organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Di­methyl-1-{2-[(5-methyl-1,3,4-thia­diazol-2-yl)sulfan­yl]acet­yl}-2,6-di­phenylpiperidin-4-one

aResearch Development Centre, Orchid Chemicals and Pharmaceuticals Ltd, Sozhinganallur, Chennai 600 119, India, bDepartment of Chemistry, Presidency College (Autonomous), Chennai 600 005, India, and cCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 22 April 2013; accepted 2 May 2013; online 11 May 2013)

In the title compound, C24H25N3O2S2, the piperidine ring adopts a distorted boat conformation. The phenyl rings subtend angles of 75.6 (1)° and 86.3 (1)° with the mean plane of the piperidine ring. In the crystal, mol­ecules are linked through a network C—H⋯N hydrogen bonds, forming zigzag chains along [100]. The thia­diazol ring methyl group is disordered over two positions with an occupancy ratio of 0.69 (4):0.31 (4).

Related literature

For the biological activity of piperidine derivatives, see: Aridoss et al. (2009[Aridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2009). Eur. J. Med. Chem. 44, 577-592.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) and for asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For hydrogen-bond motifs, see: Bernstein et al.(1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C24H25N3O2S2

  • Mr = 451.59

  • Orthorhombic, P 21 21 21

  • a = 9.1342 (6) Å

  • b = 9.2874 (6) Å

  • c = 27.0454 (14) Å

  • V = 2294.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.25 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.927, Tmax = 0.938

  • 10655 measured reflections

  • 4215 independent reflections

  • 3623 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.098

  • S = 1.06

  • 4215 reflections

  • 293 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1461 Friedel pairs

  • Flack parameter: 0.26 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯N3i 0.98 2.48 3.460 (4) 175
C22—H22B⋯N2i 0.97 2.47 3.403 (4) 161
C22—H22B⋯N3i 0.97 2.57 3.505 (4) 161
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In a way to find piperidin-4-one based lead drug molecules for the antimicrobial therapy, a new series of piperidin-4-one derivatives were prepared by condensing N-Chloroacetyl-2,6-diphenylpiperidin-4-one with 5-Methyl-1,3,4-thiadiazole-2-thiol. Report suggests that the substitution at chloro position of N-chloroacetyl-2,6-diphenylpiperidin-4-one alters the activity of parent compounds (Aridoss et al., 2009). 5-Methyl-1,3,4-thiadiazole-2-thiol is part of a number of cephalosporanic drugs viz Cefazolin and responsible for its activity. Keeping these two facts in mind, we have prepared a series of piperidin-4-ones. The present investigation was undertaken to establish the molecular structure and conformation of the title compound by X-ray diffraction method.

The ORTEP plot of the molecule is shown in Fig. 1. The piperidine ring adopts distorted boat conformation with the puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli,1983) are: q2=0.663 (3) Å, q3 = -0.045 (3) Å, ϕ2 = 245.0 (2)° and Δs(N1 & C4)= 68.3 (2)°.

The heterocyclic 1,3,4-thiadiazole ring is planar with the maximum deviation of atom C24 is -0.007 (4)°. The bond lengths of the endocyclic bonds [C23–N2 = 1.280 (4) Å & C24–N3 = 1.270 (5) Å], clearly indicate that they are double bond in character. The methyl group substituted at C25 atom in thiadiazol ring is disordered over two positions with the site occupancy of 0.69 (4) and 0.31 (4).

The carbonyl group is oriented anti-periplanar to C2 [C2—C3—C4—O1=] -171.9 (3)° and anti-clinal to C6 [C6—C5—C4—O1=] -139.1 (3)°. The best plane of the piperidine ring and the attached phenyl rings [C7—C12 & C13—C18] are twisted away by 75.6 (1)° and 86.3 (1)°. The two phenyl rings are oriented to each other with a dihedral angle of 59.7 (1)°.

The crystal packing reveals that the symmetry related molecules are linked through a network of C—H···O, C—H···N & C—H···S types of intra and intermolecular interactions. The hydrogen bonded network play a role in stabilizing the molecules in the unit cell (Fig. 2). Interesting to note that the C22—H22B···N3 and C22—H22B···N2 interactions together constitute a pair of bifurcated donor bonds as shown in Fig. 3 (Bernstein et al., 1995).

Related literature top

For the biological activity of piperidine derivatives, see: Aridoss et al. (2009). For puckering parameters, see: Cremer & Pople (1975) and for asymmetry parameters, see: Nardelli (1983). For hydrogen-bond motifs, see: Bernstein et al.(1995).

Experimental top

To anhydrous DMF (10 ml), N-chloroacetyl-3,5-dimethyl-2,6-diphenylpiperidin-4-one (1 mole), 5-Methyl-1,3,4-thiadiazole-2-thiol(1 mole) followed by potassium carbonate (1.5 mole) was added and stirred for 1 hr at room temperature. The reaction mass was heated to 60° C and stirred. The reaction was monitored using TLC. After completion of reaction, the reaction mass was quenched into water and the product was extracted with dichloromethane. The dichloromethane layer distilled completely and to the residue methanol was added and kept overnight. The solid obtained was filtered and dried at 60° C under vacuum. Single crystal was obtained by re-crystallization using ethanol.

Refinement top

N and C-bound H atoms were positioned geometrically (C–H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other H atoms. The methyl atom (C25) is disordered over two set of positions with refined site-occupancies ratio of 0.69 (4)/0.31 (4).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the molecules viewed down b axis.
[Figure 3] Fig. 3. The C–H···N interactions constitute a pair of bifurcated donor bonds.
3,5-Dimethyl-1-{2-[(5-methyl-1,3,4-thiadiazol-2-yl)sulfanyl]acetyl}-2,6-diphenylpiperidin-4-one top
Crystal data top
C24H25N3O2S2F(000) = 952
Mr = 451.59Dx = 1.307 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4138 reflections
a = 9.1342 (6) Åθ = 1.5–28.4°
b = 9.2874 (6) ŵ = 0.26 mm1
c = 27.0454 (14) ÅT = 293 K
V = 2294.3 (2) Å3Block, white crystalline
Z = 40.30 × 0.30 × 0.25 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
4215 independent reflections
Radiation source: fine-focus sealed tube3623 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω and ϕ scansθmax = 25.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1110
Tmin = 0.927, Tmax = 0.938k = 1011
10655 measured reflectionsl = 3232
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0407P)2 + 0.4037P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.003
4215 reflectionsΔρmax = 0.18 e Å3
293 parametersΔρmin = 0.24 e Å3
2 restraintsAbsolute structure: Flack (1983), 1461 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.26 (8)
Crystal data top
C24H25N3O2S2V = 2294.3 (2) Å3
Mr = 451.59Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.1342 (6) ŵ = 0.26 mm1
b = 9.2874 (6) ÅT = 293 K
c = 27.0454 (14) Å0.30 × 0.30 × 0.25 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
4215 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3623 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.938Rint = 0.033
10655 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.098Δρmax = 0.18 e Å3
S = 1.06Δρmin = 0.24 e Å3
4215 reflectionsAbsolute structure: Flack (1983), 1461 Friedel pairs
293 parametersAbsolute structure parameter: 0.26 (8)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C20.8537 (3)0.3491 (3)0.31092 (8)0.0434 (6)
H20.94120.40160.30030.052*
C30.7285 (3)0.4013 (3)0.27855 (9)0.0498 (6)
H30.74120.35940.24560.060*
C40.5804 (3)0.3549 (3)0.29802 (10)0.0557 (7)
C50.5761 (3)0.2856 (3)0.34821 (9)0.0468 (6)
H50.61130.18660.34420.056*
C60.6804 (2)0.3605 (3)0.38547 (8)0.0409 (5)
H60.63510.45230.39480.049*
C70.6940 (2)0.2704 (3)0.43237 (9)0.0420 (6)
C80.6392 (3)0.3216 (3)0.47632 (9)0.0565 (7)
H80.59260.41050.47730.068*
C90.6530 (4)0.2415 (4)0.51908 (11)0.0761 (10)
H90.61650.27760.54870.091*
C100.7197 (4)0.1100 (4)0.51842 (13)0.0766 (10)
H100.72950.05700.54740.092*
C110.7717 (4)0.0571 (4)0.47490 (13)0.0716 (9)
H110.81620.03290.47410.086*
C120.7588 (3)0.1361 (3)0.43181 (10)0.0559 (7)
H120.79410.09860.40220.067*
C130.8916 (3)0.1899 (3)0.30846 (8)0.0431 (6)
C141.0060 (3)0.1415 (3)0.33779 (9)0.0569 (7)
H141.05980.20740.35620.068*
C151.0411 (3)0.0013 (4)0.34010 (12)0.0689 (9)
H151.11610.03160.36090.083*
C160.9671 (4)0.1006 (3)0.31216 (12)0.0705 (9)
H160.99060.19780.31430.085*
C170.8584 (4)0.0551 (3)0.28114 (12)0.0667 (8)
H170.80970.12090.26110.080*
C180.8208 (3)0.0898 (3)0.27956 (10)0.0535 (7)
H180.74630.11970.25850.064*
C190.7301 (4)0.5638 (3)0.27324 (12)0.0756 (9)
H19A0.82360.59410.26080.113*
H19B0.71300.60730.30490.113*
H19C0.65460.59290.25060.113*
C200.4220 (3)0.2764 (4)0.36868 (12)0.0714 (9)
H20A0.42430.23120.40060.107*
H20B0.36210.22050.34670.107*
H20C0.38200.37150.37170.107*
C210.9216 (3)0.4863 (3)0.38323 (9)0.0447 (6)
C220.8900 (3)0.5401 (3)0.43507 (9)0.0444 (6)
H22A0.90700.46410.45900.053*
H22B0.78890.57110.43770.053*
C230.9909 (3)0.7090 (3)0.50966 (9)0.0471 (6)
C240.9507 (4)0.7112 (5)0.59575 (11)0.0869 (12)
N10.8240 (2)0.3941 (2)0.36250 (7)0.0391 (4)
N21.0669 (3)0.8047 (3)0.53206 (9)0.0749 (8)
N31.0440 (3)0.8048 (3)0.58237 (9)0.0874 (10)
O10.4720 (3)0.3740 (3)0.27404 (9)0.1004 (9)
O21.0350 (2)0.5239 (2)0.36260 (7)0.0672 (6)
S11.01181 (9)0.68920 (7)0.44633 (2)0.0565 (2)
S20.88298 (10)0.60962 (11)0.54817 (3)0.0817 (3)
C25A0.884 (3)0.715 (3)0.6474 (4)0.123 (7)0.69 (4)
H25A0.88550.61980.66130.185*0.69 (4)
H25B0.78530.74900.64550.185*0.69 (4)
H25C0.94070.77840.66800.185*0.69 (4)
C25B0.951 (3)0.649 (3)0.6513 (6)0.076 (6)0.31 (4)
H25D1.04830.61770.65980.113*0.31 (4)
H25E0.88530.56820.65340.113*0.31 (4)
H25F0.92020.72240.67380.113*0.31 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0469 (13)0.0527 (15)0.0307 (11)0.0076 (12)0.0032 (10)0.0014 (10)
C30.0618 (16)0.0515 (15)0.0360 (13)0.0021 (13)0.0031 (11)0.0025 (12)
C40.0517 (15)0.0668 (18)0.0485 (15)0.0017 (13)0.0114 (12)0.0039 (13)
C50.0402 (13)0.0516 (15)0.0485 (14)0.0038 (11)0.0022 (11)0.0039 (12)
C60.0387 (12)0.0446 (13)0.0393 (12)0.0024 (10)0.0010 (10)0.0030 (11)
C70.0361 (12)0.0488 (15)0.0411 (13)0.0055 (11)0.0021 (10)0.0002 (11)
C80.0613 (17)0.0627 (17)0.0456 (15)0.0139 (14)0.0082 (13)0.0046 (14)
C90.088 (2)0.100 (3)0.0400 (15)0.036 (2)0.0062 (15)0.0004 (18)
C100.074 (2)0.093 (3)0.063 (2)0.032 (2)0.0199 (17)0.030 (2)
C110.0616 (19)0.071 (2)0.082 (2)0.0007 (16)0.0033 (17)0.0289 (19)
C120.0499 (14)0.0580 (16)0.0597 (17)0.0043 (13)0.0076 (13)0.0088 (14)
C130.0428 (13)0.0522 (14)0.0344 (11)0.0030 (12)0.0071 (10)0.0059 (11)
C140.0457 (14)0.0730 (18)0.0520 (15)0.0061 (15)0.0007 (13)0.0141 (13)
C150.0548 (18)0.083 (2)0.0684 (19)0.0264 (17)0.0023 (15)0.0010 (17)
C160.069 (2)0.0571 (17)0.085 (2)0.0112 (17)0.0170 (17)0.0013 (17)
C170.072 (2)0.0482 (16)0.080 (2)0.0047 (15)0.0036 (17)0.0152 (15)
C180.0551 (16)0.0556 (16)0.0499 (15)0.0007 (13)0.0023 (12)0.0042 (13)
C190.096 (3)0.0586 (18)0.072 (2)0.0069 (18)0.0009 (19)0.0069 (17)
C200.0438 (15)0.100 (3)0.0701 (19)0.0074 (16)0.0006 (14)0.0088 (19)
C210.0460 (14)0.0477 (14)0.0404 (13)0.0020 (12)0.0018 (11)0.0019 (11)
C220.0424 (12)0.0435 (13)0.0474 (14)0.0041 (11)0.0012 (11)0.0111 (11)
C230.0478 (13)0.0401 (13)0.0533 (14)0.0038 (12)0.0056 (12)0.0073 (11)
C240.085 (2)0.128 (3)0.0478 (16)0.058 (2)0.0071 (16)0.0245 (19)
N10.0402 (10)0.0430 (11)0.0342 (9)0.0039 (9)0.0017 (8)0.0036 (9)
N20.097 (2)0.0737 (17)0.0540 (14)0.0434 (16)0.0062 (13)0.0155 (13)
N30.106 (2)0.105 (2)0.0513 (14)0.057 (2)0.0087 (14)0.0253 (15)
O10.0660 (14)0.159 (2)0.0759 (14)0.0036 (16)0.0281 (12)0.0246 (16)
O20.0582 (12)0.0878 (14)0.0554 (11)0.0297 (11)0.0149 (10)0.0213 (10)
S10.0768 (5)0.0470 (3)0.0457 (3)0.0182 (3)0.0007 (3)0.0046 (3)
S20.0872 (6)0.1083 (7)0.0495 (4)0.0573 (5)0.0084 (4)0.0189 (4)
C25A0.122 (10)0.190 (16)0.058 (4)0.076 (11)0.007 (5)0.031 (6)
C25B0.077 (11)0.117 (14)0.033 (5)0.028 (9)0.015 (6)0.015 (6)
Geometric parameters (Å, º) top
C2—N11.481 (3)C16—C171.367 (4)
C2—C31.519 (3)C16—H160.9300
C2—C131.520 (3)C17—C181.389 (4)
C2—H20.9800C17—H170.9300
C3—C41.515 (4)C18—H180.9300
C3—C191.516 (4)C19—H19A0.9600
C3—H30.9800C19—H19B0.9600
C4—O11.197 (3)C19—H19C0.9600
C4—C51.503 (4)C20—H20A0.9600
C5—C201.515 (4)C20—H20B0.9600
C5—C61.552 (3)C20—H20C0.9600
C5—H50.9800C21—O21.227 (3)
C6—N11.484 (3)C21—N11.357 (3)
C6—C71.525 (3)C21—C221.516 (3)
C6—H60.9800C22—S11.802 (2)
C7—C81.375 (4)C22—H22A0.9700
C7—C121.381 (4)C22—H22B0.9700
C8—C91.380 (4)C23—N21.280 (3)
C8—H80.9300C23—S21.705 (3)
C9—C101.365 (5)C23—S11.733 (3)
C9—H90.9300C24—N31.270 (4)
C10—C111.361 (5)C24—C25A1.523 (10)
C10—H100.9300C24—C25B1.61 (2)
C11—C121.382 (4)C24—S21.711 (3)
C11—H110.9300N2—N31.377 (3)
C12—H120.9300C25A—H25A0.9600
C13—C181.376 (4)C25A—H25B0.9600
C13—C141.387 (4)C25A—H25C0.9600
C14—C151.366 (4)C25B—H25D0.9600
C14—H140.9300C25B—H25E0.9600
C15—C161.370 (5)C25B—H25F0.9600
C15—H150.9300
N1—C2—C3108.3 (2)C17—C16—C15119.3 (3)
N1—C2—C13110.96 (19)C17—C16—H16120.4
C3—C2—C13117.2 (2)C15—C16—H16120.4
N1—C2—H2106.6C16—C17—C18119.9 (3)
C3—C2—H2106.6C16—C17—H17120.1
C13—C2—H2106.6C18—C17—H17120.1
C4—C3—C19108.9 (2)C13—C18—C17121.4 (3)
C4—C3—C2112.4 (2)C13—C18—H18119.3
C19—C3—C2111.4 (2)C17—C18—H18119.3
C4—C3—H3108.0C3—C19—H19A109.5
C19—C3—H3108.0C3—C19—H19B109.5
C2—C3—H3108.0H19A—C19—H19B109.5
O1—C4—C5122.1 (3)C3—C19—H19C109.5
O1—C4—C3120.6 (3)H19A—C19—H19C109.5
C5—C4—C3117.3 (2)H19B—C19—H19C109.5
C4—C5—C20112.2 (2)C5—C20—H20A109.5
C4—C5—C6112.2 (2)C5—C20—H20B109.5
C20—C5—C6111.0 (2)H20A—C20—H20B109.5
C4—C5—H5107.0C5—C20—H20C109.5
C20—C5—H5107.0H20A—C20—H20C109.5
C6—C5—H5107.0H20B—C20—H20C109.5
N1—C6—C7113.06 (18)O2—C21—N1123.1 (2)
N1—C6—C5111.39 (18)O2—C21—C22119.2 (2)
C7—C6—C5110.1 (2)N1—C21—C22117.7 (2)
N1—C6—H6107.3C21—C22—S1106.97 (17)
C7—C6—H6107.3C21—C22—H22A110.3
C5—C6—H6107.3S1—C22—H22A110.3
C8—C7—C12118.5 (2)C21—C22—H22B110.3
C8—C7—C6120.0 (2)S1—C22—H22B110.3
C12—C7—C6121.4 (2)H22A—C22—H22B108.6
C7—C8—C9120.3 (3)N2—C23—S2113.6 (2)
C7—C8—H8119.8N2—C23—S1118.8 (2)
C9—C8—H8119.8S2—C23—S1127.58 (15)
C10—C9—C8120.8 (3)N3—C24—C25A120.8 (5)
C10—C9—H9119.6N3—C24—C25B120.7 (8)
C8—C9—H9119.6N3—C24—S2113.9 (2)
C11—C10—C9119.3 (3)C25A—C24—S2124.0 (4)
C11—C10—H10120.3C25B—C24—S2120.2 (8)
C9—C10—H10120.3C21—N1—C2116.55 (19)
C10—C11—C12120.6 (3)C21—N1—C6122.68 (19)
C10—C11—H11119.7C2—N1—C6119.78 (18)
C12—C11—H11119.7C23—N2—N3112.7 (2)
C7—C12—C11120.4 (3)C24—N3—N2112.5 (2)
C7—C12—H12119.8C23—S1—C22100.39 (12)
C11—C12—H12119.8C23—S2—C2487.25 (14)
C18—C13—C14117.4 (2)C24—C25A—H25A109.5
C18—C13—C2125.1 (2)C24—C25A—H25B109.5
C14—C13—C2117.5 (2)C24—C25A—H25C109.5
C15—C14—C13121.2 (3)C24—C25B—H25D109.5
C15—C14—H14119.4C24—C25B—H25E109.5
C13—C14—H14119.4H25D—C25B—H25E109.5
C14—C15—C16120.8 (3)C24—C25B—H25F109.5
C14—C15—H15119.6H25D—C25B—H25F109.5
C16—C15—H15119.6H25E—C25B—H25F109.5
N1—C2—C3—C452.8 (3)C13—C14—C15—C162.2 (5)
C13—C2—C3—C473.6 (3)C14—C15—C16—C171.0 (5)
N1—C2—C3—C1969.8 (3)C15—C16—C17—C182.2 (5)
C13—C2—C3—C19163.8 (2)C14—C13—C18—C172.5 (4)
C19—C3—C4—O164.1 (4)C2—C13—C18—C17177.1 (3)
C2—C3—C4—O1171.9 (3)C16—C17—C18—C130.5 (5)
C19—C3—C4—C5115.6 (3)O2—C21—C22—S115.4 (3)
C2—C3—C4—C58.4 (3)N1—C21—C22—S1166.73 (18)
O1—C4—C5—C2013.2 (4)O2—C21—N1—C25.2 (4)
C3—C4—C5—C20166.4 (3)C22—C21—N1—C2177.0 (2)
O1—C4—C5—C6139.0 (3)O2—C21—N1—C6173.8 (2)
C3—C4—C5—C640.6 (3)C22—C21—N1—C68.5 (3)
C4—C5—C6—N143.1 (3)C3—C2—N1—C21117.4 (2)
C20—C5—C6—N1169.6 (2)C13—C2—N1—C21112.6 (2)
C4—C5—C6—C7169.4 (2)C3—C2—N1—C651.5 (3)
C20—C5—C6—C764.1 (3)C13—C2—N1—C678.4 (3)
N1—C6—C7—C8121.4 (2)C7—C6—N1—C2170.2 (3)
C5—C6—C7—C8113.2 (3)C5—C6—N1—C21165.2 (2)
N1—C6—C7—C1259.6 (3)C7—C6—N1—C2121.6 (2)
C5—C6—C7—C1265.8 (3)C5—C6—N1—C23.0 (3)
C12—C7—C8—C91.9 (4)S2—C23—N2—N30.2 (4)
C6—C7—C8—C9179.0 (2)S1—C23—N2—N3177.5 (2)
C7—C8—C9—C100.7 (5)C25A—C24—N3—N2166.3 (15)
C8—C9—C10—C110.6 (5)C25B—C24—N3—N2156.0 (14)
C9—C10—C11—C120.7 (5)S2—C24—N3—N21.3 (5)
C8—C7—C12—C111.8 (4)C23—N2—N3—C241.0 (5)
C6—C7—C12—C11179.2 (3)N2—C23—S1—C22177.6 (2)
C10—C11—C12—C70.5 (5)S2—C23—S1—C220.2 (2)
N1—C2—C13—C18124.6 (2)C21—C22—S1—C23167.14 (17)
C3—C2—C13—C180.5 (3)N2—C23—S2—C240.4 (3)
N1—C2—C13—C1455.0 (3)S1—C23—S2—C24177.8 (2)
C3—C2—C13—C14179.8 (2)N3—C24—S2—C231.0 (3)
C18—C13—C14—C153.8 (4)C25A—C24—S2—C23166.2 (16)
C2—C13—C14—C15175.8 (3)C25B—C24—S2—C23155.8 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···N3i0.982.483.460 (4)175
C22—H22B···N2i0.972.473.403 (4)161
C22—H22B···N3i0.972.573.505 (4)161
Symmetry code: (i) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC24H25N3O2S2
Mr451.59
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.1342 (6), 9.2874 (6), 27.0454 (14)
V3)2294.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.30 × 0.30 × 0.25
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.927, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
10655, 4215, 3623
Rint0.033
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.098, 1.06
No. of reflections4215
No. of parameters293
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.24
Absolute structureFlack (1983), 1461 Friedel pairs
Absolute structure parameter0.26 (8)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···N3i0.982.483.460 (4)174.5
C22—H22B···N2i0.972.473.403 (4)160.7
C22—H22B···N3i0.972.573.505 (4)160.8
Symmetry code: (i) x1/2, y+3/2, z+1.
 

Acknowledgements

SG thanks Orchid Chemicals and Pharmaceuticals Ltd (www.orchidpharma.com), Chennai, India, for consent to perform this research and PS is thankful to the UGC, New Delhi, for financial support in the form of a Research Fellowship in Science for Meritorious Students.

References

First citationAridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2009). Eur. J. Med. Chem. 44, 577–592.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds