Mr = 208.65V = 947.6 (2) Å3
Triclinic, P1Z = 4
a = 8.1818 (11) ÅMo Kα radiation
b = 9.7103 (13) ŵ = 0.37 mm1
c = 13.9435 (19) ÅT = 100 K
α = 69.642 (1)°1.13 × 0.35 × 0.22 mm
β = 75.448 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4428 independent reflections
Absorption correction: numerical
(SADABS; Bruker, 2005)
4103 reflections with I > 2σ(I)
Tmin = 0.683, Tmax = 0.924Rint = 0.017
10801 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0274 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.04Δρmax = 0.34 e Å3
4428 reflectionsΔρmin = 0.30 e Å3
283 parameters
Special details top

Experimental. Due to the weak scattering nature of the compound, a large crystal (1.13x0.35x0.22 mm) was used to get satisfactory data for refinement.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl-10.80714 (4)0.34683 (3)0.90852 (2)0.02519 (8)
Cl-20.56350 (4)0.66115 (3)0.58169 (2)0.02513 (8)
N1-10.68069 (12)0.64840 (11)0.83023 (7)0.02118 (19)
N3-10.37832 (12)0.80607 (11)0.79779 (7)0.01992 (18)
N9-10.18663 (12)0.65085 (11)0.83852 (7)0.01988 (18)
N7-10.38398 (13)0.41103 (11)0.89887 (7)0.02212 (19)
N9-20.18425 (12)0.33227 (11)0.67452 (7)0.01990 (18)
N3-20.49116 (12)0.19050 (10)0.70937 (7)0.02115 (19)
N1-20.66555 (13)0.36050 (11)0.66514 (7)0.02249 (19)
N7-20.19524 (13)0.57777 (11)0.61328 (7)0.0240 (2)
C2-10.54905 (15)0.78443 (13)0.79925 (8)0.0217 (2)
H2-10.58180.87560.77570.026*
C4-10.34503 (14)0.67189 (12)0.83172 (7)0.0180 (2)
C100.01759 (15)0.77488 (14)0.81086 (8)0.0229 (2)
H10A0.07070.72810.81130.028*
H10B0.03820.84250.74030.028*
C11A0.05515 (18)0.87065 (15)0.88579 (10)0.0221 (3)0.870 (4)
H11A0.01390.92690.89010.027*0.870 (4)
C12A0.21002 (18)0.88140 (15)0.94633 (10)0.0218 (3)0.870 (4)
H12A0.27720.82360.94190.026*0.870 (4)
C13A0.2880 (4)0.9771 (4)1.0211 (2)0.0282 (7)0.870 (4)
H13A0.33120.91471.08740.042*0.870 (4)
H13B0.38801.06910.99400.042*0.870 (4)
H13C0.19581.01011.03080.042*0.870 (4)
C11B0.1202 (11)0.8205 (9)0.9029 (6)0.015 (2)*0.130 (4)
H11B0.18460.75200.94350.018*0.130 (4)
C12B0.1540 (11)0.9477 (9)0.9284 (6)0.018 (2)*0.130 (4)
H12B0.10121.02180.88190.022*0.130 (4)
C13B0.267 (3)0.987 (3)1.0233 (14)0.015 (4)*0.130 (4)
H13D0.33740.91721.05600.022*0.130 (4)
H13E0.34761.09511.00500.022*0.130 (4)
H13F0.18970.97481.07140.022*0.130 (4)
C6-10.63857 (14)0.51980 (12)0.86514 (8)0.0193 (2)
C8-10.21905 (16)0.49369 (13)0.87965 (8)0.0230 (2)
H8-10.12890.44800.89320.028*
C5-10.46671 (14)0.52249 (12)0.86842 (8)0.0183 (2)
C200.11732 (15)0.20286 (13)0.69402 (8)0.0215 (2)
H20A0.00360.22580.73430.026*
H20B0.19730.10610.73570.026*
C21A0.10844 (17)0.17794 (14)0.59490 (9)0.0218 (3)0.934 (3)
H21A0.01980.25370.55330.026*0.934 (3)
C22A0.21845 (17)0.05548 (15)0.56322 (9)0.0238 (3)0.934 (3)
H22A0.30560.02050.60580.029*0.934 (3)
C23A0.2142 (4)0.0289 (3)0.4634 (2)0.0325 (6)0.934 (3)
H23A0.12070.11670.42640.049*0.934 (3)
H23B0.18840.06760.47860.049*0.934 (3)
H23C0.33070.02030.42040.049*0.934 (3)
C21B0.209 (2)0.1272 (18)0.6064 (11)0.015 (4)*0.066 (3)
H21B0.33520.07710.59810.018*0.066 (3)
C22B0.112 (2)0.1321 (17)0.5430 (11)0.015 (4)*0.066 (3)
H22B0.01060.19280.53800.018*0.066 (3)
C23B0.229 (5)0.026 (4)0.481 (3)0.021 (8)*0.066 (3)
H23D0.18540.06020.41370.031*0.066 (3)
H23E0.22610.08010.51690.031*0.066 (3)
H23F0.35150.02600.46950.031*0.066 (3)
C4-20.35605 (14)0.31944 (12)0.67688 (8)0.0183 (2)
C2-20.63962 (15)0.22142 (13)0.70213 (9)0.0240 (2)
H2-20.74010.13420.72610.029*
C6-20.52708 (15)0.48383 (12)0.63305 (8)0.0194 (2)
C5-20.36118 (14)0.47249 (12)0.63838 (8)0.0188 (2)
C8-20.09700 (15)0.48857 (13)0.63580 (9)0.0244 (2)
H8-20.02560.52920.62600.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl-10.02417 (14)0.02408 (14)0.02272 (13)0.00338 (10)0.00490 (10)0.00524 (10)
Cl-20.03597 (16)0.02178 (14)0.02075 (13)0.01493 (11)0.00189 (10)0.00491 (10)
N1-10.0223 (5)0.0252 (5)0.0193 (4)0.0112 (4)0.0031 (3)0.0061 (4)
N3-10.0234 (5)0.0209 (4)0.0174 (4)0.0099 (4)0.0032 (3)0.0045 (3)
N9-10.0194 (4)0.0244 (5)0.0193 (4)0.0103 (4)0.0013 (3)0.0077 (3)
N7-10.0272 (5)0.0224 (5)0.0196 (4)0.0133 (4)0.0011 (4)0.0066 (4)
N9-20.0189 (4)0.0207 (4)0.0199 (4)0.0057 (3)0.0028 (3)0.0063 (3)
N3-20.0211 (4)0.0181 (4)0.0223 (4)0.0046 (4)0.0039 (3)0.0048 (3)
N1-20.0213 (4)0.0238 (5)0.0229 (5)0.0082 (4)0.0017 (4)0.0074 (4)
N7-20.0250 (5)0.0199 (5)0.0249 (5)0.0029 (4)0.0077 (4)0.0059 (4)
C2-10.0259 (5)0.0226 (5)0.0202 (5)0.0128 (4)0.0037 (4)0.0045 (4)
C4-10.0206 (5)0.0229 (5)0.0134 (4)0.0098 (4)0.0012 (4)0.0063 (4)
C100.0191 (5)0.0302 (6)0.0210 (5)0.0089 (4)0.0039 (4)0.0075 (4)
C11A0.0226 (7)0.0210 (6)0.0243 (6)0.0085 (5)0.0078 (5)0.0036 (5)
C12A0.0236 (7)0.0205 (6)0.0226 (6)0.0086 (5)0.0066 (5)0.0037 (5)
C13A0.0264 (11)0.0339 (12)0.0311 (11)0.0128 (9)0.0020 (7)0.0152 (7)
C6-10.0216 (5)0.0220 (5)0.0143 (4)0.0068 (4)0.0027 (4)0.0056 (4)
C8-10.0270 (6)0.0263 (6)0.0213 (5)0.0158 (5)0.0021 (4)0.0091 (4)
C5-10.0229 (5)0.0198 (5)0.0138 (4)0.0094 (4)0.0004 (4)0.0056 (4)
C200.0218 (5)0.0242 (5)0.0203 (5)0.0106 (4)0.0005 (4)0.0066 (4)
C21A0.0210 (6)0.0247 (6)0.0205 (6)0.0097 (5)0.0039 (4)0.0039 (4)
C22A0.0253 (6)0.0246 (6)0.0212 (6)0.0098 (5)0.0033 (5)0.0043 (5)
C23A0.0420 (11)0.0391 (10)0.0225 (10)0.0165 (7)0.0021 (8)0.0141 (8)
C4-20.0199 (5)0.0204 (5)0.0145 (4)0.0065 (4)0.0012 (4)0.0059 (4)
C2-20.0215 (5)0.0204 (5)0.0277 (6)0.0046 (4)0.0050 (4)0.0056 (4)
C6-20.0265 (5)0.0194 (5)0.0140 (4)0.0097 (4)0.0004 (4)0.0059 (4)
C5-20.0227 (5)0.0177 (5)0.0149 (4)0.0048 (4)0.0026 (4)0.0054 (4)
C8-20.0218 (5)0.0233 (5)0.0262 (5)0.0021 (4)0.0072 (4)0.0079 (4)
Geometric parameters (Å, º) top
Cl-1—C6-11.7302 (11)C13A—H13C0.9800
Cl-2—C6-21.7325 (11)C11B—C12B1.311 (11)
N1-1—C6-11.3205 (14)C11B—H11B0.9500
N1-1—C2-11.3483 (15)C12B—C13B1.487 (15)
N3-1—C2-11.3334 (14)C12B—H12B0.9500
N3-1—C4-11.3338 (13)C13B—H13D0.9800
N9-1—C4-11.3644 (13)C13B—H13E0.9800
N9-1—C8-11.3711 (14)C13B—H13F0.9800
N9-1—C101.4687 (14)C6-1—C5-11.3856 (15)
N7-1—C8-11.3130 (15)C8-1—H8-10.9500
N7-1—C5-11.3847 (13)C20—C21A1.5069 (15)
N9-2—C4-21.3697 (14)C20—C21B1.526 (15)
N9-2—C8-21.3721 (14)C20—H20A0.9900
N9-2—C201.4756 (14)C20—H20B0.9900
N3-2—C4-21.3311 (14)C21A—C22A1.3227 (18)
N3-2—C2-21.3333 (15)C21A—H21A0.9500
N1-2—C6-21.3195 (15)C22A—C23A1.513 (3)
N1-2—C2-21.3486 (15)C22A—H22A0.9500
N7-2—C8-21.3123 (15)C23A—H23A0.9800
N7-2—C5-21.3848 (14)C23A—H23B0.9800
C2-1—H2-10.9500C23A—H23C0.9800
C4-1—C5-11.4035 (15)C21B—C22B1.308 (15)
C10—C11A1.4975 (17)C21B—H21B0.9500
C10—C11B1.547 (8)C22B—C23B1.475 (18)
C10—H10A0.9900C22B—H22B0.9500
C10—H10B0.9900C23B—H23D0.9800
C11A—C12A1.323 (2)C23B—H23E0.9800
C11A—H11A0.9500C23B—H23F0.9800
C12A—C13A1.494 (3)C4-2—C5-21.4075 (15)
C12A—H12A0.9500C2-2—H2-20.9500
C13A—H13A0.9800C6-2—C5-21.3857 (15)
C13A—H13B0.9800C8-2—H8-20.9500
C6-1—N1-1—C2-1117.58 (9)N1-1—C6-1—C5-1121.81 (10)
C2-1—N3-1—C4-1111.92 (9)N1-1—C6-1—Cl-1117.06 (8)
C4-1—N9-1—C8-1105.55 (9)C5-1—C6-1—Cl-1121.12 (8)
C4-1—N9-1—C10125.75 (9)N7-1—C8-1—N9-1114.96 (10)
C8-1—N9-1—C10128.65 (9)N7-1—C8-1—H8-1122.5
C8-1—N7-1—C5-1103.03 (9)N9-1—C8-1—H8-1122.5
C4-2—N9-2—C8-2105.39 (9)N7-1—C5-1—C6-1135.09 (10)
C4-2—N9-2—C20126.48 (9)N7-1—C5-1—C4-1110.75 (9)
C8-2—N9-2—C20127.49 (9)C6-1—C5-1—C4-1114.16 (9)
C4-2—N3-2—C2-2111.78 (9)N9-2—C20—C21A111.69 (9)
C6-2—N1-2—C2-2116.99 (10)N9-2—C20—C21B106.9 (6)
C8-2—N7-2—C5-2103.20 (9)N9-2—C20—H20A109.3
N3-1—C2-1—N1-1127.67 (10)C21A—C20—H20A109.3
N3-1—C2-1—H2-1116.2C21B—C20—H20A135.2
N1-1—C2-1—H2-1116.2N9-2—C20—H20B109.3
N3-1—C4-1—N9-1127.49 (10)C21A—C20—H20B109.3
N3-1—C4-1—C5-1126.81 (10)C21B—C20—H20B83.6
N9-1—C4-1—C5-1105.70 (9)H20A—C20—H20B107.9
N9-1—C10—C11A110.39 (9)C22A—C21A—C20123.02 (11)
N9-1—C10—C11B115.3 (3)C22A—C21A—H21A118.5
N9-1—C10—H10A109.6C20—C21A—H21A118.5
C11A—C10—H10A109.6C21A—C22A—C23A124.07 (14)
C11B—C10—H10A80.2C21A—C22A—H22A118.0
N9-1—C10—H10B109.6C23A—C22A—H22A118.0
C11A—C10—H10B109.6C22B—C21B—C20119.2 (14)
C11B—C10—H10B128.2C22B—C21B—H21B120.4
H10A—C10—H10B108.1C20—C21B—H21B120.4
C12A—C11A—C10123.78 (12)C21B—C22B—C23B107.1 (19)
C12A—C11A—H11A118.1C21B—C22B—H22B126.5
C10—C11A—H11A118.1C23B—C22B—H22B126.5
C11A—C12A—C13A125.33 (17)N3-2—C4-2—N9-2127.88 (10)
C11A—C12A—H12A117.3N3-2—C4-2—C5-2126.46 (10)
C13A—C12A—H12A117.3N9-2—C4-2—C5-2105.66 (9)
C12B—C11B—C10124.2 (8)N3-2—C2-2—N1-2128.37 (10)
C12B—C11B—H11B117.9N3-2—C2-2—H2-2115.8
C10—C11B—H11B117.9N1-2—C2-2—H2-2115.8
C11B—C12B—C13B126.3 (11)N1-2—C6-2—C5-2121.91 (10)
C11B—C12B—H12B116.9N1-2—C6-2—Cl-2116.70 (8)
C13B—C12B—H12B116.9C5-2—C6-2—Cl-2121.39 (8)
C12B—C13B—H13D109.5N7-2—C5-2—C6-2134.92 (10)
C12B—C13B—H13E109.5N7-2—C5-2—C4-2110.64 (9)
H13D—C13B—H13E109.5C6-2—C5-2—C4-2114.43 (9)
C12B—C13B—H13F109.5N7-2—C8-2—N9-2115.10 (10)
H13D—C13B—H13F109.5N7-2—C8-2—H8-2122.4
H13E—C13B—H13F109.5N9-2—C8-2—H8-2122.4

Experimental details

Crystal data
Chemical formulaC9H9ClN4
Mr208.65
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.1818 (11), 9.7103 (13), 13.9435 (19)
α, β, γ (°)69.642 (1), 75.448 (1), 67.032 (1)
V3)947.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)1.13 × 0.35 × 0.22
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionNumerical
(SADABS; Bruker, 2005)
Tmin, Tmax0.683, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
10801, 4428, 4103
Rint0.017
(sin θ/λ)max1)0.677
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.070, 1.04
No. of reflections4428
No. of parameters283
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.30

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2004) and ChemBioDraw Ultra (CambridgeSoft, 2009), publCIF (Westrip, 2010).

 

Acknowledgements

We acknowledge the support from the Norwegian Research Council (KOSK II, project 184929 and RENERGI, project 190980) and from the Department of Chemistry, UiO. We also acknowledge Dr David S. Wragg for invaluable assistance with the refinement.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCambridgeSoft (2009). ChemBioDraw Ultra. CambridgeSoft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationKania, J. & Gundersen, L.-L. (2013). Eur. J. Org. Chem. pp. 2008–2019.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds